В. Л. Иванов, В. А. Артемов, А. М. Шестопалов, В. П. Литвинов

4-БРОМЭТИЛКРОТОНАТ В СИНТЕЗЕ ПИРИДО[3',2':4,5]ТИЕНО[3,2-d]ПИРИДИН-2(1H)-ОНОВ

Показана принципиальная возможность синтеза пиридо [3',2':4,5] тиено [3,2-d] пиридин-2(1H) -онов на основе 3-цианопиридин-2(1H) -тионов и 4-бромэтилкротоната.

Замещенные пиридо [3',2':4,5] тиено [3,2-d] пиридин-2(1H)-оны представляют интерес как соединения, потенциально обладающие широким спектром биологической активности. Описано несколько методов построения пиридо [3',2':4,5] тиено [3,2-d] пиридиновой системы. Первый заключается в замыкании пиридинового кольца в результате взаимодействия 3-аминотиено [2,3-b]пиридина с ацеталем малонового диальдегида [1]; во втором используется реакция 2-ацил-3-амино [2,3-d] пиридина с этилортоформиатом или пиэтилацеталем диметилформамида [2]; третий метод заключается в каскадной гетероциклизации на основе 3-цианопиридинтионов и 2-бром-1-арилэтилиденмалононитрила и приводит K функционально замещенным пиридо [3',2':4,5] тиено [3,2-d] пиридинам [3]. Пути получения производных, содержащих пиридин-2(1H)-оновый фрагмент, до настоящего времени не известны.

В данной работе показана принципиальная возможность синтеза таких соединений на основе доступных реагентов — 3-цианопиридин-2(1H)-тионов и 4-бромэтилкротоната. Этот метод является развитием стратегии построения гетероциклических систем на основе каскадных реакций, которые ранее примененялись в синтезе пиридотиенопиридинов, пиридотиенопиримидинов, тиенопиридинов и тиазолопиридинов [3—6].

Замещенные 3-цианопиридин-2(1H)-тионы (Ia—в) реагируют в основных условиях с 4-бромэтилкротонатом (II) с образованием 3-амино-2-(2-карбэтоксивинил) тиено [2,3-*b*] пиридинов (IIIа—в).

Механизм образования соединений III можно представить как последовательно протекающие алкилирование по атому серы и реакцию Торпа—Циглера, приводящую к образованию тиофенового цикла.

I, III, IV, V a $R^1 = R^3 = Ph$, $R^2 = H$; $\delta R^1 = R^3 = Me$, $R^2 = H$; $\delta R^2 = (CH_2)_3$, $R^1 = H$

