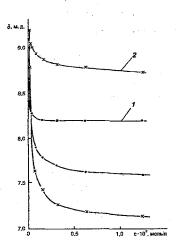
Т. А. Бабушкина, Г. В. Пономарев

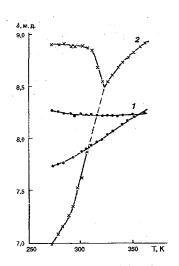
ВОДОРОДНАЯ СВЯЗЬ И ДВИЖЕНИЕ NH-ПРОТОНОВ В ВОДОРАСТВОРИМЫХ ИОННЫХ ПОРФИРИНАХ ПО ДАННЫМ СПЕКТРОСКОПИИ ПМР

Исследованы концентрационные и температурные зависимости химических сдвигов ароматических и β -протонов тетра-мезо-замещенных ионных порфиринов в водных растворах. Обнаружено значительное повышение температуры локализации внутренних NH-протонов порфиринов, растворенных в воде, по сравнению с растворами порфиринов в органических растворителях. Обсуждены типы ассоциации изученных порфиринов и возможные внутри- и межмолекулярные водородные связи.

Характерной особенностью свободных оснований порфиринов является NH-таутомерия, связанная с перемещением подвижных протонов от одной пары атомов азота к другой в центре макроцикла. Для симметричных порфиринов миграция этих протонов в основном состоянии проявляется в спектрах ЯМР [1].


Электронные спектры поглощения и флуоресценции отдельных таутомеров симметричных порфиринов тождественны [2]. Таутомеры порфиринов с несимметричным замещением имеют разные времена жизни и могут регистрироваться как оптическими, так и ЯМР методами [3, 4]. В большинстве ЯМР спектроскопических исследований изучены температурные зависимости химических сдвигов и величин ширины сигналов β -протонов, а также сигналов атомов углерода или азота в спектрах ЯМР 13 С и 15 N для характеристики этого процесса [5—7]. При низкой температуре (170...200 К) наблюдались разные сигналы от атомов пирролов с пиридиновым и пиррольным атомами азота.

В спектрах ПМР β -замещенных тетрафенилпорфирина [8—10] регистрировали сигналы NH-протонов, непосредственно участвующих в движении. Величины свободной энергии и энтальпии движения NH-протонов незначительно различаются для порфиринов в растворе CDCl3 и твердом теле [11]. Из этого делают вывод, что процесс протонного переноса в этих случаях является внутри-, а не межмолекулярным. Межмолекулярные контакты существуют преимущественно между периферическими атомами порфиринового скелета и не влияют на кинетику реакции, происходящей в центре макроцикла.


В медицинской практике наиболее широко используются водорастворимые порфирины, такие, как соли производных гематопорфирина, некоторые производные мезопорфирина-IX, ионные порфирины. Спектры ионных порфиринов были исследованы во многих работах [12—16]. При этом на моделях изучали их взаимодействие с ДНК.

Для водных растворов ионных порфиринов типы ассоциации и процессы движения NH-протонов могут иметь особенности, связанные с диссоциацией молекул воды. Поэтому нами были изучены концентрационные и температурные зависимости химических сдвигов сигналов β -протонов порфиринового скелета и протонов ароматических колец заместителей для сульфатной и перхлоратной солей мезо-тетра (4-N-метилпиридинил) порфирина (T-MePyII) и Nа-соли мезо-тетра (n-сульфонатфенил) порфирина (ТФПС). Для водного раствора Nа-соли мезо-тетра (n-карбоксифенил) порфирина были исследованы температурные зависимости химических сдвигов сигналов атомов 13 С.

