Н. З. Тугушева, С. Ю. Рябова, Н. П. Соловьева, В. Г. Граник ИССЛЕДОВАНИЯ В РЯДУ ИНДОЛО[3,2-b]ХИНОЛИНА

Синтезированы различные 10- γ -аминоалкилзамещенные производные на основе 2-нитроиндоло [3,2-b] хинолина. Разработан препаративный метод синтеза четвертичной соли 2-ацетиламиноиндоло [3,2-b] хинолина.

При формилировании по Вильсмейеру производных 3-ариламиноиндола протекает внутримолекулярная циклизация с образованием замещенных индоло [3,2-b]хинолинов [1]. Производные этой плоской гетероароматической системы могут представить интерес как потенциальные интеркаляторы соединения, обладающие противовирусной и противоопухолевой активностью [2]. Настоящая работа посвящена изучению возможности синтеза различных производных этой гетероциклической системы, в том числе и таких, которые имеют в качестве заместителей алкил (диалкил, ацил) аминоалкильные цепочки при индольном атоме азота. На первом этапе исследования было изучено алкилирование 2-нитроиндоло [3,2-b] хинолина (Іб) в ДМСО в присутствии щелочи, что создает условия для эффективного образования соответствующего аниона. Взаимодействие соединения Іб в этих условиях с диметилсульфатом, хлористым бензилом, диэтиламино- и диметиламиноэтилхлоридами гладко приводит к соответствующим 10-алкилпроизводным IIа—г. Легко протекает реакция и с бромхлорпропаном, что создает дополнительные возможности для синтеза новых 10-у-ами-

$$_{8}^{7}$$
 $_{10}^{6}$ $_{12}^{5}$ $_{100_{2}}^{4}$ $_{12NO_{2}}^{3}$ $_{13.6}^{N}$ $_{10}^{N}$ $_{100_{2}}^{N}$ $_{100_{2}}^{N}$ $_{100_{2}}^{N}$ $_{100_{2}}^{N}$ $_{100_{2}}^{N}$ $_{100_{2}}^{N}$

I a R = COCH₃, 6 R = H; a R¹ = Me, 6 R¹ = CH₂Ph, B R¹ = (CH₂)₂NEt₂,
$$r R^1 = (CH_2)_2 NMe_2, \pi R^1 = CH_2CH_2CH_2CI$$

нопропилзамещенных соединений. Действительно, 10- γ -хлорпропилиндоло-[3,2-b]хинолин (IIд) легко взаимодействует с пиперидином и морфолином с образованием соответствующих 10-пиперидино- и морфолинопропилпроизводных IIIа,б. Так же гладко протекает процесс взаимодействия соединения IIд с фталимидом калия. Полученное фталимидопроизводное IIIв легко вступает в реакцию с гидразингидратом в условиях реакции Габриэля и полученное таким образом γ -аминопропильное производное IVa идентифицировано путем его N-ацетилирования с образованием 2-нитро-10- γ -диацетиламинопропилиндоло-[3,2-b]хинолина (IVб).

III а R = морфолино, б R = пиперидино, в R = фталимидо; IV а $R^1 =$ H, б $R^1 =$ COMe

Другое направление синтеза производных исследуемой системы основано на восстановлении 2-нитрогруппы с образованием 2-аминозамещенного индолохинолина V. Оказалось, что как соединение Іб, так и его 10-ацетилпроизводное Ia гладко восстанавливаются гидразингидратом в присутствии никеля Ренея — в результате с высокими выходами образуется производное V; в случае ацетилзамещенного Ia в процессе восстановления протекает также реакция 10-дезацетилирования. Конденсация 2-аминопроизводного V с диэтилацеталем диметилформамида приводит к соответствующему амидину VIa, причем анализ соединений, содержащихся в маточном растворе, с помощью масс-спектров показал, что помимо основного процесса — амидинового синтеза протекает также процесс N-алкилирования с образованием 10-этилпроизводного VIб, которое, однако, выделить не удалось. Такого типа N-алкилирование характерно для амидацеталей и хорошо документировано в литературе [3]. Более сложная картина наблюдается при изучении взаимодействия соединения с диэтилацеталем диметилацетамида — в этом случае образуется многокомпонентная смесь, содержащая, по данным ПМР и масс-спектров, наряду с целевым амидином продукты N-алкилирования и полимерные соединения.

