С. В. Толкунов, В. И. Дуленко

О РЕЦИКЛИЗАЦИИ 1,3-ДИМЕТИЛБЕНЗО[*b*]ФУРО[2,3-*c*]- И 1,3-ДИМЕТИЛБЕНЗО[*b*]ТИЕНО[2,3-*c*]ПИРИЛИЯ ПРИ ДЕЙСТВИИ ВТОРИЧНЫХ АМИНОВ. СИНТЕЗ 3-ДИАЛКИЛАМИНОПРОИЗВОДНЫХ ДИБЕНЗОФУРАНА И ДИБЕНЗОТИОФЕНА

Установлена способность солей 2,4-диметилбензо [b] фуро [3,2-c] пирилия и 2,4-диметилбензо [b] тиено [3,2-c] пирилия рециклизоваться под действием вторичных аминов в 3-диалкиламинопроизводные дибензофурана и дибензотиофена. Проведено сравнение физико-химических и спектральных характеристик полученных соединений с продуктами рециклизации солей 1,3-диметилбензо [b] фуро [2,3-c] – и 1,3-диметилбензо [b] тиено [2,3-c] пирилия.

солей пирилия при действии Рециклизация алкилзамещенных вторичных аминов протекает с участием а-алкильных заместителей и приводит к образованию диалкиланилинов [1, 2]. Аналогично ведут себя бензо [с] пирилиевые катионы и катионы пирилия, конденсированные с [3—6]. Строение образующихся гетеропиклическими соединениями продуктов рециклизации в случае бензо[с]пирилиевых солей и их гетероаналогов зависит от места первоначального присоединения вторичного амина и проходит по схеме ANRORC. Ранее нами было показано, что реакция солей 1-этил-3-метилбензо [b]фуро [2,3-c]- и 1-этил-3-метилбензо[b]тиено[2,3-c]пирилия со вторичными аминами протекает по пути А с образованием 1-диалкиламинодибензофуранов и 1-диалкиламинодибензотиофенов [5, 6]. Строение продуктов рециклизации было установлено по их спектрам ЯМР 1 Н (путь A 1 R = CH₃), тогда как вопрос строения аминопроизводных IIIa, IVa (1 R = H), полученных из 1,3-диметилзамещенных солей, оставался открытым из-за того, что в этом случае с помощью спектроскопии ЯМР $^{\rm I}$ Н затруднительно определить структуру продукта реакции, а метод аналогии — перенесение результатов рециклизации модельного соединения, имеющего 1-этил-3-метильные заместители, на соответствующие 1,3-диметильные заместители может привести к ошибке. Необходимо заметить, что во всех предыдущих работах по рециклизации бензо [с] пирилиевых солей и их гетероаналогов со вторичными аминами нет строгих доказательств строения образующихся соединений, и лишь в работе [7] строение установлено с помощью рентгеноструктурного анализа.

I Y = O, a R¹ = R² = H; $6 R^1$ = H, R² = Me; II Y = S, R¹ = R² = H; III Y = O, X = O, a R¹ = R² = H; $6 R^1$ = H, R² = Me; IV Y = S, R¹ = R² = H; a X = O, 6 X = CH₂; V Y = O, a R¹ = Me, R² = H, X = O; $6 R^1$ = R² = Me, X = O; $8 R^1$ = Me, R² = H, X = CH₂; VI Y = S, a R¹ = Me, R² = H, X = O; $6 R^1$ = Me, R² = H, X = CH₂

В связи с этим мы изучили реакцию перхлоратов 2,4-диметилбензо [b] фуро [3,2-b] и 2,4-диметилбензо [b] фуро [3,2-b] пирилия — одна из четырех возможных изомерных форм солей пирилия, конденсированных с гетероциклической частью бензо [b] тиофена и бензо [b] фурана. Их реакции недостаточно изучены, что, вероятно, объясняется формальным сходством с солями бензо [b] пирилия, для которых не характерны реакции рециклизации. Наш интерес к реакциям солей VIIIа—д со вторичными аминами связан с возможностью получения 3-диалкиламинодибензофуранов V и 3-диалкиламинодибензотиофенов VI, которые являются одними из возможных продуктов рециклизации солей [a] и [a] по пути [b].

