Д. Янсоне, Л. Лейте, М. Флейшер, Ю. Попелис, И. Мажейка, Э. Лукевиц, Г. Меликян, А. Аветисян

РЕАКЦИЯ ГЕТЕРОЦИКЛИЧЕСКИХ АЛЬДЕГИДОВ С МЕТИЛЬНЫМИ ПРОИЗВОДНЫМИ НЕНАСЫЩЕННЫХ γ - И δ -ЛАКТОНОВ

При взаимодействии азотсодержащих гетероциклических альдегидов с 3-циано-4,5,5-триметил-2(5H)-фураноном и 3-циано-4,6,6-триметил-2-(5,6-дигидро) пироном образуются продукты кротоновой конденсации и соединения типа аддуктов Михаэля.

Конденсация альдегидов с ненасыщенными γ - и δ -лактонами дает возможность получить новые соединения с бактерицидными [1] и кардиотоническими [2] свойствами, а также стимуляторы роста растений [3—5]. При более подробном изучении данной реакции обнаружилось, что пиридинальдегиды I6—г, реагируя с лактонами II, III в условиях основного катализа, образуют независимо от соотношения реагентов наряду с продуктами кротоновой конденсации IV, V соединения типа аддуктов Михаэля VI, VII:

Ia, IVa, Va Het = 2-фурил; I6, IV6, V6, VI6, VII6 Het = 2-пиридил; Iв, IVв, Vв, VIв, VIIв Het = 3-пиридил; Iг, IVг, Vг, VIг, VIIг Het = 4-пиридил; II, IV6—г, VI6—г n = 0; III, Va—г, VII6—г n = 1

Образование соединений VII6—г при взаимодействии альдегидов I6—г с лактоном III наблюдается при любом соотношении реагентов, в том числе при значительном избытке электрофильного реагента по сравнению с пироном. С точки зрения выхода оптимальным является соотношение, равное 1:2 (табл. 1,2).

В спектрах ПМР соединений VII отсутствуют сигналы олефиновых протонов, но имеются характерные сигналы метиленовых групп в области 2,9...3,5 м. д. и мультиплеты метиновых протонов, взаимодействующих с протонами двух групп CH₂, при 3,5...3,9 м.д. (табл. 3, 4).

В условиях масс-спектроскопии электронного удара соединения VII малоустойчивы. В масс-спектрах наблюдаются пики ионов, соответствующие по массовым числам фрагментам распада продуктов кротоновой конденсации V и лактона III. В качестве примера в экспериментальной части приведен масс-спектр соединения VII6, в котором ионы с m/z 254, 239, 210, 195 соответствуют распаду соединения V6, а ионы с m/z 165, 107 и 79 — распаду соединения III. По-видимому, под влиянием действия электронного удара и нагрева соединения VII разлагаются следующим образом:

Me Het—CH—CH2 Het—CH=CH
$$\uparrow$$
 Het—CH=CH \uparrow NC \downarrow Me Me Me II, III \downarrow VI, VII \downarrow IV, V

Учитывая неустойчивость к электронному удару, были сняты спектры соединеий VII в условиях бомбардировки быстрыми атомами и во всех случаях установлено присутствие квазимолекулярных ионов MH^+ с m/z 420.

При конденсации γ -лактона с альдегидами 16—г в аналогичных условиях соединения VI выделить не удалось из-за их нестабильности и легкости превращения в соответствующие непредельные соединения IV. Однако присутствие этих соединений в смеси с продуктами кротоновой конденсации было установлено при анализе методами TCX, ΠMP и масс-спектроскопии. Так, в спектрах ΠMP смеси продуктов конденсации альдегидов 16—г с лактоном II наряду с сигналами олефиновых протонов были зарегистрированы сигналы метиновых и метиленовых протонов фрагмента CH— CH_2 , а в масс-спектрах в условиях бомбардировки быстрыми атомами — ионы с m/z 392 $[MH^+]$ и 391 $[M^+]$.

Интересно отметить, что кислородсодержащий гетероциклический альдегид Ia, реагируя с лактонами II и III в аналогичных условиях, образует только продукты кротоновой конденсации IVa и Va.