VI а $R=R^1=H$, б R=Et, $R^1=H$, в $R=R^1=Me$, r R=Et, $R^1=Me$; VII а $R=R^1=H$, $R^2=COMe$, б $R=R^1=R^2=COMe$, в $R=R^1=COMe$, $R^2=H$; VIII а $R=NO_2$, $X=I^-$ или $MeSO_4^-$, б R=NHCOMe, $X=I^-$

Ацетилирование соединения V в различных условиях приводит к образованию всех возможных N-ацетилпроизводных — при взаимодействии с уксусным ангидридом в мягких условиях с почти количественным выходом выделено 2-N-ацетилпроизводное VIIa, кипячение в Ac_2O приводит, в основном, к 2-бисацетиламино-1O-ацетилиндоло [3,2-b]хинолину (VIIб), а в качестве минорного продукта реакции выделено и идентифицировано бисацетиламинопроизводное VIIв. Таким образом, рассмотренные выше результаты показывают возможность использования функционального заместителя в положении 2 и реакций по индольной группе NH в положении 1O для синтеза различных замещенных индоло [3,2-b]хинолинов.

Другой особенностью исследуемой системы является наличие пиридинового атома азота в положении 5. Сначала мы попытались ввести в реакцию алкилирования (в отсутствие щелочного агента) нитропроизводное Іб. Однако все попытки разработки удобного в препаративном отношении метода получения четвертичной соли с использованием как йодистого метила, так и диметилсульфата не привели к желаемому результату — при

Данные спектров ПМР соединений IIа—в,д, IIIa, IVa,б, V, VIIа—в, VIIIб, IX в ДМСО-D6

Соеди- нение	Величины химических сдвигов, δ (м. д.)										
	1-Н (с с подр.)	3-Н (к)	4-Н (д)	6-Н (д)	7-Н (т)	8-Н (т)	9-Н (д)	11-H (c)	2-Н, 10-Н		
IIa*	9,04	8,25	8,30	8,37	7,32	7,71	7,66	8,61	3,91 (c, 3H, 10-CH ₃)		
1įа* Пб* ²	9,04	8,35	8,38	8,45	7,40	7,75	7,81	8,88	5,76 (с, 2H, <u>CH</u> ₂ Ph), 7,29 (узк. м, 5H, Ph)		
IIв	9,19	8,33	8,36	8,42	7,36 (с подр.)	7,76 (узк. м)		8,80	0,72 (t, 6H, N(CH ₂ CH ₃) ₂), 2,47 (k, 4H, N(CH ₂ CH ₃) ₂) 2,82 (t, 2H, β -CH ₂), 4,52 (t, 2H, α -CH ₂)		
Пд*	9,11	8,32	8,35	8,42	7,39 (с подр.)	7,76 (узк. м)		8,73	2,37 (kb, 2H, β -CH ₂), 3,70 (t, 2H, γ -CH ₂), 4,61 (t, 2H α -CH ₂)		
IIĮa	9,11	8,31	8,35	8,41	7,37 (с подр.)	7,76 (узк. м)		8,75	1,33 (м, 2H, δ -CH ₂), 1,42 (м, 4H, 2 δ -CH ₂), 2,01 (кв, 2H, β -CH ₂), 2,16 (м, 6H, γ -CH ₂ + 2 δ -CH ₂), 4,49 (т, 2H, α -CH ₂)		
IVa	9,14	8,32	9,36	8,42	7,37	7,78 (узк. м)		8,81	1,93 (KB, 2H, β -CH ₂), 2,58 (T, 2H, γ -CH ₂), 4,53 (T, 2H) α -CH ₂)		
IVб	9,15	8,35	8,38	8,44	7,40	7,80 (узк. м)		8,84	2,10 (yiii. M, 2H, β -CH ₂), 2,22 (c, 6H, N(COCH ₃) ₂), 3,70 (yiii. T, 2H, γ -CH ₂), 4,55 (T, 2H, α -CH ₂)		
V*	6,89	7,06	7,83	8,16	7,15 (M)	7,43 (узк. м)		7,77	5,25 (уш. с, 2Н, 2-NН ₂), 10,82 (уш. с, 1Н, 10-NН)		
VIĮa	8,47	7,66	8,10	8,29	7,26	7,58	7,53	8,14	2,13 (с 3H, 2-NHCO <u>CH</u> ₃), 10,20 (уш. с, 1H, 2- <u>NH</u> COCH ₃), 11,30 (уш. с, 1H, 10-NH)		
VIIG	8,17	7,69	8,25	8,39	7,55	7,75	8,38	9,06	2,26 (c, 6H, 2-N(COCH ₃) ₂), 2,95 (c, 3H, 10-COCH ₃)		
VIIB	8,53	7,76	8,08	8,30	7,50	7,67	8,34	8,80	2,15 (c, 3H, 2-NHCO <u>CH</u> ₃), 10,30 (уш. c, 1H, 2-NHCOCH ₃), 2,97 (c, 3H, 10-COCH ₃)		
VIIIG	8,82	8,02	8,64	8,72	7,47	7,87	7,77	9,12	2,14 (c, 3H, 2-NHCOCH ₃), 10,52 (c, 1H, 2-NHCOCH ₃) 4,96 (c, 3H, 5-CH ₃), 12,70 (c, 1H, 10-NH)		
IX	8,68	7,98	7,92	8,37	7,18	7,47	7,55		2,09 (c, 3H, 2-NHCO <u>CH</u> ₃), 10,20 (c, 1H, 2- <u>NH</u> COCH ₃), 4,35 (c, 3H, 5-CH ₃), 11,88 (ym. c, 1H, 10-NH)		