Характеристики соединений III, IV, Va

Соеди- нение	Брутто- формула	<u>Найдено. %</u> Вычислено, %			<i>T</i> _{ПЛ} , °C	ИК спектр, V ,	Спектр ПМР, ДМСО-D $_6$, δ , м. д., КССВ, Гц	Выход,
		С	Н	N	1171,	см ⁻¹	2000 100 100 200 0, 111 At 1000, 14	%
IIIa	$\mathrm{C}_{24}\mathrm{H}_{20}\mathrm{N}_2\mathrm{O}_2\mathrm{S}$	71,85 71,98	5,14 5,03	6,72 6,99	240	3375 (NH); 1690 (C=O); 1600, 1536	1,22 (3H, τ , $J = 7$, CH_2CH_3); 4,14 (2H, κ , $J = 7$, CH_2CH_3); 5,40 (2H, ym. c, NH ₂); 5,80 (1H, π , $J = 15$, $CH_2C_2E_1$); 7,407,62 (8H, π , σ - m -, ρ -H _{4-P h} π m -, ρ -H _{6-P h}); 7,74 (1H, c, 5-H); 8,15 (1H, π , $J = 15$, $CH_2C_2E_1$); 8,208,25 (2H, π , σ -H _{6-P h})	56, 81*
III6	C ₁₄ H ₁₆ N ₂ O ₂ S	60,90 60,85	5,71 5,84	10,30 10,14	238241 возг.	3245(NH); 1671(C=O); 1643, 1596, 1548	1,26 (3H, τ , $J = 7$, CH_2CH_3); 2,48 (3H, c , 6- CH_3); 2,71 (3H, c , 4- CH_3); 4,18 (2H, κ , $J = 7$, CH_2CH_3); 5,70 (1H, π , $J = 15$, CH_2CH_3); 6,96 (1H, π , $J = 15$, LH_3); 6,96 (1H, LH_3); 6,96 (1H, LH_4); 8,23 (1H, LH_4), LH_4); 6,96 (1H, LH_4); 6,96 (1H, LH_4); 8,23 (1H, LH_4), LH_4); 6,96 (1H, LH_4); 6,96 (1H, LH_4); 8,23 (1H, LH_4); 6,96 (1H, LH_4); 6,96 (1H, LH_4); 6,96 (1H, LH_4); 6,96 (1H, LH_4); 7,97 (1H, LH_4); 6,96 (1H, LH_4); 6,96 (1H, LH_4); 7,97 (1H, LH_4); 6,96 (1H, LH_4); 7,97 (1H, LH_4); 8,23 (1H, LH_4); 8,23 (1H, LH_4); 8,23 (1H, LH_4); 8,23 (1H, LH_4); 8,24 (1H, LH_4); 8,25 (1H, LH_4); 8,25 (1H, LH_4); 8,26 (1H, LH_4); 8,27 (1H, LH_4); 9,27	52, 79*
Шв	C ₁₅ H ₁₆ N ₂ O ₂ S	$\frac{62,38}{62,48}$	5,41 5,59	9,84 9,71	229231	3010 (NH); 1702 (C=O); 1609, 1479	1,22 (3H, $_{\rm T}$, $_{\rm J}$ = 7, CH ₂ CH ₃); 2,12 (2H, $_{\rm K}$, $_{\rm J}$ = 8,6-CH ₂); 2,472,53 (4H, $_{\rm M}$, 5- $_{\rm H}$ 7-CH ₂); 4,16 (2H, $_{\rm K}$, $_{\rm J}$ = 7, CH ₂ CH ₃); 5,62 (1H, $_{\rm H}$, $_{\rm J}$ = 15, CHCO ₂ Et); 6,61 (2H, ym. c, NH ₂); 8,00 (1H, c, 5-H); 8,16 (1H, $_{\rm H}$, $_{\rm J}$ = 15, CHCHCO ₂ Et)	58, 77*
IVa	C ₂₄ H ₂₀ N ₂ O ₂ S	$\frac{71,71}{71,98}$	5,06 5,03	7,14 6,99	119120	2221 (CN); 1728 (C=O); 1655, 1578, 1532	1,20 (3H, $_{\rm T}$, $_{\rm J}$ = 7, $_{\rm CH_2CH_3}$); 4,11 (2H, $_{\rm K}$, $_{\rm J}$ = 7, $_{\rm CH_2CH_3}$); 4,29 (2H, $_{\rm J}$, $_{\rm J}$ = 8, $_{\rm SCH_2}$); 6,18 (1H, $_{\rm J}$, $_{\rm J}$ = 15, $_{\rm CHCO_2Et}$); 7,03 (1H, $_{\rm J}$, $_{\rm T}$, $_{\rm J'}$ = 15, $_{\rm J''}$ = 8, $_{\rm CHCHCO_2Et}$); 7,507,63 (6H, $_{\rm M}$, $_{\rm M'}$ -, $_{\rm P}$ -H _{4-$_{\rm M}$} 6-P _h); 7,75 (2H, $_{\rm M}$, $_{\rm O}$ -H _{4-Ph}); 7,91 (1H, $_{\rm C}$, 5-H); 8,27 (2H, $_{\rm M}$, $_{\rm O}$ -H _{6-Ph})	91
ІVб	C ₁₄ H ₁₆ N ₂ O ₂ S	60,74 60,85	<u>5,61</u> 5,84	10,35 10,14	8183	2221 (CN); 1725 (C=O); 1620, 1587	1,20 (3H, т, $J = 7$, CH ₂ CH ₃); 2,37 (3H, с, 4-CH ₃); 2,43 (3H, с, 6-CH ₃); 4,034,18 (4H, м, <u>CH</u> ₂ CH ₃ и SCH ₂); 6,10 (1H, д, $J = 15$, <u>CH</u> CO ₂ Et); 6,87 (1H, д. т, $J' = 15$, $J'' = 8$, <u>CH</u> CHCO ₂ Et); 7,13 (1H, с, 5-H)	87
VB	C ₁₅ H ₁₆ N ₂ O ₂ S	$\frac{62,72}{62,48}$	<u>5,52</u> 5,59	9,65 9,71	9596	2222 (CN); 1710 (C=O); 1678, 1450	1,20 (3H, $_{\rm T}$, $_{\rm J}$ = 7, $_{\rm CH_2CH_3}$); 2,08 (2H, $_{\rm KB}$, $_{\rm J}$ = 8, 6-CH ₂); 2,88 (2H, $_{\rm H}$, 5-CH ₂); 2,97 (2H, $_{\rm H}$, 7-CH ₂); 4,014,15 (4H, $_{\rm M}$, $_{\rm CH_2CH_3}$ $_{\rm H}$ SCH ₂); 6,07 (1H, $_{\rm H}$, $_{\rm J}$ = 15, $_{\rm CH}$ CO ₂ Et); 6,87 (1H, $_{\rm H}$, $_{\rm T}$, $_{\rm J'}$ = 15, $_{\rm J''}$ = 8, $_{\rm CH}$ CHCO ₂ Et); 8,02 (1H, $_{\rm C}$, 8-H)	93
Va	C ₂₂ H ₁₄ N ₂ OS	74,49 74,55	4,10 3,99	7,76 7,90	>270	1670(C=O); 1554	6,79 (1H, д, $J = 9$, 3-H); 7,477,62 (6H, м, m -, p -H и p -H _{4- и 6-P h}); 7,207,30 (2H, м, o -H _{9-P h}); 7,90 (1H, c, 8-H); 8,198,31 (3H, м, o -H _{7-P h} и 4-H)	33

