А. Г. Михайловский

ИССЛЕДОВАНИЕ 6-ГИДРАЗИНОФЕНАНТРИДИНА В РЕАКЦИЯХ АЦИЛИРОВАНИЯ И АННЕЛИРОВАНИЯ ЦИКЛА 1,2,4-ТРИАЗОЛА

Реакции 6-гидразинофенантридина с фталоилхлоридом и изоцианатами протекают по гидразогруппе. Ацилирование этого гидразидина диэтилоксалатом или окисление полученных из него гидразонов приводят к аннелированным 1,2,4-триазолам.

Одной из наиболее интересных реакций α -гидразинозамещенных пиридинов и их аналогов, а также их производных (гидразидов и гидразонов) является аннелирование 1,2,4-триазольного ядра. Образующиеся при этом 1,2,4-триазолы перспективны в качестве синтонов и биологически активных соединений [1, 2]. Ранее нами был получен 6-гидразинофенантридин, изучены некоторые его химические свойства [3, 4] и биологическая активность [5—7]. Других данных о свойствах производных названного гидразидина в литературе практически нет. Целью данной работы является изучение этого реагента в реакциях ацилирования и аннелирования 1,2,4-триазольного ядра.

Исследования показали, что соединение I легко вступает в различные реакции ацилирования. Так, реакция этого вещества с фталоилхлоридом дает производное фталазина II. Кипячение гидразидина I в избытке диэтилоксалата приводит к аннелированному 1,2,4-триазолу III. Обработка вещества I *п*-толилизоцианатом или аллилизотиоцианатом приводит соответственно к соединениям IV и V. Продуктами реакции гидразидина I с ароматическими альдегидами [3] и изатином являются гидразоны VIa—д, VIII. Простое кипячение гидразонов VIa—г в нитробензоле приводит к соответствующим 1,2,4-триазолам VIIa—г.

IV R = C₆H₄Me-p, X = O; V R = CH₂CH = CH₂, X = S; VI, VII a Ar = Ph, 6 C₆H₄NO₂-p, B C₆H₄NO₂-m, r C₆H₃-3,4-CH₂(O)₂; VI π Ar = C₆H₃-3,4-(OH)₂

Изучение возможности дальнейших превращений соединения VIII показало, что при кипячении его в ксилоле с добавкой TsOH или в уксусной кислоте (контроль TCX) никаких изменений не происходит.

Соединения II—V представляют собой бесцветные кристаллические тугоплавкие вещества (см. таблицу), труднорастворимые в большинстве органических растворителей. Гидразоны VIа—д имеют характерную желтую окраску, которая становится менее яркой после окисления до триазолов. Гидразон VIII сохраняет ярко-красную окраску, характерную для изатина.

Спектральные характеристики новых соединений представлены в таблице. В спектре ПМР лактама II наблюдается синглет группы NH (10,40 м. д.), а в ИК спектре этого вещества присутствуют полосы поглощения в области 1680 см⁻¹ (С=О) и NH (3340 см⁻¹). Структура триазола III доказывается наличием в спектре ПМР сигналов этильной группы, полным исчезновением сигналов протонов групп NH (6,10 м. д., [3]), отсутствием соответствующих полос в ИК спектре и кроме того, наличием в ИК спектре полосы сложноэфирного карбонила (1730 см⁻¹). В спектре ПМР соединения IV наблюдаются все три синглета групп NH, причем один из них (6,20 м. д.) близок по положению к аналогичному сигналу группы NH исходного гидразидина I. Это дает основание предположить, что при ацилировании затрагивается именно концевая группа NH₂. Аналогична картина спектра вещества V, являющегося производным тиосемикарбазида. В ИК спектрах веществ IV и V имеются полосы поглощения всех трех групп NH.

