В. Д. Дяченко, В. П. Литвинов

РЕАКЦИЯ МИХАЭЛЯ В СИНТЕЗЕ 6-АМИНО-4-(4-БУТОКСИФЕНИЛ)-3,5-ДИЦИАНО-ПИРИДИН-2(1H)-ТИОНА

Взаимодействием 4-бутоксибензальциануксусного эфира с цианотиоацетамидом получен 6-амино-4-(4-бутоксифенил)-3,5-дицианопиридин-2(1H)-тион, синтезированный также рециклизацией 2,6-диамино-4-(4-бутоксифенил)-3,5-дициано-4H-тиопирана и конденсацией 4-бутоксибензальдегида с двухкратным избытком цианотиоацетамида. На основе указанного пиридинтиона получены замещенные 2-алкилтиопиридины и тиено [2,3-b] пиридины.

Арилметиленциануксусные эфиры взаимодействуют с цианотиоацетамидом в присутствии третичных аминов по типу присоединения по Михаэлю с дальнейшей циклизацией образующихся аддуктов в 4-арил-6-гидрокси-3,5-дицианопиридин-2(1H)-тионы [1—3]. В случае использования 2-тиенилиденциануксусного эфира указанная реакция протекает как димеризация нитрилов по Торпу [4] с последующей гетероциклизацией іп situ образующегося енаминонитрила в 4-амино-6-оксо-5-(2-тиенилиден)-3-циано-5,6-дигидропиридин-2(1H)-тион [3]. Использование в качестве СН-кислоты цианоселеноацетамида приводит к образованию 4-арил-6-оксо-3,5-дицианопиридин-2(1H)-селенонов [5], строение которых установлено методом РСА [6].

Учитывая обнаруженную неоднозначность протекания реакций арилметиленциануксусных эфиров с цианотиоацетамидом, а также широкие синтетические и биологические возможности образующихся при этом полифункциональнозамещенных 3-цианопиридин-2(1H)-халькогенонов [7], нами изучено взаимодействие 4-бутоксибензальциануксусного эфира (I) с цианотиоацетамидом (II) в присутствии полуторакратного избытка N-метилморфолина (B), неожиданно приведшее к образованию 6-амино-4-(4-бутоксифенил)-3,5-дицианопиридин-2(1H)-тиона (III).

На первой стадии реакция протекает как присоединение по Михаэлю [4] с образованием аддукта (IV), претерпевающего распад до 4-бутоксибензальцианотиоацетамида (V) и циануксусного эфира, т. е. в данном случае реакция Михаэля протекает по типу обмена метиленовыми компонентами [8]. Образующийся акрилонитрил V in situ взаимодействует далее с непрореагировавшим тиоамидом II, что приводит к аддукту (VI). Последний в условиях реакции гетероциклизуется с элиминированием сероводорода и водорода, превращаясь в 6-амино-4-(4-бутоксифенил)-3,5-дицианопиридин-2(1H)-тион III с выходом 38% при расчете на эфир I (метод A). Введение в реакцию двухкратного избытка цианотиоацетамида привело к повышению выхода целевого продукта до 85%, что подтверждает предполагаемый механизм рассмотренной выше реакции. Кроме того, продукт III можно получить реакцией замещенного акрилонитрила V, полученного конденсацией по Кневенагелю 4-бутоксибензальдегида (VII) с цианотиоацетамидом II в присутствии N-метилморфолина (метод Б) или конденсацией альдегида VII с двухкратным избытком цианотиоацетамида II (метод В), что также подтверждает предложенный выше путь образования тиона III. Строение соединения III доказано спектральными исследованиями (см. экспериментальную часть) и синтезом его из тиопирана VIII (метод Г), полученного в свою очередь тремя независимыми методами, особенностью которых явилось протекание реакций через один и тот же интермедиат-аддукт (IX):