Мы установили, что при кипячении солей VIIIа—д со вторичными аминами происходит их рециклизация в 3-диалкиламинодибензофураны Va—в и 3-диалкиламинобензотиофены VIa—в.

$$R^2$$
 $VIIIa-\pi$
 R^1
 $VIIIA-R$
 R^2
 $Va-r, VIa-B$

V Y=O, a R¹=Me, R²=H, X=O; 6 R¹=R²=Me, X=O; B R¹=R²=Me, X=CH₂; r R¹=Ph, R²=H, X=O; VI Y=S, a R¹=Me, R²=H, X=O; 6 R¹=Me, R²=H, X=CH₂; B R¹=Ph, R²=H, X=O; VIIIa, 6, B Y=O, r, π Y=S; a R¹=Me, R²=H; 6 R¹=R²=Me; B R¹=Ph, R²=H; r R¹=Me, R²=H; π R¹=Ph, R²=H

Таблица 1 Характеристика синтезированных соединений HI—VI

Соеди-	Брутто-			айдено, % числено, %	<i>T</i> _{пл} , °C	Выход, %	
нение	формула	С	Н	S(CI)	N	1	
Ша	C ₁₇ H ₁₇ NO ₂	$\frac{76,6}{76,4}$	$\frac{6,2}{6,4}$	_	<u>5,2</u> 5,2	103104	56
Шб	C ₁₈ H ₁₉ NO ₂	76,8 76,9	6,6 6,8		$\frac{5,1}{5,0}$	117118	53
IVa	C ₁₇ H ₁₇ NO ₂	76,5 76,4	6,2 6,4		5,0 5,2	151152	56
Vб	C ₁₈ H ₁₉ NO ₂	$\frac{77.0}{76.9}$	6,6 6,8	_	<u>5,1</u> 5,0	117118	54
Vв	C ₁₉ H ₂₂ ClNO*	69,0 68,8	$\frac{6.7}{6.6}$	$\frac{(10,5)}{(10,7)}$	4,0 4,2	264265	42
Vr	C22H19NO2	$\frac{80,0}{80,2}$	$\frac{5,1}{5,2}$		4,1 4,3	125126	68
VIa	C ₁₇ H ₁₇ NOS	$\frac{71,9}{72,1}$	$\frac{6,1}{6,0}$	$\frac{11,2}{11,3}$	$\frac{5,2}{5,0}$	143144	56
VIб	C ₁₈ H ₂₀ ClNS*	$\frac{68,3}{68,1}$	$\frac{6,4}{6,3}$	9,9 (11,4) 10,1 (11,2)	$\frac{4,2}{4,4}$	233234	42
VIB	C ₂₂ H ₁₉ NOS	76,3 76,5	5,3 5,5	$\frac{9,0}{9,3}$	$\frac{4,0}{4,1}$	158159	90

Гидрохлорид.