Из спектральных данных [17] известно, что для анионных порфиринов ТФПС и ТФПК характерна ассоциация даже при очень низкой концентрации — $25 \cdot 10^{-6}$ моль/л, а константа равновесия димеризации достаточно велика — 10^5 л/моль [17]. Концентрационная зависимость химических сдвигов протонов для ТФПС в D₂O показана на рис. 1. Главной

Puc. 1. Концентрационная зависимость химических сдвигов протонов Nа-соли $T\Phi\Pi C$ в D₂O при 20 °C: I — ароматические протоны заместителя; 2 — β -протоны

Рис. 2. Температурная зависимость химических сдвигов протонов Na-соли ТФПС в D₂O. Концентрация $3\cdot 10^{-3}$ моль/л: I — ароматические протоны заместителя; 2 — β -протоны

особенностью спектров (при концентрации больше $3\cdot 10^{-4}$ моль/л и температуре 293 K) является наличие двух сигналов β -протонов, свидетельствующее о локализации NH(D)-протонов при указанных условиях. Уменьшение разницы между этими сигналами (а также их уширение) при разбавлении раствора говорит о зависимости движения внутренних протонов порфирина от степени ассоциации молекул, а следовательно, межмолекулярных взаимодействий NH-протонов. При концентрации $2\cdot 10^{-4}$ моль/л при комнатной температуре наблюдается один общий сигнал для β -протонов (9,2 м. д.). Сигналы ароматических протонов мезо-заместителей пересекаются при концентрации, близкой к $3,6\cdot 10^{-4}$ моль/л; далее более широкие сигналы протонов 3 H и 5 H расположены в более слабом поле, чем сигналы протонов 2 H и 6 H. Сдвиг сигналов ПМР от β -протонов и ароматических протонов заместителей в слабое поле при разбавлении растворов согласуется с предположением о стекинг-взаимодействии между молекулами ТФПС в ассоциате.

Показано, что при димеризации порфиринов осуществляется не максимально симметричная конформация «центрированной стопки» с максимальным π -перекрыванием, а конформация «смещенной стопки» с оптимизированным электростатическим взаимодействием между π -системами [18]. Возможно, что в случае ТФПС такая конформация тоже имеет место, причем она может дополнительно стабилизироваться межмолекулярной водородной связью 02SO—...H—N, аналогично предложенному Блюменфельдом [19] взаимодействию COO—...H—N для димеров протопорфирина. При этом в ТФПС протоны 3 H и 5 H находятся под действием макроциклического π -тока, уменьшающего величины их химических сдвигов. Оцененная по методу Липперта [20] из концентрационной

зависимости химических сдвигов сигналов M-протонов константа равновесия процесса образования ассоциата за счет связи O_2SO ...H—N равна $2 \cdot 10^2$ л/моль при 295 K.

С повышением температуры (см. рис. 2) значительно изменяется положение высокопольного сигнала (³H и ⁵H), а положение низкопольного от протонов ²H, ⁶H фенильного заместителя практически не меняется. При 348 К (концентрация 3 · 10⁻³ моль/л) линии пересекаются. Это согласуется с фактом, что константа ассоциации за счет водородной связи с группой SO₂ меньше константы ассоциации за счет стекинг-взаимодействия. *о*-Протоны фенильных заместителей порфирина испытывают большее влияние процесса образования и разрушения «стопок», чем водородной связи с группой SO₂.

При разбавлении водного раствора сульфата Т-МеРуП от 0.05 до $2 \cdot 10^{-4}$ моль/л и перхлората Т-МеРуП от $6 \cdot 10^{-3}$ до $2 \cdot 10^{-4}$ моль/л отмечен заметный сдвиг в сильное поле сигналов протонов этих соединений. Отметим, что методом ПМР исследованы растворы с коцентрацией порфирина выше $2 \cdot 10^{-3}$ моль/л и, по данным этой работы [12], разбавление растворов практически не влияло на положение сигналов ароматических протонов пиридинового кольца, а сигнал метильных протонов несколько сдвигался в слабое поле.