Спектры синтезированных гидразонов VIa,в—д аналогичны спектрам ранее полученных соединений этого ряда [3]. Спектр ПМР вещества VIд содержит два синглета групп ОН (10,73 и 10,78 м. д.). В ИК спектре этого соединения имеется полоса поглощения ОН группы (3400 см⁻¹). В спектрах ПМР триазолов VIIа—г, в отличие от спектров исходных гидразонов, отсутствует синглет азометинового протона в области 8,38...8,78 м. д., что является основным признаком, позволяющим сделать вывод об их тетрациклической структуре.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР записаны на спектрометре РЯ-2310 (60 МГц) в ДМСО- D_6 , за исключением вещества III, спектр которого снят в CDCl₃, внутренний стандарт ГМДС. ИК спектры получены на приборе UR-20 в вазелиновом масле. ТСХ осуществлена на пластинках Silufol UV-254 в системе ацетон—этанол—хлороформ, 1:3:6, проявление парами брома.

N-(Фенантридинил-6)-1,2,3,4-тетрагидрофталазин-1,4-дион (II). Растворяют при кипячении 2,09 г (10 ммоль) соединения I в 100 мл бензола, последовательно добавляют 3,38 мл (24 ммоль) триэтиламина и 1,44 мл (10 ммоль) фталоилхлорида, при этом выпадает осадок. Реакционную смесь нагревают еще 30 мин (~100 °C), охлаждают до 20 °C, осадок отфильтровывают, промывают водой с целью удаления гидрохлорида триэтиламина, сушат, отфильтровывают и перекристаллизовывают.

5-Карбэтокси-1,2,4-триазоло[4,3-f]фенантридин (III). Раствор 2,09 г (10 ммоль) гидразидина I в 20 мл диэтилоксалата кипятят 40 мин (контроль ТСХ). Раствор охлаждают до 20 °C, выпавший осадок отфильтровывают, сушат и перекристаллизовывают.

1-(Фенантридинил-6)-4-(*п*-толил) семикарбазид (IV) и 1-(фенантридинил-6)-4-аллилтиосемикарбазид (V). Растворяют при кипячении 2,09 г (10 ммоль) соединения I в 100 мл абсолютного бензола и добавляют 1,21 мл (10 ммоль) *п*-толилизоцианата или 0,97 мл (10 ммоль) аллилизотиоцианата, кипятят 15 мин (вещество IV) или 1 ч в случае соединения V (контроль TCX). Далее выделяют аналогично соединению III.

6-Арилиденгидразинофенантридины (VIa—д) и N-(фенантридинил-6) гидразонизатина (VIII). Раствор 2,09 г (10 ммоль) гидразидина I в 50 мл пропанола-2 кипятят 2 ч с 10 ммоль соответствующего карбонильного соединения, охлаждают до 20 °C, разбавляют 100 мл воды, выпавший осадок отфильтровывают, сушат и перекристаллизовывают.