В соответствии с литературными данными [7], соединения типа VII и их аналоги VI — производные γ -лактонов — могут образовываться по механизму реакции Михаэля в результате присоединения второй молекулы нуклеофильного реагента по двойной связи соединений IV и V. Результаты квантово-химических расчетов методом АМ1 показали, что для изучаемой реакции этот механизм маловероятен из-за неблагоприятного характера распределения электронной плотности в молекулах соединений IV и V. Судя по величинам дипольных моментов, рассчитанных нами, например, для соединений IV6 и V6 (7,248 и 7,184 D соответственно), молекулы этих продуктов конденсации сильно поляризованы. Однако наличие дробного отрицательного заряда на обоих углеродных атомах винильного фрагмента соединений IV и V (-0,049; -0,133 и -0,067; -0,145) не должно способствовать атаке второго аниона нуклеофила.

Таблица 1 Характеристики синтезированных соединений IV и температура конденсации альдегидов I с лактоном II

Соеди-	Брутго- формула		Найдено, % ычислено, %	5	Tnn, °C	Температу- ра реак-	Выход, %
ненение	формула	С	н	И		ции, °С	
IVa	C13H11NO3	68,11 68,09	4,84 4,87	6,11 6,12	195196 (лит.196 [6])	20	98
ІVб	C ₁₄ H ₁₂ N ₂ O ₂	69,87 69,99	5,01 5,03	11,58 11,66	225227 (разл.)	70	92
IVв	C14H12N2O2	70,02 69,99	5,00 5,03	11,65 11,66	134135	70	67
IVr	C ₁₄ H ₁₂ N ₂ O ₂	70,06 69,99	5,02 5,03	11,52 11,66	167169	70	70

Характеристики синтезированных соединений V и VII и температура конденсации альдегидов I с лактоном III

Соеди- ненение	Брутто- формула	Найдено, % Вычислено, %			<i>T</i> _{пл} , °C	Температура реакции, °С	Выход, %
	формузы	С	Н	N		реакции, с	
Va	C ₁₄ H ₁₃ NO ₃	68,64 69,12	5,40 5,39	5,78 5,76	157159	20	78
Vб	C ₁₅ H ₁₄ N ₂ O ₂	70,87 70,85	<u>5,54</u> 5,51	11,03 11,02	150153	20	82
Vв	C15H14N2O2	$\frac{70,77}{70,85}$	5,65 5,51	10,95 11,02	169173	70	59
Vг	C ₁₅ H ₁₄ N ₂ O ₂	$\frac{71,11}{70,85}$	<u>5,55</u> 5,51	10,99 11,02	168170	70	61
VIIG	C24H25N3O4	$\frac{68,69}{68,72}$	6,08 6,01	$\frac{9,95}{10,02}$	182184	20	65
VIIB	C24H25N3O4	$\frac{68,70}{68,72}$	6,04 6,01	10,09 10,02	192195	70	64
VIIr	C24H25N3O4•H2O	65,49 65,89	$\frac{6,08}{6,22}$	9,38 9,60	185188	20	24

Реакция пиридинальдегидов с изученными лактонами ускоряется в присутствии щелочного катализатора. По-видимому, скорость присоединения определяется атакой аниона, образованного при депротонировании метильных групп в положении 4 лактонов II, III.

Согласно расчетам, отрицательный заряд на атоме С карбаниона, образованного из пирона III, больше соответствующего заряда карбаниона, полученного под действием катализатора из метилфуранона II (табл. 5). Следовательно, метилпирон должен быть более активной по сравнению с метилфураноном СН-компонентой в изучаемой реакции нуклеофильного присоединения. Это подтверждают значения сродства к протону и величины потенциалов ионизации анионов А и В (табл. 5). По-видимому, указанные карактеристики являются также причиной большей устойчивости соединений VII по сравнению с соединениями VI, образующимися из метилфуранона.