В = N-метилморфолин

XI—XII а Hal = Br, Z = 4-ClC₆H₄; б Hal = Cl, Z = CH₃COO; в Hal = Br, Z = PhCO; r Hal = Br, Z = CH₂=CH; π Hal = Cl, Z = NH₂CO; e Hal = I, Z = H; π Hal = Br, Z = 4-BrC₆H₄CO; в Hal = Cl, Z = EtCOO; π Hal = Br, Z = 4-ClC₆H₄CO; π Hal = Cl, Z = EtCOO; π Hal = Cl, Z = PhCH₂COO; π Hal = Br, Z = 2-оксо-3-пиранилкарбонил; π Hal = Cl, Z = PhNHCO; π Hal = Cl, Z = CN; XIII a Z = PhNHCO; б Z = CN; XIV, XV a R = 3,4-Cl₂C₆H₃; б R = 2-оксо-3-пиранил; в R = 4-BrC₆H₄; π R = 4-PhC₆H₄, π R = 4-ClC₆H₄

взаимодействием 4-бутоксибензальцианотиоацетамида V с малононитрилом (метод A), циклоконденсацией альдегида VII с цианотиоацетамидом II и малононитрилом (метод Б) и реакцией 4-бутоксибензальмалононитрила X с цианотиоацетамидом II (метод В).

Пиридинтион III алкилируется галогенидами (XIa—л) в ДМФА в присутствии водного раствора КОН по атому серы с образованием соответствующих сульфидов (XIIa—л). Использование двухкратного избытка КОН в реакции алкилирования соединения III ведет к образованию замещенных тиено [2,3-b] пиридинов (XIIIa,6), что соответствует общим закономерностям химии 3-цианопиридин-2(1H)-тионов [7].

Строение соединения V доказано спектральными методами (см. экспериментальную часть) и получением на его основе кроме тиона III и тиопирана VIII также тиазолов (XIVа—д) по реакции Ганча [4]. Структура

полученных соединений VIII, XIIа— π , XIIIa,6, XIVа— π согласуется с данными физико-химических и спектральных методов исследования (см. экспериментальную часть и табл. 1—4).

Таким образом, на основе реакции Михаэля разработаны удобные методы синтеза 6-амино-4-(4-бутоксифенил-3,5-дицианопиридин-2(1H)-тиона, использованного для получения замещенных 2-алкилтиопиридинов и тиено [2,3-b]пиридинов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР регистрировали на приборе Bruker WP-100 SY (100 МГц) в растворах ДМСО-D6, внутренний стандарт ТМС. ИК спектры снимали на спектрофотометре ИКС-29 в вазелиновом масле. Контроль за ходом реакции и чистотой полученных соединений осуществляли методом ТСХ на пластинках Silufol UV-254 в системе ацетон—гептан (3:5).

4-Бутоксибензальцианотиоацетамид (V). К раствору 3,5 мл (20 ммоль) 4-бутоксибензальдегида VII в 15 мл этанола при 20 °С добавляют 2 г (20 ммоль) цианотиоацетамида II, 2 капли N-метилморфолина и перемешивают 30 мин. Образовавшийся осадок продукта V отфильтровывают, промывают этанолом и гексаном. Выход 4,9 г (94%). Желтые кристаллы. $T_{\Pi\Pi}$ 131...132 °С (из этанола). ИК спектр: 3300, 3390 (NH₂), 2220 (C \rightleftharpoons N), 1648 см⁻¹ (NH₂). Спектр ПМР: 9,98 (1H, уш. с, NH₂) и 9,46 (1H, уш. с, NH₂); 8,07 (1H, с, CH \rightleftharpoons); 7,97 д и 7,13 д (по 2H, C₆H₄); 4,09 (2H, т, OCH₂); 1,15...1,85 (4H, м, 2CH₂); 0,94 м. д. (3H, т, CH₃). Найдено, %: C 64,32; H 6,06; N 10,84; S 12,49. С₁₄H₁₆N₂OS. Вычислено, %: C 64,59; H 6,19; N 10,76; S 12,32.

6-Амино-4-(4-бутоксифенил) -3,5-дицианопиридин-2(1H)-тион (III). А. К суспензии 2,7 г (10 ммоль) эфира I и 2 г (20 ммоль) цианотиоацетамида II в 20 мл этанола добавляют 1,5 мл (15 ммоль) N-метилморфолина, перемешивают при 20 °C 3 ч и выдерживают при той же температуре 24 ч. Далее в реакционную смесь добавляют 10% водный раствор HCl до рН 5, фильтруют и фильтрат выдерживают сутки при 20 °C. Образовавшийся осадок продукта III отфильтровывают, промывают холодным этанолом и гексаном. Выход 2,8 г (85%). T_{III} 199...201 °C (AcOH). ИК спектр: 3145, 3294, 3360 (NH₂), 2215 (C≡N), 1643 см⁻¹ (NH₂). Спектр ПМР: 12,00 (1H, ш. с, NH); 8,24 (2H, шир. с, NH₂); 7,47 (2H, д, Ar) и 7,07 (2H, д, Ar); 4,05 (2H, т, OCH₂); 1,30...1,85 (4H, м, 2CH₂); 0,95 м. д. (3H, т, CH₃). Найдено, %: C 63,15; H 4,78; N 17,05; S 10,04. C₁₇H₁₆N₄OS. Вычислено, %: C 62,94; H 4,97; N 17,27; S 9,88.