^{*} Температура съемки +90 °C.

кипячении в толуоле получена сложная смесь, содержащая 40% исходного Іб и только 15% четвертичной соли VIIIa, а нагревание в ДМФА приводит к смеси соединений Іб и VIIIа в соотношении 60:40. Полученные данные показывают, что процесс кватернизации по пиридиновому азоту протекает весьма медленно (и. возможно, обратимо), что, по-видимому, связано с сильным электроноакцепторным эффектом нитрогруппы. Исходя из этого предположения на следующем этапе в качестве исходного соединения было выбрано 2-ацетиламинопроизводное VIIa. Продолжительная выдержка соединения VIIa с иодистым метилом ДМФА при комнатной температуре приводит к кватернизированному соединению VIII6 с количественным выхолом. Как и следовало ожидать, все сигналы протонов в спектре ПМР соли VIII6 сдвинуты в слабое поле по сравнению с сигналами основания VIIa (см. табл. 1). Синтезированная четвертичная соль VIIIб является перспективным исходным соединением для создания новой функциональной группы в индолохинолиновой системе. В рамках данной работы эта возможность была исследована путем обработки соли VIIIб щелочью в ДМСО

Таблица 2 Физико-химические характеристики синтезированных соединений Па—д, Ша—в, IV6, V, VIa, VIIa,6