Таблица 3 Параметры спектров ПМР соединений IV в CDCI3, ТМС, δ , м. д. ($J_{\rm HH}$, $\Gamma_{\rm H}$)

Соеди- нение	CH=CH	Фуранон СН3	Пиридин или фуран СН
IVa	6,74 (16,1) 7,56 (16,1)	1,64	6,59 (3,6; 3,6) 4-H; 6,85 (3,0) 3-H; 7,62 (3,6) 5-H
IVб	7,57 (16,4) 7,82 (16,4)	1,71	7,47 5-H; 7,91 3,4-H; 8,71 6-H
IVB	7,71 (16,7) 6,97 (16,7)	1,71	7,43 (9,6; 4,9) 3-H; 7,97 (9,6; 2,0; 1,5) 4-H; 8,62 (9,6; 2,0; 1,6) 6-H; 8,82 (2,0) 2-H
IVr	7,63 (16,5) 7,06 (16,5)	1,70	7,45 (7,3) 3,5-H; 8,75 (7,3) 2,6-H

Параметры спектров ПМР соединений V и VII, ТМС, δ , м. д. ($J_{\rm HH}$, $\Gamma_{\rm H}$)

Соеди-	CH=CH	СН2—СН	Пирон		Пиридин СН
нение	CH-CH	CH2=CH	СН2	СН3	
Va*	7,07 (15,8) 7,32 (15,8)	_	2,80	1,51	6,55 (3,4; 3,4) 4-H 6,78 (3,4) 3-H 7,59 (3,4) 5-H
V6* ²	7,40 (15,4) 7,95 (15,4)		2,95	1,55	7,34 H-5; 7,55 4-H 7,80 H-3; 8,70 6-H
V _B * ³	7,38 (16,0) 7,77 (16,0)	_	3,15	1,46	7,52 (8,1; 4,7) 5-H 8,23 (8,1; 1,8; 1,6) 4-F 8,65 (4,7, 1,5) 6-H 8,87 (1,8) 2-H
Vr*	7,59 (16,1) 7,20 (16,1)	_	2,87	1,55	7,44 3,5-H 8,73 2,6-H
VII6*3	_	2,97 (13,2; 5,8) 3,13 (13,2; 9,0)	2,75 (19,2) 2,84 (19,2)	1,19 1,32	7,37,4 3,5-H 7,74 (7,5; 7,5; 1,9) 4-H 8,57 (4,8; 1,7; 0,9) 6-H
VII _B *	_	2,95 (13,6; 10,7) 3,10 (13,6; 6,4) 3,53 (10,7; 6,4)	2,32 (19,0) 2,48 (19,0)	1,25 1,30	7,41 (7,7, 4,5) 5-H 7,74 (7,5; 2,2) 4-H 8,48 (2,2) 2-H 8,65 (4,5; 1,5) 6-H
VIIr*		2,92 (13,0; 9,5) 3,10 (13,0; 6,0) 3,52 (9,5; 6,0)	2,34 (18,9) 2,47 (18,9)	1,26 1,33	7,24, (7,2) 8,65 (7,2)

 $^{^*}$ CDCl₃. * CDCl₃—ДМСО-D₆, 2 : 1. * ДМСО-D₆.

Характеристики анионов, образующихся из лактонов II (A) и III (B) при взаимодействии с катализатором

Исследуемая характеристика	Анион А	Анион В	
Заряд на С атоме группы СН2-, е	-0,374	-0,385	
Сродство к протону, кДж/моль	1145,3	1165,3	
Потенциал ионизации, эВ	3,593	3,505	

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры IIMP записаны на приборах Bruker WH-90/DS и AM-360 в растворителях CDCl₃, ДМСО-D₆, или CDCl₃/ДМСО-D₆, 2:1, внутренний стандарт ТМС. Масс-спектры регистрировали на спектрометре MS-50 (Kratos). Масс-спектры электронного удара получены при энергии ионизации 70 эВ, температуре ионизационной камеры 200...250 °C и прямом вводе образца в ионный источник. Масс-спектры в условиях бомбардировки быстрыми атомами сняты с источником ионов Іоп Тесh FAB 11NF, ионизирующий газ — аргон, матрица — тиоглицерин. Микроаналитический анализ выполнен на приборе Elemental Analyzer Carlo Erba 1108. Для контроля за ходом реакции использовали метод ТСХ на пластинках Silufol UV-254 в системе бензол—ацетон, 3:1. Чистоту исходных веществ определяли методом ГЖХ на колонке с 5% OV-17 and OV-101 на Хромосорбе W-HP (80...100 мет).