Данные спектров ЯМР ¹Н соединений III—VI

Соеди-	Спектр ЯМР ¹ Н, м. д., КССВ (J), Гц									
	1-CH ₃ (3-CH ₃)	6-CH3	2-H	4-H	5-H	6-H	7-н	8-H	Прочие протоны	
IIIa	(2,42)		6,82	7,48	7,78 д, J = 8,4	7,28 т	7,28 т	7,6 д, J=8,4	3,36 и 3,94 (8H, м, СН ₂ -мор- фолина)	
Шб	(2,42)	2,47	6,82	7,48	7,81	-	7,25 д, $J = 8,4$		3,36 и 3,94 (8H, м, СН ₂ -мор- фолина)	
Va	2,49	_	6,80	7,46	7,80 д, $J=8,4$	7,30 т	7,30 т	7,60 д, J = 8,4	3,36 и 3,94 (8H, м, СН ₂ -мор- фолина)	
Vб	2,50	2,47	6,82	7,48	7,80		7,25 д, $J=8,4$	7,61 д, J = 8,4	1,50, 1,67, 3,20 (9H, м, СН ₂ -пи- перидина)	
VIa	2,50	_	7,15	7,84	8,36, $J=9,2$	7,50	7,50	8,0 д, J = 9,2	3,40 и 400 (8H, м, СН ₂ -мор- фолина)	
VI6	2,50	_	7,15	7,84	3,36, $J=9,2$	7,48 т	7,48 т	8,0 д, J = 9,2	1,50, 1,67, 3,20 (9H, м, СН ₂ -пи- перидина)	

Проведя исследование состава продуктов рециклизации солй Ia и II методом ВЭЖХ с использованием в качестве свидетелей соединений Va и VIa,б, мы обнаружили, что главными продуктами реакции являются соединения IIIа и IVa (содержание в смеси 95%) с небольшой примесью соответствующих изомерных соединений Va и VIa (содержание в смеси не превышает 5%). Образование изомерных структур Va и VIa из солей Ia и II можно объяснить не только присоединением вторичного амина по положению 3 катионов пирилия Î и II, но и возможностью раскрытия пирилиевого цикла образующейся в ходе реакции водой до 1,5-дикарбонильного соединения, которое может образовать, во-первых, 1-оксипроизводные дибензотиофена и дибензофурана и, во-вторых, уже известные аминопроизводные. Косвенным подтверждением гипотезы образования 1,5-дикарбонильных соединений в реакционной массе служит тот факт, что в большинстве случаев при реакции со вторичными аминами были выделены соответствующие оксипроизводные [5, 6]. Проверка этого предположения осуществлялась путем введения в реакцию с морфолином 2-ацетил-3-ацетонилбензо [b] тиофена VII, полученного из перхлората II (при этом нами выделен амин V6 и 1-окси-3-метилдибензотиофен).

Доступность солей бензо [b] тиено [3,2-b]- и бензо [b] фуро [3,2-b] пирилия и легкость их превращения в соответствующие аминопроизводные дибензотиофена и дибензофурана делает эту реакцию удобной для получения последних. В табл. 1 представлены данные о результатах рециклизации солей VIIIа—д, имеющих различные заместители в пирилиевом и бензольном циклах, со вторичными аминами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

 1 H — на приборе Gemini-200 в пиридине- 1 Ds, внутренний стандарт TMC. Анализ продуктов реакции проводили методом 1 BЭЖХ, хроматограф фирмы Laboratory pristroje, Praha, детектор — дифференциальный рефрактометр RIDK- 1 Ds, колонка 3 × 1 S0 мм, неподвижная фаза Separon 1 C18, подвижная фаза — метанол—вода, 7 : 3 3. Характеристики синтезированных соединений приведены в табл. 1 1.

Исходные соединения Ia,б и II синтезированы по методикам работ [5, 6], а VIIIa,в—д — [8, 9].

Перхлорат 2,4,8-триметилбензо [b] фуро [3,2-b] пирилия VIIIб получен по ранее описанному способу [9] с выходом 83%. $T_{\Pi\Pi}$ 220...221 °C.

Общая методика получения соединений III—VI. Смесь 5 ммоль соответствующего перхлората I, II или VIII, 3 мл вторичного амина и 15 мл изопропилового спирта кипятят 3 ч. Растворитель удаляют при пониженном давлении. Остаток растворяют в бензоле. Промывают водой и 10% раствором щелочи для удаления оксисоединений. Бензольный слой сушат MgSO4. Бензол удаляют, а остаток кристаллизуют из гептана. Соединения Vв и VI6 выделяют в виде гидрохлоридов. Кристаллизуют из спирта. Данные о соединениях III—VI представлены в табл. 1.