Б. К суспензии 2,6 г (10 ммоль) соединения V в 15 мл этанола при 20 °С добавляют 1 г (10 ммоль) цианотиоацетамида II и 1,5 мл (15 ммоль) N-метилморфолина и перемешивают 4 ч, после чего выдерживают при комнатной температуре 24 ч. Затем в реакционную смесь добавляют 10% водный раствор HCl до рН 5 и выдерживают при 20 °С сутки. Осадок продукта III отфильтровывают, промывают холодным этанолом и гексаном. Выход 2,9 г (89%). Полученный продукт идентичен образцу, синтезированному по методу А ($T_{\Pi \Lambda}$, TCX).

В. К раствору 1,7 мл (10 ммоль) 4-бутоксибензальдегида VII в 15 мл этанола при 20 °С добавляют 2 г (20 ммоль) цианотиоацетамида II и 1,5 мл (15 ммоль) N-метилморфолина, перемешивают 4 ч, выдерживают при той же температуре сутки. Реакционную смесь обрабатывают как описано в методике Б, получают 2,4 г (73%) тиона III, идентичного образцам, синтезированным по методикам A и Б ($T_{\Pi \Pi}$, TCX).

 Γ . Суспензию 3,3 г (10 ммоль) тиопирана VIII в 15 мл этанола кипятят 4 ч в присутствии 1,5 мл (15 ммоль) N-метилморфолина. Обрабатывают реакционную смесь по методике Б. Получают 2,2 г (68%) соединения III, идентичного образцу, синтезированному по методу А ($T_{\rm пл}$, ИК спектр).

2,6-Диамино-4-(4-бутоксифенил)-3,5-дициано-4H-тиопиран (VIII). А. К суспензии 2,6 г (10 ммоль) 4-бутоксибензальцианотиоацетамида V в 15 мл этанола при 20 °C добавляют 0,66 г (10 ммоль) малононитрила, 1 каплю N-метилморфолина и перемешивают реакционную смесь 4 ч. Осадок продукта VIII отфильтровывают, промывают этанолом и гексаном. Выход 2,9 г (89%). $T_{\Pi\Pi}$ 156...158 °C (этанол). ИК спектр: 3192, 3308, 3414 (NH2), 2185 пл (C \equiv N), 1635 см⁻¹ (NH2). Спектр ПМР: 7,14 (2H, д, Ar) и 6,90 (2H, д, Ar); 6,85 (4H, шир. c, 2NH2); 4,19 (1H, c, 4-H); 3,95 (2H, т, OCH2); 1,30...1,84 (4H, м, 2CH2); 0,93 м. д. (3H, т, CH3). Найдено, %: C 62,38; H 5,40; N 17,51; S 10,01. С17Н18N4OS. Вычислено, %: C 62,55; H 5,56; N 17,16; S 9,82.

Б. К суспензии 1,7 мл (10 ммоль) альдегида VII, 1 г (10 ммоль) тиоамида II и 0,66 г (10 ммоль) малононитрила в 15 мл этанола при 20 °С добавляют 1 каплю N-метилморфолина и перемешивают 4 ч. Осадок продукта VIII отфильтровывают, обрабатывают по методике А. Выход 2,5 г (78%). Продукт идентичен образцу, полученному по методике А ($T_{\Pi \Pi}$, TCX).