Соеди-	Брутто-		Найдено, % Бичислено,	%	Т _{пл} , °С (растворитель для пере-	M ⁺ ·	Выход,
нение	формула	С	н	N	кристал- лизации)		%
IIa	C ₁₆ H ₁₁ N ₃ O ₂	69,51 69,31	4,12 3,97	15,22 15,16	254256 (ДМФА)	277	100
Пб	C22H15N3O2	74,80 74,79	4,28 4,25	11,83 11,90	246248 (ДМФА: мета- нол)*	353	100
Пв	C ₂₁ H ₂₂ N ₄ O ₂	69,62 69,61	5,98 6,08	15,35 15,47	136138 (мета- нол)	362	77
IIr	C ₁₉ H ₁₈ N ₄ O ₂	$\frac{68,44}{68,26}$	5,33 5,39	$\frac{16,59}{16,77}$	170171 (метанол)	334	100
Пд	C ₁₈ H ₁₄ N ₃ ClO ₂	63,50 63,62	4,24 4,12	12,44 12,37	223225 (ДМФА: мета- нол)*	353	100
IIIa	C23H24N4O2	71,35 71,13	$\frac{6,14}{6,19}$	$\frac{14,46}{14,43}$	135137 (метанол)	388	60
Шб* ²	C ₂₂ H ₂₂ N ₄ O ₂	65,31 65,51	5,79 5,67	$\frac{13,85}{13,73}$	115116 (метанол)	390	96
Шв	C ₂₆ H ₁₈ N ₄ O ₄	$\frac{69,42}{69,33}$	4,02 4,00	$\frac{12,60}{12,44}$	312314 (ДМФА)	450	93
IVб	C ₂₂ H ₂₀ N ₄ O ₄	65,49 65,35	4,94 4,95	13,75 13,86	114115 (метанол)	404	63
V	C ₁₅ H ₁₁ N ₃	77,35 77,25	4,96 4,72	17,93 18,03	300 (ДМФА)	233	73
VIa	C ₁₈ H ₁₆ N ₄	74,93 75,00	5,65 5,56	19,56 19,44	289292 (метанол)	288	71
VⅡa*²	C ₁₇ H ₁₃ N ₃ O	$\frac{72,71}{72,52}$	4,85 4,87	14,80 14,93	341343 (этилацетат)	275	100 (A) 92 (Б)
VII6	C ₂₁ H ₁₇ N ₃ O ₃	69,99 70,19	4,77 4,74	$\frac{11,58}{11,70}$	235237 (этилацетат)	359	65

* Соотношение растворителей для Пб — 14 : 10; для Пд — 1 : 1.

^{*2} Соединения ІІб и VIIa существуют в виде кристаллогидратов: ІІІб ($C_{22}H_{22}N_4O_3 \cdot 0,7 H_2O$), содержание воды найдено, %: 3,22; вычислено, %: 3,12; VIIa ($C_{17}H_{13}N_3O \cdot 0,35 H_2O$), содержание воды найдено, %: 2,67; вычислено, %: 2,24.

при нагревании. В результате с выходом 36% синтезирован 2-ацетиламино-5-метилиндоло [3,2-b]хинолинон-11 (IX). Разработанный метод открывает весьма интересные возможности синтеза и исследования новых производных изучаемой гетероциклической системы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Масс-спектры соединений получены на масс-спектрометре Finnigan MAT SSQ-710 с непосредственным вводом образца в источник ионов. Энергия ионизирующих электронов 70 эВ. Температура ионизационной камеры 150 °C. Спектры ЯМР 1 Н соединений записаны на приборе Unity - 400 (Varian), внутренний стандарт ТМС. Контроль за ходом реакции и индивидуальностью веществ осуществляли методом ТСХ на пластинке Silufol UV-254 в системе хлороформ—метанол, 10:1. Проявление в УФ свете.