×									
Соеди- нение	Брутто- формула	<u>Найдено, %</u> Вычислено, %			<i>Т</i> пл, °С*	ИК спектр, см ⁻¹		Спектр ПМР, δ , м. д	Выход, %
		С	Н	N	1111	C=O, C=N	NH, OH	, , , , , , , , , , , , , , , , , , ,	
11	$C_{21}H_{13}N_3O_2$	$\frac{74,1}{74,3}$	$\frac{3.7}{3.9}$	12,2 12,4	320 (разл.)	1680	3340	6,838,80 м (12H, Ar); 10,40 с (NH)	88
III	$C_{17}H_{13}N_3O_2$	$\frac{70.0}{70.1}$	$\frac{4,4}{4,5}$	$\frac{14,5}{14,4}$	156157	1730	·	1,50 т (CH ₃ CH ₂); 4,56 к (CH ₃ CH ₂); 7,458,79 м (8H, Ar)	53
IV	$C_{21}H_{20}N_4O$	$\frac{73.0}{73.2}$	5,8 5,9	$\frac{16,1}{16,3}$	315 (разл.)	1650	3220, 3310, 3350	2,15 c (3H, CH ₃); 6,20, 8,40 и 9,83 (3NH); 6,738,0 м (12H, Ar)	72
V* ²	$C_{17}H_{16}N_4S$	$\frac{66,1}{66,2}$	$\frac{5,1}{5,2}$	$\frac{18,3}{18,2}$	290 (разл.)		3280, 3310, 3360	4,13 м (CH ₂ N); 5,06 м (H ₂ C=); 5,67 м (-HC=); 7,169,0 м (12H, Ar и NH); 10,0 (NH)	57
VĮa	$C_{20}H_{15}N_3$	80,6 80,8	5,0 5,1	14,2 14,1	146148	1625	3100	7,08,33 м (13H, Ar и NH)	61
VIB	$C_{20}H_{14}N_4O_2$	$\frac{70,1}{70,2}$	4,1 4,1	16,3 16,4	248249	1625	3100	6,808,70 м (12H, Ar и NH); 8,78 с (НС=)	86
VIr	$C_{21}H_{15}N_3O_2$	73,7 73,9	4,2 4,4	$\frac{12,1}{12,3}$	253254	1625	3090	6,05 с (ОСH ₂ O); 6,998,43 м (11H, Ar и NH); 8,38 с (НС=)	76
VIд	$C_{20}H_{15}N_3O_2$	$\frac{72,7}{72,9}$	4,5 4,6	12,9 12,8	240 (разл.)	1625	3100, 3400	6,708,57 м (11H, Ar и NH); 8,70 с (НС=); 10,73 с и 10,78 с (20H)	67
VIĮa	$C_{20}H_{13}N_3$	$\frac{81,2}{81,3}$	4,2 4,4	14,3 14,2	146148			7,108,63 м (13H, Ar)	71
VII6	$C_{20}H_{12}N_4O_2$	70,5 70,6	3,5 3,6	16,6 16,5	250 (разл.)			7,08,65 м (12Н, Аг)	90
VIIB	$C_{20}H_{12}N_4O_2$	$\frac{70,4}{70,6}$	3,4 3,6	16,4 16,5	245246		· -	7,158,70 м (12Н, Аг)	87
VIIr	$C_{21}H_{13}N_3O_2$	$\frac{74,2}{74,3}$	3,8 3,9	12,5 12,4	256 (разл.)	·		6,05 с (ОСН ₂ О); 6,998,43 м (11H, Ar)	92
VIII	C ₂₁ H ₁₃ N ₄ O	$\frac{74,7}{74,8}$	$\frac{3,8}{3,9}$	16,7 16,6	291292	1620, 1610	3230, 3310	6,708,84 м (12H, Ar); 10,52 с и 11,50 с (2NH)	86

^{*2} Ссединения перекристаллизованы из бензола (VIь, VIIб), диоксана (V), ДМФА (II, VIr : VIIr), АсОН (IV, VIIв) и изопропилового спирта (все остальные). Найдено, %: S 10,4. Вычислено, %: S 10,2.

5-Арил-1,2,4-триазоло [4,3-f]фенантридины (VIIа-г). Раствор 10 ммоль гидразона VIa-г кипятят в 30 мл нитробензола в течение 1 ч (контроль TCX), охлаждают до $20\,^{\circ}C$, разбавляют $50\,\text{мл}$ этилового спирта, выпавний осадок отфильтровывают, сущат и перекристаллизовывают.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Китаев Ю. П., Бузыкин Б. И.* Гидразоны. М.: Наука, 1974. 415 с.
- 2. Гизатуллина Э. М., Карцев В. Г. // ХГС. 1993. № 12. С. 1587. 3. Михайловский А. Г., Шкляев В. С. // ХГС. 1992. № 4. С. 531.
- 4. Рубинов Д. Б., Михайловский А. Г., Лахвич Ф. А. // XГС. 1992. № 12. С. 1617.
- 5. Михайловский А. Г. // Тез. докл. X конф. молодых ученых «Синтез и исследование биологически активных соединений». — Рига, 1989. — С. 56.
- 6. Михайловский А. Г., Таранова Т. Г., Сыропятов Б. Я., Вахрин М. И. // Хим.-фарм. журн. — 1992. — № 11—12. — С. 53.
- 7. Михайловский А. Г. // Тез. докл. Х молодежной конф. по синтетическим и природным физиологически активным соединениям. — Ереван, 1990. — С. 84.

Институт технической химии УрО РАН, Пермь 614000, Россия

Поступило в редакцию 03.07.97

e-mail: cheminst@mail.psu.ru