А. Г. Михайловский, В. С. Шкляев, Е. В. Фешина

СИНТЕЗ И АЛКИЛИРОВАНИЕ ЦИКЛИЧЕСКИХ АЗОМЕТИНОВ — 3-СПИРО-И 3,3-ДИМЕТИЛ-3,4-ДИГИДРОИЗОХИНОЛИНОВ

Синтезированы циклические имины — 3,3-диметил-, 3-спиро-3,4-дигидро- и бензо[f]изохинолины, получены их четвертичные соли.

Ранее нами были получены и исследованы циклические имины ряда 3,3-диметил-3,4-дигидроизохинолина [1—3]. Метод получения этих соединений, основанный на реакции Риттера, имеет широкие возможности. В частности, он позволяет получить спироаннелированные [4, 5] и бензо [f] изохинолины [6], представляющие несомненный интерес в качестве биологически активных соединений. 3,4-Дигидроизохинолины подобной структуры до настоящего времени известны не были. Изучение возможности синтеза этих соединений является целью данной работы.

Циклизация в изохинолиновый цикл по Риттеру с участием в качестве нитрильной составляющей синильной кислоты впервые была осуществлена авторами статьи [7]. В работе [1] мы предложили метод циклизации, пригодный для препаративных целей, при этом в качестве исходных были использованы спирты Ia ($R^1 = H, R^2 = Me$), б ($R^1 = OMe, R^2 = Me$), дающие при циклизации соответствующие изохинолины IIa,6.

Исследования показали, что реакция третичных карбинолов Iв—е с цианистым калием в присутствии серной кислоты также приводит к соответствующим изохинолинам IIв—е.

Характеристики впервые полученных соединений представлены в табл. 1. Как видно из данных таблицы, выход продукта циклизации зависит от характера ароматического ядра: в случае активации метоксигруппами (карбинолы Ir,е) выход по сравнению с неактивированным ядром (карбинолы Iв,д) повышается примерно в полтора раза.

Аналогичная циклизация с участием нафталинсодержащих карбинолов IIIа,б, как и следовало ожидать, протекает гладко с образованием бензо [f] изохинолинов IVa,б (табл.1). Выходы продуктов реакции отражают факт повышенной активности нафталинового ядра по сравнению с неактивированным бензольным (вещества IIв,д) в реакциях электрофильного замещения.

Характеристика синтезированных соединений

Соеди- нение	R ¹	C(R2) ₂	Найдено, %				` Брутто-формула	Вычислено, %				Тпл, °С	Выход, %
			С	Н	N	Cl(S)	ърутто-формула	С	Н	N	Cl(S)	- 111()	
IIB	н	C(CH ₂) ₄	70,3	7,1	6,4	15,8	$C_{13}H_{15}N \cdot HC1$	70,4	7,3	6,3	16,0	183184	37
IIr	OCH ₃	C(CH ₂) ₄	63,7	7,1	5,1	12,4	C ₁₅ H ₁₉ NO₂ • HCl	63,9	7,2	5,0	12,6	191192	63
Ид	Н	C(CH ₂) ₅	71,1	7,6	6,0	14,8	C ₁₄ H ₁₇ N ⋅ HCl	71,3	7,7	5,9	15,0	210211	41
IIe	OCH ₃	C(CH ₂) ₅	64,8	7,8	4,8	11,8	$C_{16}H_{21}NO_2 \cdot HC1$	65,0	7,9	4,7	12,0	186187	62
IVa	· • • • • • • • • • • • • • • • • • • •	C(CH ₃) ₂	58,5	5,5	4,6	10,3	$C_{15}H_{15}N \cdot H_2SO_4$	58,6	5,6	4,6	10,3	181183	73
IVб		C(CH ₂) ₄	75,0	6,6	5,3	12,9	C ₁₇ H ₁₇ N • HCl	75,1	6,6	5,1	13,0	203205	64
Va	Н	C(CH ₃) ₂	47,7	5,3	4,8		C ₁₂ H ₁₆ IN	47,9	5,4	4,7	·-	116118	90
Vб	OCH ₃	C(CH ₃) ₂	46,5	5,4	3,8	·- :	$C_{14}H_{20}INO_2$	46,6	5,6	3,9		217218	95
Vв	н	C(CH ₂) ₄	51,2	5,3	3,8		$C_{14}H_{18}IN$	51,4	5,5	3,9	·	167168	38
Vr	Н	C(CH ₂) ₅	52,7	5,8	3,9		C ₁₅ H ₂₀ IN	52,8	5,9	4,1		200201	51
VI	OCH ₃	C(CH ₃) ₂	45,6	5,1	3,5	·-	C ₁₆ H ₂₂ INO ₄	45,8	5,3	3,3		176 (разл.)	58