- **2-Нитро-10-метилиндоло[3,2-b]хинолин (Па).** К суспензии 0,9 г (16 ммоль) КОН в 8 мл ДМСО добавляют 1 г (4 ммоль) соединения Іб. Смесь перемешивают 30 мин при 20 °С. Добавляют 2,4 г (16 ммоль) диметилсульфата порциями по 0,6 г (до исчезновения исходного на хроматограмме) в течение 1,5 ч при 20 °С. Выпавший осадок отфильтровывают, промывают водой до рН 7, метанолом. Получают 1 г соединения 1.
- **2-Нитро-10-бензилиндоло** [3,2-b] хинолин (Пб) получают аналогично соединению Па из 1 г (4 ммоль) соединения Іб и 1 г (8 ммоль) хлористого бензила, выход 1,35 г.
- 2-Нитро-10-диэтиламиноэтилиндоло[3,2-b]хинолин (Пв). К суспензии 1,28 г (32 ммоль) NaOH в 15 мл ДМСО добавляют 2 г (8 ммоль) соединения Іб. Смесь перемешивают 30 мин при 20 °С. Добавляют 2,8 г (16 ммоль) гидрохлорида диэтиламиноэтилхлорида и перемешивают 4 ч при 20 °С. К реакционной массе добавляют 40 мл метанола и отфильтровывают кристаллический осадок, промывают водой до рН 7. Получают 2,12 г соединения Пв.
- 2-Нитро-10-диметиламиноэтилиндоло[3,2-*b*]хинолин (Пг). Получают из 1,1 г (4 ммоль) соединения I6, 1,28 г (32 ммоль) NаОН и 2,28 г (16 ммоль) гидрохлорида диметиламиноэтил-хлорида в условиях синтеза соединения Пв. Реакционную массу выливают в воду, выпавший осадок отфильтровывают, промывают водой. Получают 1,4 г соединения Пг.
- 2-Нитро-10-хлорпропилиндоло[3,2-*b*]хинолин (Ид). Получают из 6,3 г (24 ммоль) соединения Iб, 3,84 г (96 ммоль) NaOH и 7,56 г (48 ммоль) 1-хлор-3-бромпропана в условиях синтеза соединения Пв. Реакция экзотермична. Образовавшийся осадок отфильтровывают, промывают метанолом, водой до рН 7. Получают 7,55 г соединения Пд.
- **2-Нитро-10-пиперидинопропилиндоло**[3,2-*b*]хинолин (ППа). Раствор 2 г (5,9 ммоль) хлорпроизводного Пд в 10 мл пиперидина кипятят 20 мин. Охлаждают до 20 °С, выпадает осадок, добавляют 150 мл воды, отфильтровывают, промывают водой. Получают 1,37 г соединения ППа.
- 2-Нитро-10-морфолинопропилиндоло [3,2-*b*] хинолин (Шб). Получают из 2 г (5,9 ммоль) хлорпроизводного Пд и 10 мл морфолина в условиях синтеза соединения Ша. Получают 2,2 г соединения Шб.
- 2-Нитро-10-фталимидопропилиндоло [3,2-b] хинолин (Шв). Суспензию 3,55 г (10 ммоль) хлорпроизводного Пд, 3,05 г (16 ммоль) фталимида калия в 15 мл ДМФА перемешивают 40 мин при 100 °C. Охлаждают до 20 °C, добавляют 100 мл воды, отфильтровывают осадок, промывают водой. Получают 4,35 г соединения Шв.
- 2-Нитро-10-γ-аминопропилиндоло [3,2-b] хинолин (IVa). К суспензии 6 г (13 ммоль) фталилпроизводного Шв в 60 мл этанола добавляют 7,5 мл гидразингидрата и перемешивают при кипении 2,5 ч. Охлаждают до 20 °С. К реакционной массе добавляют 100 мл этанола и 50 мл водного аммиака (25%), полученную суспензию перемешивают 10 мин, отфильтровывают осадок, промывают этанолом. Получают 4,2 г соединения IVa.
- 2-Нитро-10- γ -диацетиламинопропилиндоло[3,2-b] хинолин (IVб). Смесь 0,5 г (1,6 ммоль) аминопроизводного IVa и 2 мл уксусного ангидрида кипятят 1,5 ч. К охлажденной реакционной массе добавляют 10 мл метанола, выпавший осадок отфильтровывают, промывают метанолом. Получают 0,4 г соединения IVб.
- 2-Амино-10H-индоло [3,2-b] хинолин (V). А. К суспензии 9,15 г (30 ммоль) соединения Iа в 200 мл пропанола-2 добавляют 52 мл гидразингидрата и перемешивают 15 мин при 20 °C. Затем при медленном нагревании и перемешивании порциями добавляют суспензию скелетного никеля в пропаноле-2 (8 г в 25 мл) до прекращения выделения водорода. Реакционную массу

перемешивают 3 ч при 85...90 °C, выдерживают 20 ч при 20 °C. Отфильтровывают катализатор. Фильтрат упаривают, получают 0,25 г соединения V. Катализатор кипятят в ДМФА (3×180 мл). Отфильтровывают катализатор. Фильтрат упаривают. Получают 4,85 г соединения V.

Б. Получают из 0,79 г (3 ммоль) соединения Iб аналогично способу А. Температура плавления смешанной пробы вещества с образцом, полученным по способу А, не показывает депрессии.