^{*} Выход по методу Б.

Указанные процессы проходят в сходных условиях, что позволяет получать тиенопиридины IIIа—в в одну стадию. Однако при промежуточном выделении продуктов алкилирования (IVа—в) выход тиенопиридинов III выше. Фрагмент кротоновой кислоты в соединениях IIIа—в содержит двойную связь в *транс*-форме, поэтому спонтанная циклизация в основных условиях, приводящая к образованию пиридинового цикла, невозможна. В кислых условиях удалось достичь образования треханнелированного продукта с умеренным выходом в случае использования 3-амино-4,6-дифенил-6-(2-карбоэтоксивинил) тиено [2,3-*b*] пиридина IIIа. По-видимому, процесс образования пиридинового цикла протекает как последовательное присоединение хлороводорода по двойной связи, замыкание пиперидинонового цикла и последующая ароматизация, приводящая к образованию пиридо [3',2':4,5] тиено [3,2-*d*] пиридин-2(1H)-она (Va).

Идентификация полученных соединений проведена с помощью ПМР, ИК спектров и элементного анализа. Характеристики соединений IIIа—в, IVа—в и Va представлены в таблице.

В ИК спектрах моноциклических продуктов IVа—в имеются сигналы групп CN при 2221...2222 см $^{-1}$, а также карбонильных групп при 1710...1729 см $^{-1}$. В спектрах соединений IIIа—в сигналы группы CN отсутсвуют, а карбонильный фрагмент проявляется в более длинноволновой области при 1671...1702 см $^{-1}$. В спектре пиридо [3′,2′:4,5] тиено [3,2-d] пиридин-2(1H)-она Va наблюдается сигнал группы C=O при 1670 см $^{-1}$.

В спектрах ПМР соединений IIIа—в и IVа—в КССВ протонов кротонового фрагмента составляет 15 Гц, что указывает на их *транс*-расположение. У пиридо [3′,2′:4,5]тиено [3,2-d]пиридин-2(1H)-она Va сигналы протонов енонового фрагмента имеют вид AB системы в более слабом поле с КССВ, равной 8 Гц. Это свидетельствует о *цис*-расположении указанных протонов. Отсутствие сигналов карбоэтоксильной группы, а также данные элементного анализа позволяют приписать соединению Va структуру, содержащую пиридин-2(1H)-оновый цикл.