Для сульфата Т-МеРуП концентрационная зависимость химических сдвигов показана на рис. 3. Направление сдвига сигналов β -протонов указывает скорее на плоскостную ассоциацию Т-МеРу+П («сетка») через двух- или однозарядный анионы, чем на образование «стопок», которое (как уже было сказано) является наиболее распространенным типом ассоциации порфиринов [18]. Если предполжить, что в ассоциированном состоянии заместители в мезо-положениях были копланарны с порфириновым кольцом, то при разрушении ассоциации вероятен их поворот, при котором конформация замещенного порфирина будет близка к пропеллерной, как для тетрафенилпорфирина [21]. В этом случае понятен сдвиг ПМР сигналов ароматических протонов в сильное поле, так как протоны попадают под влияние экранирующего магнитного поля, вызванного π -током порфиринового кольца.

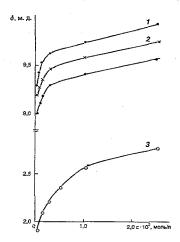


Рис. 3. Концентрационная зависимость химических сдвигов протонов сульфата Т-МеРуП в D_2O при 20 °C: I — фенильные протоны; 2 — β -протоны; 3 — метильные протоны

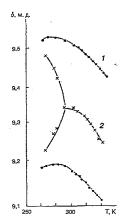


Рис. 4. Температурная зависимость химических сдвигов протонов сульфата Т-МеРуП в D₂O. Концентрация $3\cdot 10^{-3}$ моль/л: 1 — фенильные протоны; 2 — β -протоны

С другой стороны, следует обратить внимание, что при понижении температуры (рис. 4) (вблизи температуры коалесценции и ниже ее) сдвиг сигналов ПМР в сильное поле для ароматичесих протонов замедляется и даже меняет знак, указывая на возможное существование двух типов ассоциации порфирина: плоскостное («сетки») и проявление «стопок» при низкой температуре, когда затормаживается процесс движения NH-протонов. В этом случае мы склонны считать, что энергия ассоциации порфиринов в виде «стопок» меньше (они начинают разрушаться при более низкой температуре), чем плоскостная ассоциация через анионы. Эти данные подтверждают предположение [12] о том, что анионные порфирины имеют большую тенденцию к стекинг-взаимодействию, чем катионные.

Рассмотрим теперь температурное поведение сигналов β -протонов для ТФПС, растворенного в D₂O в концентрации $3 \cdot 10^{-3}$ моль/л. Нагревание раствора от 270 до 305 К сильно (на 450 Гц) сдвигает высокопольный сигнал в слабое поле, не меняя при этом положения низкопольного сигнала (см. рис. 2). Высокопольный сигнал более широкий, чем низкопольный, что может быть вызвано спин-спиновым взаимодействием с NH-протоном. Выше 305 К этот сигнал настолько уширяется, что становится практически ненаблюдаемым.

На положение сигналов β -протонов влияют два фактора: разрушение стекинг-ассоциатов (сдвиг в слабое поле) и активизация движения NH-протонов (сдвиг в сильное поле для β -протонов пиррольных колец с пиридиновым атомом азота и сдвиг в слабое поле для β -протонов пиррольных колец с пиррольным атомом азота). Оба фактора практически компенсируют свое влияние для низкопольного сигнала (до температуры 305 K) и складывают — для высокопольного. Выше 305 K влияние второго фактора для низкопольного сигнала превалирует над влиянием разрушения ассоциатов и сигнал сдвигается в сильное поле. Температура 320 K является температурой коалесценции, выше которой единый сигнал β -протонов сдвигается в низкое поле под влиянием разрушения стекинг-ассоциатов. Температура коалесценции сигналов β -протонов в этом случае почти на 70° выше, чем в растворе хлороформа.

Оценка с помощью приближенных решений уравнений Эйринга [22] энергии процесса переноса ND-протонов дает $\Delta G^{\neq}=14,4$ ккал/моль при концентрации $3\cdot 10^{-3}$ моль/л. Наблюдается зависимость энергетического барьера от концентрации анионного порфирина в водном растворе: повышение концентрации до $6\cdot 10^{-3}$ моль/л увеличивает свободную энергию движения ND-протонов до 15,6 ккал/моль, а уменьшение до $4\cdot 10^{-4}$ моль/л приводит к $\Delta G^{\neq}=13,1$ ккал/моль. Это подтверждает сделанный выше вывод, что процесс движения NH(D)-протонов является не только внутримолекулярным, но и межмолекулярным и лимитируется энергией взаимодействия NH(D)...N (другой молекулы порфирина).