2-Диметиламинометиленимино-10H-индоло [3,2-*b*]хинолин (VIa) и 2-диметиламинометиленимино-10-этилиндоло [3,2-*b*]хинолин (VIб). Смесь 2 г (8,6 ммоль) соединения V, 3 мл 70% ацеталя диметилформамида в 10 мл ДМФА перемешивают при слабом кипении 10 мин. Выдерживают 20 ч при 20 °C (контроль ТСХ). Реакционная масса закристаллизовывается. Затем добавляют еще 2 мл ДМФА и 1 мл 70% ацеталя ДМФА и выдерживают 48 ч при 20 °C. Выпавший осадок отфильтровывают, промывают метанолом, получают 1,75 г соединения VIa. Фильтрат реакционной массы выливают в воду, выпавший осадок отфильтровывают, получают 0,45 г смеси соединений VIa,6 (M1⁺⁻316, M2⁺⁻288).

2-Ацетиламино-10H-индоло[3,2-b]хинолин (VIIa). А. К суспензии 0,3 г (1,3 ммоль) соединения V в 3 мл ледяной уксусной кислоты добавляют 0,19 г (1,9 ммоль) уксусного ангидрида. Наблюдается экзотерма. Реакционную массу перемешивают 30 мин при 40 °С и 40 мин при 90 °С (контроль ТСХ). Затем к охлажденной до 20 °С реакционной массе добавляют 15 мл метанола, выпавший осадок отфильтровывают, промывают этилацетатом. Получают 0,36 г соединения VIIa.

Б. Получают аналогично способу A с той разницей, что реакционную массу выдерживают 1 ч при $20\,^{\circ}$ С. Температура плавления смешанной пробы вещества с образцом, полученным по способу A, не показывает депрессии.

2-Диацетиламино-10-ацетилиндоло [3,2-b] хинолин (VIIб) и 2-ацетиламино-10-ацетилиндоло [3,2-b] хинолин (VIIв). Суспензию 0,3 г (1,3 ммоль) соединения V в 5 мл уксусного ангидрида кипятят 3,5 ч. Отфильтровывают осадок из горячей реакционной массы, промывают этилацетатом. Получают 0,03 г соединения VIIв (7%). $T_{\rm RII}$ 290 °C (с разл.). М $^+$ 317. Найдено, %: N 13,15. С18H15N3O2. Вычислено, %: N 13,25. Из фильтрата при охлаждении получают 0,3 г соединения VIIб.

Иодид 2-ацетиламино-5-метил-10H-индоло[3,2-b]хинолина (VIIIб). К раствору 0,3 г (2 ммоль) соединения VIIа в 7 мл ДМФА добавляют порциями по 1 мл 5 мл иодистого метила в течение 10 сут при 20 °C (контроль ТСХ). Отфильтровывают осадок, промывают метанолом. Выход 0,45 г (100%) соли VIIIб. $T_{\rm ПЛ}$ 320...325 °C (с разл.). M^+ 289 (128). Найдено, %: N 9,83. C₁₈H₁₆N₃IO. Вычислено, %: N 10,07.

2-Ацетиламино-5-метил-10Н-индоло[3,2-b] хинолинон-11 (IX). К суспензии 0,4 г (10 ммоль) NaOH в 5 мл ДМСО добавляют 0,3 г (1 ммоль) соли VIII6, перемешивают 4,5 ч при 60 °C. К реакционной массе приливают 20 мл метанола, отфильтровывают выпавший осадок, промывают метанолом. Выход 0,08 г соединения IX (36%). $T_{\rm HJ} > 350$ °C (из ДМФА). М $^+$: 305. Найдено, %: N 14,01. C₁₈H₁₅N₃O₂. Вычислено, %: N 13,77.

Работа выполнена при финансовой поддержке РФФИ (грант № 97-03-33066а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Рябова С. Ю., Тугушева Н. З., Алексеева Л. М., Граник В. Г. // Хим.-фарм. журн. 1996. Т. 30, № 7. С. 42.
- 2. Альберт Э. // Избирательная токсичность. М.: Мир, 1971. С. 239.
- 3. Граник В. Г., Жидкова А. М., Глушков Р. Г. // Успехи химии. 1977. T. 46. С. 691.

Центр по химии лекарственных средств — Всероссийский научно-исследовательский химико-фармацевтический институт, Москва 119021, Россия

Поступило в редакцию 02.06.97