Характеристики 6-амино-4-(4-бутоксифенил)-3,5-дициано-2-Z-метилтиопиридинов XIIа—л

Соеди- нение	L	Найд	ено, %		Брутто-		Вычи	слено, %	$T_{\Pi\Pi}$, °C (растворитель для кристаллизации)	Выход, %	
	С	н	N	S	формула	С	Н	N	S	для кристаллизации)	Выход, 70
XIIa	64,04	4,65	12,55	7,27	C ₂₄ H ₂₁ CIN ₄ OS	64,20	4,71	12,48	7,14	149151 (AcOH)	83
XIIG	60,47	4,92	14,00	8,18	C ₂₀ H ₂₀ N ₄ O ₃ S	60,59	5,08	14,13	8,09	157159 (метанол)	77
ХІІв	68,02	4,88	12,05	7,38	$C_{25}H_{22}N_4O_2S$.	67,85	5,01	12,66	7,25	159161 (AcOH)	70
XIIr	66,07	5,72	15,15	8,69	C ₂₀ H ₂₀ N ₄ OS	65,91	5,53	15,37	8,80	128130 (1-бутанол)	68
ХПд	60,02	4,89	18,19	8,36	C ₁₉ H ₁₉ N ₅ O ₂ S	59,83	5,02	18,36	8,41	178180 (AcOH)	65
XIIe	64,00	5,51	16,42	9,33	$C_{18}H_{18}N_4OS$	63,88	5,36	16,56	9,47	176178 (AcOH)	67
ХІІж	57,37	3,92	10,61	6,24	$C_{25}H_{21}BrN_4O_2S$	57,59	4,06	10,74	6,15	184186 (AcOH	80
XII3	63,03	4,52	11,60	6,55	$C_{25}H_{21}CIN_4O_2S$	62,95	4,44	11,75	6,72	198200 (этанол	83
XIIn	61,19	5,22	13,55	7,98	$C_{21}H_{22}N_4O_3S$	61,45	5,40	13,65	7,81	166167 (этанол	78
XIIĸ	65,88	4,93	12,00	6,91	$C_{26}H_{24}N_4O_3S$	66,08	5,12	11,86	6,79	126128 (метанол	69
ХИл	65,65	4,19	11,04	6,36	C ₂₈ H ₂₂ N ₄ O ₄ S	65,87	4,34	10,97	6,28	237239 (н-бутанол—ДМФА (1:1))	85

Данные ПМР и ИК спектров соединений XIIa-л

Соеди-	ИК спек	Спектр ПМР, δ , м. д.								
нение	NH ₂	C = N	δNH ₂ ; C=0	NH ₂ шир. с	С ₆ Н ₄ д; д	SCH ₂ c	осн ₂ т	(СН ₂) ₂ м	СН3 т	Z
XIĮa	3160, 3330, 3472	2208 пл	1620	8,09	7,10; 7,46*	4,47	4,03	1,301,80	0,92	7,46* (4Н, д, С ₆ Н ₄)
ХЦа ХПб	3222, 3345, 3450	2221 пл	1630, 1740	7,96	7,10; 7,49	4,21	4,07	1,301,84	0,95	3,70 (3H, c, CH ₃)
XIIB	3220, 3333, 3410, 3450	2218, 2224	1653, 1710	8,06	7,09; 7,45	5,00	4,04	1,301,78	0,94	7,60 (5H, м, Ph)
XIIr	3240, 3332, 3420	2225 пл	1630	8,01	7,10; 7,49	3,92 д	4,06	1,301,89	0,95	5,92 (1H, м, CH); 5,16 (1H, д, CH ₂) и 5,41 (1H, д, CH ₂)
ХІІд	3195, 3330, 3433	2220	1630, 1680	8,00	7,09; 7,49	3,89	4,06	1,331,80	0,95	7,27 (2H, шир. с, NH ₂)
XIIe	3215, 3340, 3460	2220	1644	7,98	7,10; 7,49	2,58	4,06* ²	1,281,82	0,95	(H)* ₃
XIIж	3200, 3334, 3430	2215 пл	1630, 1680	7,90	7,08; 7,48	4,95	4,04	1,341,90	0,93	8,00 (2H, д, Ar) и 7,77 (2H, д, Ar)
XII3	3238, 3332, 3420	2222 пл	1644, 1700	7,87	7,10; 7,50	4,91	4,06	1,321,81	0,95	8,09 (2H, д, Ar) и 7,65 (2H, д, Ar)
XIIи	3226, 3320, 3405	2207 пл	1637, 1714	7,95	7,09; 7,48	4,18	4,08*	1,301,78	0,95	1,22 (3H, т, CH ₃); 4,08 (2H, к, OCH ₂)*
XIIk	3236, 3330, 3418	2208 пл	1640, 1725	7,93	7,10; 7,48	4,28	4,06	1,311,84	0,95	5,19 (2H, c, OCH ₂); 7,35 (5H, м, Ph)
ХІІл	3242, 3390, 3540	2220	1635, 1720	7,85	7,11; 7,50	4,80	4,06	1,331,78	0,96	8,77 (1H, с, 4-H); 7,708,01 (4H, м, Н _{аром})

Сигналы перекрываются. Сигнал группы SCH₃. См. сигнал группы SCH₃.