Химические сдвиги сигналов ЯМР ¹³С для Nа-соли тетра(*n*-карбоксифенил)порфирина в D₂O*

Т, К	coo-	Химические сдвиги (относительно ТМС)						
		cα	сβ	мезо-С	C ₍₁₎	C ₍₂₎ ,C ₍₆₎	C ₍₃₎ ,C ₍₅₎	C ₍₄₎
351	175,62	137,59	131,48	120,36	132,80	128,03	135,25	143,86
323	175,90	136,81	135,72	119,86		128,20	135,79	143,53
290	176,15	153,76 135,98	137,47 129,01	119,78	132,41	128,29	136,45	143,48
283	176,31 316,19	153,64 129,10	137,52	119,77	132,40	128,31	136,29	143,51

^{*} Внутренний эталон—диоксан.

Поскольку все описанные эксперименты проведены в D_2O , то при наличии межмолекулярного обмена с растворителем внутренние NH-протоны порфирина должны были бы обменяться на ND. Поэтому были изучены спектры ПМР ТФПС в H_2O при концентрации $6 \cdot 10^{-3}$ моль/л при нескольких температурах от 280 до 320 К. Установлено, что химические сдвиги β -протонов не меняются при обмене внутренних протонов на дейтроны, поскольку расстояние между β -протонами и внутренними протонами около 5 Å, и эти атомы не влияют друг на друга. Однако температура коалесценции сигналов β -протонов понижается примерно на 20 °C, так как скорости движения протонов примерно в 10 раз больше, чем дейтронов. Свободная энергия движения NH-протонов соответственно уменьшается до 13,9 ккал/моль (15,6 ккал/моль для такой же концентрации $T\Phi\PiC$ в D_2O).

Высокая температура усреднения NH(D)-протонов, вызванная сложными внутри- и межмолекулярными процессами обмена протонов, характерна и для другого исследованного нами анионного порфирина, а именно Na-соли $\mathsf{T}\Phi\Pi K$. В таблице приведены значения химических сдвигов сигналов ЯМР $^{13}\mathsf{C}$ для водных растворов $\mathsf{T}\Phi\Pi K$ при концентрации 0,05 моль/л и разных температурах. Температура локализации NH(D)-протонов выше 290 К. Понижение температуры водного раствора сульфата $\mathsf{T}\text{-MePy}\Pi$ при концентрации $\mathsf{3} \cdot \mathsf{10}^{-3}$ моль/л от 340 К до комнатной приводит к сдвигу сигналов в спектрах $\mathsf{\Pi}\mathsf{MP}$ в слабое поле, что подтверждает наше предположение о типе ассоциации указанного катионного порфирина. Охлаждение водного раствора этого порфирина ниже 285 К вызывает расщепление сигнала $\mathsf{\Pi}\mathsf{MP}$ от β -протонов на два, равных по интенсивности (рис. 4), что свидетельствует о замедлении движения NH(D)-протонов и их локализации. Так, при температуре 268 К разность химических сдвигов сигналов β -протонов равна 37,5 $\mathsf{\Gamma}\mathsf{q}$ при ширине 15 $\mathsf{\Gamma}\mathsf{q}$.

Оценка с помощью приближенных решений уравнения Эйринга [22] дает возможность получить верхнюю границу энергетического барьера переноса NH-протонов $\Delta G^{\neq} = 14.1$ ккал/моль. В этом случае эксперимент проводили в тяжелой воде и значение свободной энергии относится к переносу не NH-протонов, а дейтронов. Соотношение $K^{\rm HH}/K^{\rm HD} \sim 10$, поэтому $\Delta G_{\rm HH}^{\neq} \sim 13$ моль/л.