Таким образом, нами показана принципиальная возможность получения пиридо [3',2':4,5] гиено [3,2-d] пиридин-2(1H)-онов — перспективных соединений в синтезе биологически активных веществ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Температуры плавления определяли на столике Кофлера; ИК спектры снимали на приборе Specord-M80 в таблетках КВг; спектры ПМР — на приборе Bruker AC-200 (200 МГц) в растворах ДМСО-D6. Элементный анализ на С, Н, N проводили на приборе Perkin-Eimer C, H, N-analyser. Соединения Ia—в были получены по стандартным методикам [7]. Выходы и характеристики соединений III, IV, V приведены в таблице.

2-(3-Карбэтоксипропенил-2-тио)-3-цианопиридины (IVа—в). К суспензии 2 ммоль 3-цианопиридин-2(1H)-тиона в 15 мл этанола добавляют 2 ммоль КОН в виде 10% водного раствора. Смесь нагревают до полной ее гомогенизации. Через 5 мин добавляют 2,1 ммоль 4-бромоэтилкротоната и реакционную массу выдерживают 5 ч при комнатной температуре. Выпавший осадок продукта IV отфильтровывают, промывают небольшим количеством этанола, гексаном и сушат на воздухе.

3-Амино-6-(2-карбэтоксивинил)тиено [2,3-b] пиридины (Ша—в). А. К суспензии 2 ммоль 3-цианопиридин-2(1H)-тиона I в 15 мл этанола добавляют 2 ммоль КОН в виде 10% водного раствора. Смесь нагревают до полной ее гомогенизации и через 5 мин добавляют 2,1 ммоль 4-бромоэтилкротоната, а через 30 мин 2 ммоль этилата натрия в виде спиртового раствора. Выпавший осадок продукта III отфильтровывают, промывают небольшим количеством этанола, гексаном и сушат на воздухе.

Б. К раствору 1 ммоль 2-тио (3-карбоэтоксипропенил-2)-3-цианопиридина IV в 15 ммоль горячего этанола добавляют 1 ммоль этилата натрия в виде спиртового раствора. Выпавший осадок продукта III отфильтровывают, промывают небольшим количеством этанола, гексаном и сушат на воздухе.

7,9-Дифенилпиридо[3',2':4,5]тиено[3,2d]пиридин-2(1H)-он (Va). Суспензию тиенопиридина Ша кипятят 8 ч в метаноле в присутствии каталитических количеств соляной кислоты. Далее нейтрализуют 10% раствором соды (pH 7). Выпавший осадок продукта Va отфильтровывают, промывают этанолом и гексаном, сушат на воздухе.

Работа выполнена в рамках Российского фонда фундаментальных исследований (грант № 96-03-32012а).

СПИСОК ЛИТЕРАТУРЫ

- Klemm L. H., Zell R., Barnish J. T., Klemm R. A., Klopfenstein C. E., McCoy D. R. // J. Heterocycl. Chem. — 1970. — Vol. 7. — P. 373.
- 2. Dunn A. D., Norrie R. // J. prakt. Chem. / Chem. Ztg. 1992. Bd 334. S. 483.
- 3. Иванов В. Л., Артемов В. А., Родиновская Л. А., Шестопалов А. М., Нестеров В. Н., Стручков Ю. Т., Литвинов В. П. // ХГС. 1996. \mathbb{N}^{0} 1. С. 115.
- 4. Иванов В. Л., Артемов В. А., Шестопалов А. М., Нестеров В. Н., Стручков Ю. Т., Литвинов В. П. // ХГС. 1996. № 3. —— С. 413.
- 5. Артемов В. А., Иванов В. Л., Родиновская Л. А., Шестопалов А. М., Литвинов В. П. // XГС. 1996. № 4. С. 553.
- 6. Artyomov V. A., Rodinovskaya L. A., Shestopalov A. M., Litvinov V. P. // Tetrahedron. 1995. Vol. 52. P. 1011.
- Litvinov V. P., Rodinovskaya L. A., Sharanin Yu. A., Shestopalov A. M., Senning A. // Sulfur Reports. — 1992. — Vol. 13. — P. 1.

Институт органической химии им. Н. Д. Зелинского РАН, Москва 119913, Россия

Поступило в редакцию 08.04.97

e-mail: vpl@cacr.ioc.ac.ru