Характеристики замещенных акрилонитрилов XIVа—д

Соеди-		Найдено	, %		Брутто-		Вычис	T °C	Выход, %		
нение	C.	Н	N	S	формула	С	н	N	S	Тпл, °С	ныход, 70
XIVa	61,33	4,11	6,62	7,59	C ₂₂ H ₁₅ Cl ₂ N ₂ OS	61,54	4,23	6,52	7,47	128130	88
XIV6	69,89	4,58	6,63	7,65	$C_{25}H_{20}N_2O_3S$	70,07	4,70	6,54	7,48	154155	93
XIVв	59,95	4,14	6,45	7,51	$C_{22}H_{19}BrN_2OS$	60,14	4,36	6,38	7,30	109111	75
XIVr	76,89	5,63	6,51	7,18	$C_{28}H_{24}N_2OS$	77,06	5,50	6,42	7,36	115117	79
XIVд	67,10	4,99	6,98	8,00	$C_{22}H_{19}CIN_2OS$	66,91	4,85	7,09	8,12	8586	80

Таблица 4

Данные спектров ПМР соединений XIVа-д

Соеди- нение	CH = c	Н _{тиазолил} с	С ₆ Н ₄ д; д	осн ₂ т	(CH ₂) ₂ м	СН3 т	R
XIVa	8,31	8,16	7,96; 7,05	4,04	1,251,90	0,93	7,76 (1Н, д); 7,80 (2Н, м)
ХIVб	8,44	8,22	8,02; 7,07	4,07	1,151,82	0,94	8,78 (1H, c); 7,307,89 (4H, м)
XIVв	8,27	8,21	7,95; 7,09	4,05	1,221,78	0,92	8,08 (2H, д); 7,64 (2H, д)
XIVr	8,26	8,10	8,00; 7,13	4,10	1,301,76	0,97	7,497,85 (9Н, м)
XIVд	8,27	8,22	8,02;* 7,09	4,05	1,281,80	0,93	7,51 (2H, д); 8,02 (2H, д)*

^{*} Сигналы перекрываются.

В. К раствору 2,3 г (10 ммоль) 4-бутоксибензальмалононитрила X в 15 мл этанола при 20 °С добавляют 1 г (10 ммоль) цианотиоацетамида, 1 каплю N-метилморфолина и перемешивают 4 ч. Далее следуют методике А. Получают 2,9 г (90%) соединения VIII, идентичного образцу, полученному по методике А ($T_{\Pi\Pi}$, ИК спектр).

6-Амино-4-(4-бутоксифенил)-2-Z-метилтио-3,5-дицианопиридины (XIIа—л). К раствору 3,24 г (10ммоль) тиона III в 8 мл ДМФА при перемешивании добавляют 5,6 мл (10 ммоль) 10% водного раствора КОН и фильтруют реакционную смесь через бумажный фильтр в стакан, в который предварительно помещают 10 ммоль соответствующего галогенида XI. Полученную массу перемешивают 3 ч, далее разбавляют равным объемом воды и отфильтровывают образовавшийся осадок продукта XII, который промывают водой, этанолом, гексаном. Характеристики синтезированных соединений XIIIа—л см. в табл. 1, 2.