Сравнение с данными для порошков мезо-(тетраалкильных) производных порфирина, как и для органических растворителей (ΔG^{\neq} = 11,4...12,7 ккал/моль при 298 К [23]), показывает некоторое увеличение энергетического барьера движения NH-протонов в водных растворах порфиринов, а также значительное повышение температуры коалесценции (285...320 и 240...250 К) сигналов β -протонов порфиринов. Следовательно, в водных растворах как анионных, так и катионных порфиринов необходимо учитывать межмолекулярные процессы обмена NH-протонов с протонами воды, т. е. процесс переноса протонов NH(D)...N будет лимитироваться не только энергией взаимодействия NH(D)...N соседней молекулы, но и энергией взаимодействия N...H(D)—O, где OH — гидроксил воды (растворителя).

Таким образом, из представленных данных можно сделать следующие выводы:

1. Из сравнения концентрационных и температурных зависимостей химических сдвигов ЯМР протонов для катионных порфиринов (сульфатной и перхлоратной солей мезо-тетра (*n*-метилпиридил) порфирина) и анионного порфирина (Na-соли мезо-тетра (*n*-сульфонатфенил) порфирина) следует, что анионные и катионные порфирины могут иметь неодинаковые типы ассоциации, причем тип ассоциации последних может зависеть от противоиона. Анионные порфирины имеют большую склонность к стекинг-взаимодействию, чем катионные. Поэтому в катионных порфиринах меньше выражено межмолекулярное NH...N взаимодействие (при сохранении

межмолекулярного NH...О—Н взаимодействия), что вызывает, во-первых, более низкую температуру делокализации NH-протонов по сравнению с анионными порфиринами (ср. Т-МеРуП и ТФПС), а во-вторых, облегчает взаимодействие с нуклеозидами [12, 13].

- 2. Температура коалесценции сигналов ПМР β -протонов вследствие активизации процесса переноса NH-протонов между атомами азота макроцикла для водных растворов ионных порфиринов существенно выше (на 30...70°), чем для растворов порфиринов в органических растворителях или в твердом теле. Соответственно энергия переноса NH(D)-протонов при данной температуре также возрастает.
- 3. Процесс переноса NH-протонов в водных растворах анионных порфиринов зависит от их концентрации, т. е. от степени ассоциации порфирина.
- 4. Особенности переноса NH(D)-протонов в водных растворах ионных порфиринов позволяют заключить, что в данном случае этот процесс является не только внутримолекулярным, но и межмолекулярным и лимитируется как энергией взаимодействия с молекулами воды H—О—Н...N, так и взаимодействием с атомами азота молекулы порфирина партнера по ассоциации.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н и 13 С измерены на спектрометре WM-250 фирмы Bruker. Концентрация растворов изменялась в диапазоне от $5 \cdot 10^{-2}$ до $2 \cdot 10^{-4}$ моль/л. В качестве растворителя использовали D₂O. Область температур, в которой производили измерения, 265...350 К. Для изучения влияния замены H₂O на D₂O на процессы движения NH(D)-протонов в порфиринах спектры ПМР водных растворов (H₂O) Na-соли ТФПС были сняты при нескольких температурах (285, 291, 315, 325 K). При регистрации этих спектров использовали программу подавления сигнала H₂O. Внутренним эталоном была Na-соль диметил-2-силапентан-5-сульфоната. Оценку энергетики процесса переноса NH-протонов проводили с помощью приближенного решения уравнения Эйринга [22]:

$$\Delta G^{\neq} = 19.14 \cdot T_{\text{KOAJ}} (10.32 - \log(\Delta \nu / T_{\text{KOAJ}}),$$

где $T_{\text{коал}}$ — температура, соответствующая коалесценции сигналов β -протонов при локализации NH-протонов; $\Delta \nu$ — разница химических сдвигов β -протонов в области медленного движения NH-протонов. Использование приближенных решений уравнения Эйринга дает значение свободной энергии ΔG^{\neq} , независимое от температуры.