2-Ацетил-3-ацетонилбензо [b]тиофен VII. К суспензии 3,15 г (0,01 моль) соли II в 100 мл бензола добавляют при встряхивании 50 мл 10% раствора NaHCO₃. Продолжают встряхивание до полного исчезновения суспензии перхлората II. Бензольный слой отделяют, промывают водой и сушат MgSO₄. Бензол упаривают в вакууме. Выход 2,5 г (91%). $T_{\rm III}$ 67...68 °C (из гептана). ИК спектр: 1705, 1655, 1580, 1550, 1430, 1360, 1320, 1240, 1170, 970, 770, 740 см $^{-1}$. Найдено, %: С 67,5; H 5,5; S 13,6. $C_{13}H_{12}O_{2}S$. Вычислено, %: C 67,3; H 5,4; S 13,8.

1-Метил-3-морфолинодибензотиофен VIa. Смесь 2,3 г (10 ммоль) соединения VII и 10 мл морфолина кипятят 4 ч. Избыток амина отгоняют в вакууме. Остаток растворяют в бензоле и промывают 10% HCl. Бензольный слой отделяют, а водный подщелачивают. Выделившийся амин экстрагируют эфиром. Эфирный слой сушат MgSO4 и упаривают. Остаток кристаллизуют из гептана. Выход 0,56 г (20%) дибензотиофена VIa. ИК спектр и спектр ЯМР вещества идентичны спектрам 1-метил-3-морфолинодибензотиофена, полученного из перхлората VIIIг (табл. 1). Проба смешения этих соединений не дает депрессии температуры плавления. ИК спектр: 1590, 1580, 1565, 1420, 1390, 1300, 1260, 1250, 1200, 1120, 980, 900, 860, 775, 750 см⁻¹.

Из бензольного слоя выделяют 1-окси-3-метилдибензотиофен с характеристиками, идентичными литературным данным [5]. Выход 11%. По этой же методике из соединений VII и пиперидина получают с выходом 23% 1-метил-3-морфолинодибензотиофен (VIб), который идентичен полученному из перхлората VIIIr (табл. 1). ИК спектр: 1590, 1575, 1500, 1420, 1300, 1200, 1160, 1060, 1040, 875, 770, 740, 725 см⁻¹.

СПИСОК ЛИТЕРАТУРЫ

- 1. Diels O., Alder K. // Ber. 1927. Bd 60. S. 716.
- Balaban A. T., Dinculescu A., Dorofeenko G. N., Fischer G. V., Koblik A. V., Mezheritskii V. V., Schrot W. // Adv. Heterocycl. Chem. / Ed. A. R. Katritzky. — N. Y.: Acad. Press, 1982. — Suppl. 2. — P. 128.
- 3. Дорофеенко Г. Н., Садекова Е. И., Гончарова В. М. // ХГС. 1970. № 10. С. 1308.
- 4. Дуленко В. И., Алексеев Н. Н. // ДАН. 1972. T. 206. C. 351.
- 5. Дуленко В. И., Толкунов С. В., Алексеев Н. Н. // ХГС. 1981. № 10. С. 1351.
- 6. Дуленко В. И., Толкунов С. В. // ХГС. 1987. № 7. С. 889.
- 7. Дуленко В. И., Кибальный А. В., Николюкин Ю. А., Лукьяненко В. И., Гончаров А. В., Сидоров С. А., Юфит Д. С., Стручков Ю. Т. // ХГС. 1990. № 4. С. 546.
- Дорофеенко Г. Н., Волбушко В. И., Дуленко В. И., Корнилова Э. Н. // ХГС. 1976. № 9. — С. 1181.
- 9. Волбушко В. И. Дис...канд. хим. наук. Ростов-на-Дону, 1982. 159 с.

Институт физико-органической химии и углехимии им. Л. М. Литвиненко НАН Украины, Донецк 340114

Поступило в редакцию 10.04.97

e-mail: dulenko@infou.dipt.donetsk.ua