Параметры спектров ПМР и ИК синтезированных соединений

Соеди-	Спектр ПМР, δ , м. д.									
нение	(R ²) ₂ -C ₃	c, 2H, CH ₂ —C ₄	N—CH ₃ (CH ₂),	2CH ₃ O, 2c	Ar	c, HC=N	с, NH ⁺ соли	ИК спектр, ν см ⁻¹		
ІІв	1,282,03 м, 4CH ₂	2,83			7,187,93 м	8,03	15,10	1630 (C=N)		
IIr	1,402,25 м, 4CH ₂	2,95		3,80; 3,82	6,40 c, H-C5; 6,62 c, H-C ₈	7,93	14,60	1625 (C=N)		
Пд	1,252,05 м, 5CH ₂	2,86		· <u> </u>	7,207,90 м	8,01	15,05	1630 (C=N)		
IIe	1,382,30 м, 5CH ₂	2,96		3,81; 3,83	6,38 c, H-C ₅ ; 6,57 c, H-C ₈	7,92	14,80	1630 (C=N)		
IVa	1,25 c, 2CH ₃	3,00			7,457,83 м	8,02	*	1625 (C≔N)		
IVб	1,521,75 м, 4CH ₂	2,97			7,427,72 м	7,80	15,20	1625 (C=N)		
V a	1,35 c, 2CH ₃	3,05	3,63		7,188,10 м	8,90				
Vб	1,31 c, 2CH ₃	3,03	3,56	3,71; 3,93	7,00 c, H-C ₅ ; 7,45 c, H-C ₈	8,83				
Vв	1,372,15 м, 4CH ₂	3,07	3,57		7,258,10 м	8,97				
Vr	1,352,20 м, 5CH ₂	3,04	3,60	•	7,308,05 м	9,02		· —		
VI	1,37c, 2CH ₃	3,05	5,06	·_* ²	6,60 c, H-C ₅ ; 7,53, H-C ₈	9,66		1740 (C=O)		

В обмене с водой растворителя. Три группы ОСН3 проявляются в виде соответствующих синглетов 3,80, 3,89 и 3,97 м. д.

Необходимо отметить, что в случае неактивированного ароматического ядра реакции соответствующих карбинолов с другими нитрильными составляющими, например цианистыми бензилами [8, 9], эфирами [10] или амидами [5, 11] циануксусной кислоты, приводят к большим препаративным выходам, чем в случае синильной кислоты, когда, по-видимому, происходит меньшая стабилизация нитрилиевого интермедиата [12].

С целью характеристики полученных иминов были синтезированы их четвертичные соли. Реакция получения иодметилатов иминов IIа,б,д аналогична ранее описанной нами в статье [13]. Продуктами этой реакции являются соответствующие иодиды N-метилизохинолиния Va—г (табл. 1). Взаимодействие изохинолина II6 с метиловым эфиром иодоуксусной кислоты дает устойчивую соль VI. Структуры типа VI представляют интерес в качестве исходных для получения илидов изохинолиния [14].

Основания полученных иминов представляют собой жидкости, за исключением бесцветных кристаллических производных нафталина IVa,б. Характеристики азометинов в табл. 1 даны для их устойчивых солей. Иодиды Va—г, VI представляют собой желтые кристаллы.

Спектры ПМР впервые описанных соединений (табл. 2) сняты в CDCl₃ как для оснований азометинов IIв—е, так и для их солей, за исключением соединения IVa, сульфат которого растворим лишь в ДМСО-D₆. Приведенные в таблице данные спектров азометинов IIв—е, IVa, 6 относятся к основаниям этих соединений, за исключением сигнала NH⁺, положение которого приведено для соответствующих протонных солей. Азометиновая структура оснований доказывается наличием синглета в области 7,80...8,03 м. д. (HC=N) [1]. ИК спектры оснований содержат полосу в области 1625...1630 см⁻¹ (C=N). Спектры ПМР солей названных иминов, снятые в CDCl₃, содержат синглет в области 14,60...15,20 м. д. (NH⁺).

Кватернизация иминов (соли Vа—г, в ДМСО-D₆) приводит к сдвигу синглета протона азометиновой группы в среднем на 1 м. д. (8,83...9,02 м. д.). В спектре соединения VI, снятом в CDCl₃, сигнал НС=N⁺ наблюдается в области 9,66 м. д. В этом случае сдвиг в слабое поле по сравнению с исходным имином [1] составляет 1,70 м.д., что обусловлено индуктивным эффектом сложноэфирной группы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР зарегистрированы на приборе Tesla BS-587 A (80 МГu), внутренний стандарт ГМДС. ИК спектры сняты на приборе UR-20 в вазелиновом масле. Контроль за ходом реакций осуществлен методом ТСХ на пластинках Silufol UV-254 в системе ацетон—этанол—хлороформ, 1:3:6, проявление парами брома.