СПИСОК ЛИТЕРАТУРЫ

- 1. Storm C. B., Teklu Y. // J. Amer. Chem. Soc. 1972. Vol. 94. P. 1745.
- 2. Залесский И. Е., Котло В. Н., Савченко А. Н., Соловьев К. Н., Шкирман С. С. // ДАН. 1972. Т. 207. С. 1314.
- Gurinovich G. P., Zinkevich E. I., Shulga A. M. // Porphyrins. Excited States and Dynamics. Washington. ACS Symp. Ser. — 1986. — N 321. — P. 74.
- 4. Шульга А. М. // ХГС₂ 1985. № 4. С. 132.
- 5. Abraham R. J., Hawkes G. E., Smith K. M. // Tetrah. Lett. 1974. N 16. P. 1483.
- Abraham R. J., Hawkes G. E., Smith K. M. // J. Chem. Soc. Perkin Trans. II. 1974. N 6. P. 627.
- 7. Stilbs P. // J. Magn. Res. 1984. Vol. 58. P. 152.
- 8. Лазукова Л. Б., Бабушкина Т. А. // Тез. IV Всесоюз. конф. по химии и применению порфиринов. Ереван, 1984. С. 37.
- Crossley M. J., Harding M. M., Sternhell S. // J. Amer. Chem. Soc. 1986. Vol. 108. P. 3608.
- Crossley M. J., Field L. D., Harding M. M., Sternhell S. // J. Amer. Chem. Soc. 1987. Vol. 109. — P. 2335.
- Limbach H. H., Henning J., Kendrick R., Yannoni C. S. // J. Amer. Chem. Soc. 1984. Vol. 106. — P. 4059.
- 12. Pasternak R. F., Gibbs E. J., Gaudemar A., Antebi A., Bassner S., De Poy L., Turner D. H., Williams A., Laplace F., Lansard M. H., Merienne C., Perree-Fauvet M. // J. Amer. Chem. Soc. 1985. Vol. 107. P. 8179.

- Marzilli G., Banville D. L., Zon G., Wilson W. D. // J. Amer. Chem. Soc. 1986. Vol. 108. — P. 4188.
- 14. Foster N. // J. Magn. Reson. 1984. Vol. 56. P. 140.
- 15. Pasternak R. F., Huber P. R., Boyd P., Engasser G., Francesconi L., Gibbs E., Venturo C., Hinds L. C. // J. Amer. Chem. Soc. 1972. Vol. 94. P. 4511.
- 16. Hambright P., Gore T., Burton M. // Inorg. Chem. 1976. Vol. 15. P. 2314.
- 17. Kano K., Sato T., Yamada S., Ogawa T. // J. Phys. Chem. 1983. Vol. 87. P. 566.
- Leighton P., Cowan J. A., Abragam R. J., Sanders J. K. M. // J. Org. Chem. 1988. Vol. 53. — P. 73.
- 19. Блюменфельд Л. А. Гемоглобин и обратимое присоединение кислорода. М.: Сов. наука, 1957. 138 с.
- 20. Lippert E. // Ber. Bunsenges. phys. Chem. 1963. Vol. 67. P. 267.
- 21. Tulinsky A. // Ann. N.Y. Acad. Sci. 1973. Vol. 206. P. 47.
- 22. Гюнтер X. // Введение в курс спектроскопии ЯМР. М.: Мир, 1984. С. 260.
- 23. Frydman L., Olivieri A., Diaz L., Frydman B., Morin F., Mayne Ch., Grant D., Adler A. // J. Amer. Chem. Soc. 1988. Vol. 110. P. 566.

Государственный научный центр РФ — Институт биофизики Министерства здравоохранения РФ, Москва 123182

Поступило в редакцию 15.07.97

Институт биологической и медицинской химии РАМН, Москва 119832, Россия e-mail: gelii@ibmh.msk.su