3,6-Диамино-4-(4-бутоксифенил)-2-фенилкарбамоил-5-цианотиено[2,3-b] пиридин (ХПІа). К раствору 3,24 г (10 ммоль) тиона Ш в 10 мл ДМФА при перемешивании последовательно добавляют 5,6 мл (10ммоль) 10% водного раствора КОН и 1,7 г (10 ммоль) α -хлорацетанилида ХІм, перемещивают 1 ч, после чего добавляют еще 5,6 мл раствора КОН и продолжают перемещивание в течение 3 ч. Затем реакционную смесь разбавляют равным объемом воды и отфильтровывают осадок продукта ХІПа, который промывают водой, этанолом и гексаном. Выход 3,2 г (71%). $T_{\Pi\Pi}$ 118...120 °C (AcOH). ИК спектр: 3210, 3305, 3480 (NH₂), 2220 (C \equiv N), 1658 см⁻¹ (CONH). Спектр ПМР: 9,28 (1H, c, NH); 7,64 (2H, д, Ar и 7,15 (2H, д, Ar); 7,25...7,50 (7H, м, Ph и C₍₆₎—NH₂); 5,88 (2H, шир. c, C₍₃₎—NH₂); 4,06 (2H, т, OCH₂); 1,30...1,85 (4H, м, 2CH₂); 0,96 м. д. (3H, т, CH₃). Найдено, %: C 65,50; H 4,88; N 15,17; S 7,18. C₂₅H₂₃N₅O₂S. Вычислено, %: C 65,63; H 5,07; N 15,31; S 7,01.

4-(4-Бутоксифенил)-3,6-диамино-2,5-дицианотиено[2,3-b] пиридин (XIII6) получают по описанной выше для соединения XIIIа методике из тиона III и хлорацетонитрила XIн. Выход 2,9 г (81%). $T_{\text{ПЛ}}$ 238...240 °C. ИК спектр: 3150, 3330, 3478 (NH₂), 2198, 2220 (C \rightleftharpoons N), 1640 (NH₂). Спектр ПМР: 7,96 (2H, шир. c, C₍₆₎—NH₂); 7,48 (2H, д, Ar) и 7,18 (2H, д, Ar); 5,37 (2H, шир. c, C₍₃₎—NH₂); 4,14 (2H, т, OCH₂); 2,52...2,92 (4H, м, 2CH₂); 1,39 м. д. (3H, т, CH₃). Найдено, %: C 62,82; H 4,90; N 19,09; S 8,71. С₁₉H₁₇N₅OS. Вычислено, %: C 62,79; H 4,71; N 19,27; S 8,82.

3-(4-Бутоксифенил) -2-(4-R-тиазол-2-ил) -акрилонитрилы (XVа—д). К суспензии 2,6 г (10 ммоль) тиоамида IV в 10 мл ДМФА при 20 °С добавляют 10 ммоль α -бромкетона XIV и перемешивают 1 ч, после чего выдерживают при той же температуре сутки. Образовавшийся осадок продукта XV отфильтровывают, промывают этанолом и гексаном. Характеристики полученных соединений XVа—д см. в табл. 3, 4.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 96-03-32012a).

СПИСОК ЛИТЕРАТУРЫ

- Elgemeie G. E. H., Mohamed S. M. M., Sherif Sh. M., Elnagdi M. H. // Heterocycles. 1985. — Vol. 23. — P. 3107.
- 2. Abdel-Latif F. F., Gohar A. K. M. H. // Bull. Soc. chim. belg. 1986. Vol. 95. P. 211.
- Abdel-Galil F. M., Sherif Sh. M., Elnagdi M. H. // Heterocycles. 1986. Vol. 24. P. 2023.
- 4. Вацуро К. В., Мищенко Г. Л. Именные реакции в органической химии. М.: Химия, $1976.-528\,\mathrm{c}.$
- 5. Дяченко В. Д., Шаранин Ю. А., Литвинов В. П., Туров А. В. // Укр. хим. журн. 1990. Т. 56. — С. 408.
- 6. Нестеров В. Н., Дяченко В. Д., Шаранин Ю. А., Стручков Ю. Т. // Изв. РАН. Сер. хим. 1994. № 1. С. 122.
- Litvinov V. P., Rodinovskaya L. A., Sharanin Yu. A., Shestopalov A. M., Senning A. // Sulfur Repts. — 1992. — Vol. 13. — P. 1.
- 8. *Борисов В. Н. //* Современные проблемы органической химии / Под ред. Оглоблина К. А. Изд-во Ленингр. ун-та, 1975. С. 89.

Поступило в редакцию 17.03.97

Луганский государственный педагогический институт им. Т. Г. Шевченко, Луганск 348011, Украина Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913, Россия e-mail: vpl@cacr.ioc.ac.ru