Вещества перекристаллизованы из диоксана (IIr), этилацетата (Пе) и изопропилового спирта (все остальные).

3,3-(R²)₂-6,7-(R¹)₂-3,4-Дигидроизохинолины (Пв—е) и 3,3-(R²)₂-бензо[/]изохинолины (IVа,б). К смеси 0,85 г (13 ммоль) КСN и 10 ммоль соответствующего карбинола Ів—е или IIIа,б в 50 мл бензола при температуре не выше 5 °С добавляют по каплям 4 мл конц. Н₂SO₄ (вещества IIв,д, IVа,б) или смесь 2 мл ледяной СН₃COOH и 4 мл конц. Н₂SO₄ (азометины IIг,е). Смесь нагревают при интенсивном перемешивании 40 мин при 60...70 °С (IIг, е и IVа,б) или 1,5 ч при 80 °С (соединения IIв,д), охлаждают, выливают на 50 г льда и отделяют бензольный слой. Выпавший при этом осадок нерастворимого в воде сульфата IVа сразу отфильтровывают, сушат и перекристаллизовывают. В случае всех остальных веществ водную фазу нейтрализуют аммиаком. Полученные основания экстрагируют эфиром, эфирную вытяжку сушат К₂CO₃, отгоняют примерно 1/3 часть эфира с целью удаления остатков аммиака, после чего пропусканием сухого НС1 получают соответствующие гидрохлориды, которые отфильтровывают, сушат и перекристаллизовывают.

Иодиды $3,3-(R^2)_2-6,7-(R^1)_2-N$ -метил-3,4-дигидроизохинолиния (Va—r) и иодид 3,3-диметил-6,7-диметокси-N-(карбометоксиметил)-3,4-дигидроизохинолиния (VI). Смесь 10 ммоль соответствующего основания и 0,8 мл (13 ммоль) СН $_3$ I или 2,40 г (12 ммоль) метилового эфира

иодуксусной кислоты в 5 мл ацетона плотно закрывают пробкой и оставляют на 4 ч при 20 °C. Выпавший осадок отфильтровывают, сущат и перекристаллизовывают.

СПИСОК ЛИТЕРАТУРЫ

- 1. Михайловский А. Г., Александров Б. В., Вахрин М. И. // ХГС. 1992. № 8. С. 1444.
- 2. Михайловский А. Г., Александров Б. Б., Вахрин М. И. // ХГС. 1993. № 6. С. 780.
- 3. Бубнов Ю. Н., Зыков А. Ю., Игнатенко А. В., Михайловский А. Г., Шкляев Ю. В., Шкляев В. С. // Изв. РАН. Сер. хим. 1996. № 4. С. 935.
- 4. Шкляев В. С., Александров Б. Б., Леготкина Г. И., Вахрин М. И., Гаврилов М. С., МихайловскийА.Г. // ХГС. — 1983. — № 11. — С. 1560.
- 5. Шкляев В. С., Александров Б. Б., Михайловский А. Г., Вахрин М. И. // ХГС. 1989. № 9. С. 1239.
- 6. Александров Б. Б., Шкляев В. С., Шкляев Ю. В. // ХГС. 1992. № 3. С. 375.
- 7. Wollweber H., Hiltmann R. // Angew. Chem. 1960. Bd 72. S. 1001.
- Шкляев В. С., Александров Б. Б., Михайловский А. Г., Вахрин М. И. // ХГС. 1987. № 7. — С. 963.
- Дормидонтов М. Ю., Сыропятов Б. Я., Даутова Р. З., Александров Б. Б., Шкляев В. С., Вахрин М. И., Михайловский А. Г. // Хим.-фарм. журн. — 1990. — № 1. — С. 22.
- 10. Александров Б. Б., Гаврилов М. С., Вахрин М. И., Шкляев В. С. // ХГС. 1985. № 6. С. 794
- Дормидонтов М. Ю., Закс А. С., Бурди Н. З., Михайловский А. Г., Шкляев В. С., Александров Б. Б. // Хим.-фарм. журн. 1989. № 8. С. 929.
- 12. Födor G., Nagubandi S. // Tetrahedron. 1980. Vol. 36. P. 1279.
- И́Кляев В. С., Александров Б. Б., Гаврилов М. С., Михайловский А. Г., Вахрин М. И. // ХГС. — 1988. — № 7. — С. 939.
- 14. Литвинов В. П. // ЖОрХ. 1995. T. 31. C. 1441.

Институт технической химии УрО РАН, Пермь 614600, Россия e-mail: cheminst@mail.psu.ru Поступило в редакцию 05.12.96