Геометрию соединений и анионов оптимизировали методом молекулярной механики. Структуры, характеризующиеся наименьшей энергией, служили исходной точкой для полной оптимизации всех геометрических параметров полуэмпирическим квантово-химическим методом AM1. Использовали программу MOPAC 5.0~[8], входящую в пакет LabVision [9].

Таблица 5

Замещенные γ -и δ -лактоны IV, V, VI. Раствор одного из альдегидов I (20...40 ммоль), лактона II или III (10...40 ммоль) и NaOH (1,25 ммоль) в 20 мл метанола перемешивают при комнатной температуре или при температуре кипения в течение 4 ч (6 мин в случае соединения IV6 и 2 ч — соединения VIв). Реакционную смесь охлаждают до комнатной температуры, осадок отфильтровывают. Для выделения соединений IVв,г реакционную смесь подкисляют 1 н. HCl до рН 5. Продукты конденсации IV, V перекристаллизовывают из этанола, соединения VII промывают на фильтре спиртом и сушат на воздухе. Температура реакции, выходы и характеристики синтезированных соединений приведены в табл. 1, 2, данные спектров ПМР — в табл. 3, 4.

Масс-спектр электронного удара соединения VB содержит пики следующих характеристических ионов, m/z (интенсивность, %): 254 (56) [M] ^{+*}, 239 (12) [M-CH₃] ^{+*}, 209 (21) [M-COOH] ^{+*}, 195 (81) [M-CH₃-CO₂] ^{+*}, 168 (100) [M-CO—(CH₃)₂CO] ^{+*}, 43 (84). В масс-спектре электронного удара соединения VIIв наблюдаются пики следующих характеристических ионов, m/z (интенсивность, %): 419 (0) [M VIIв] ^{+*}, 254 (6) [M VB] ^{+*}, 239 (1) [M VB-CH₃] ^{+*}, 210 (1) [M VB-CO₂] ^{+*}, 195 (6) [M VB-CH₃-CO₂] ^{+*}, 168 (20), [M VB-COOC(CH₃)₂] ^{+*}, 165 (2) [M III] ^{+*}, 107 (33) [M VB-CO(CH₃)₂] ^{+*}, 79 (5) [107-CO] ^{+*}, 43 (100).

Авторы признательны Латвийскому совету по науке за финансовую поддержку (грант 706).

СПИСОК ЛИТЕРАТУРЫ

- 1. Аветисян А. А., Токмаджян Г. Г. // ХГС. 1987. № 6. С. 723.
- Veveris M., Jansone D., Leitis I., Shimanska M., Aknazaryan A., Melikyan G., Avetisyan A. // XIIth Intern. Symp. Medicinal Chemistry. Abstr. — Basel, Switzerland, 1992. — P. 327.
- 3. *Аветисян А. А., Меликян Г. С., Сагомонян С. А.* // Биол. журн. Армении. 1989. Т. 42. — С. 959.
- 4. *Аветисян А. А., Галстян А. В., Меликян Г. С., Сагомонян С. А. //* Биол. журн. Армении. 1989. Т. 42. С. 1006.
- 5. Меликян Г. С., Аветисян А. А., Секерка В. // Биол. журн. Армении. 1991. Т. 44. С. 271
- Pat. 276 523 Czech. / Melikjan G., Sekerka V., Sutoris V., Avetysjan A., Achnazarjan A. // C. A. — 1994. — Vol. 120. — 270084.
- Сайкс П. Механизм реакций в органической химии / Под ред. В. Ф. Травеня. 4-е изд. М.: Химия, 1991. — 448 с.
- 8. Stewart J. J. P. Program package MOPAC (QCPE N 455) version 5.0.
- LabVision (Version 1, 1992), TRIPOS associates Inc., 1699 S. Hanley Rd., St. Louis, MO, 63144, USA.

Латвийский институт органического синтеза, Pura LV-1006 e-mail: leite@osi.lanet.lv Поступило в редакцию 09.02.98