С. В. Толкунов, М. Н. Кальницкий, С. Н. Лящук, В. И. Дуленко

СИНТЕЗ ЧЕТЫРЕХЪЯДЕРНЫХ КОНДЕНСИРОВАННЫХ ГЕТЕРОЦИКЛОВ НА ОСНОВЕ ПРОДУКТОВ НИТРОВАНИЯ БЕНЗО[b]ТИЕНО[2,3-c]ПИРИДИНОВ

На основе продуктов нитрования бензо [b]тиено [2,3-c] пиридинов синтезированы новые четырехъядерные конденсированные гетероциклические системы — структурно близкие аналоги природных алкалоидов эллиптицина и оливицина. При замыкании пиридинового цикла образуются продукты только с линейным сочленением колец. Дано объяснение этому факту с точки зрения принципа «напряженность структуры — устойчивость», для чего была проведена полная оптимизация структуры синтезированных соединений по программе PCMODEL с использованием силового поля ММХ в сочетании с π -электронным приближением.

В предыдущих публикациях мы изложили данные об особенностях электрофильного замещения в бензо [b] тиено [2,3-c] пиридинах на примерах реакций нитрования и ацилирования [1, 2]. Продукты нитрования представляют собой удобные интермедиаты для синтеза новых четырехьядерных конденсированных гетероциклических систем, которые можно рассматривать как структурно близкие аналоги таких природных алкалоидов, как эллиптицин и оливицин, интерес к которым обусловлен проявляемой ими высокой антираковой активностью [3]. Более того, известно, что сернистый аналог эллиптицина также проявляет высокую антираковую активность [4].

Для создания нового цикла использовались методы построения хинолинов по Комбу, Гоулду—Джакобсу, Кнорру и индолов по Леймгруберу—Батчо. При пристройке пиридинового цикла в качестве исходных молекул использовали аминопроизводные бензо [b]тиено [2,3-c]пиридинов II, III, полученные восстановлением на Pd/C в метаноле

соответствующих нитропроизводных I, VII. Структура аминов II и VIII подтверждена элементным анализом (табл. 1), а также данными ИК и ПМР спектров (табл. 2).

Циклизация по Комбу заключалась в конденсации 1,3-диметил-6-аминобензо [b]тиено [2,3-c] пиридина II с ацетилацетоном и последующей циклизации образовавшегося анила (III) (без выделения) под действием серной кислоты до 2,4,7,9-тетраметилдипиридо [3,4-b:2,3-f] бензо-[b]тиофена IV с выходом 47%.

2,4-Диметил-8-карбометоксидипиридо [3,4-b:2,3-f] бензо [b] тиофен-7-(10H)-он VI был получен с выходом 27% по методу Гоулда—Джакобса конденсацией амина II с метиловым эфиром этоксиметиленмалоновой кислоты и дальнейшей термической циклизацией продукта конденсации V без выделения последнего. 2,4,6,7-Тетраметилдипиридо [3,4-b:2,3-f]-бензо [b] тиофен-9(10H)-он IX получен по Кнорру с выходом 40% кипячением 1,3,8-триметил-6-аминобензо [b] тиено [2,3-c] пиридина (VIII) с ацетоуксусным эфиром в присутствии серной кислоты.

Ожидалось, что циклизация указанными методами должна привести к образованию продуктов с линейным и угловым сочленением колец (реализация замыкания пиридинового цикла по положениям 7 и 5 соответственно). Однако установлено, что образовались только линейные пиридины IV, VI и IX. В пользу такого сочленения колец говорит наличие двух синглетных сигналов протонов бензольного цикла в спектре ПМР (табл. 2). Очевидно, что в случае углового сочленения колец сигналы протонов бензольного кольца проявились бы в виде дублетов. В пользу образования α -пиридона IX говорит тот факт, что полоса поглощения карбонильной группы в его ИК спектре находится в области $1625~{\rm cm}^{-1}$, что соответствует амидной структуре.

Образование только линеарных структур IV, VI и IX, вероятно, связано со стерическими затруднениями, которые возникают в случае образования продуктов с угловым сочленением колец (X—XII). В связи с этим нами проведена полная оптимизация структуры этих пиридинов по программе PCMODEL [5] с использованием силового поля ММХ в сочетании с л-электронным приближением.

Согласно полученным результатам, соединение IV имеет на 39,8 кДж/моль, а пиридин IX (R = H) на 33,02 кДж/моль меньшую стерическую энергию, чем их возможные изомеры X и XI соответственно. Такая значительная разница энергий указывает на высокую вероятность процесса циклизации только в направлении образования соединений с линейным сочлением колец, что и наблюдается экспериментально. Заметим, что наибольший вклад в разницу стерических энергий изомерных линеарных

Характеристики соединений II, IV, VI, VIII, IX, XIV, XV

Соеди- нение	Брутго- формула	Найдено, %				Вычислено, %				т _{пл} °С	R_f	Система	Выход, %
		С	н	N	S	С	н	N	S	1 пл С	1 19	для TCX* ²	Былод, 70
					₹.				i,	. ,4			
n ;	$C_{13}H_{12}N_2S$	68,3	5,4	12,3	14,1	68,4	5,3	12,3	14,1	*	0,25	Бензол-хлороформ, 1:1	77
IV .	$C_{18}H_{16}N_2S$	74,3	5,5	9,5	10,8	73,9	5,5	9,6	11,0	164167	0,64	Бензол-этилацетат, 10:1	47
VI	$C_{18}H_{14}N_2O_3S$	64,2	4,3	8,4	9,4	64,0	4,2	8,3	9,5	160162	0,94	Бензол-этанол, 10:1	27
VIII	$C_{14}H_{14}N_2S$	69,6	5,9	11,6	13,1	69,4	5,8	11,6	13,2		0,51	Бензол-хлороформ, 1:1	65
IX	$C_{18}H_{16}N_2OS$	70,0	5,1	9,2	10,5	70,1	5,2	9,1	10,4	151154	0,82	Бензол-этанол, 6: 1	40.
XIV	$C_{17}H_{17}N_3O_2S$	62,3	5,2	12,7	9,8	62,4	5,2	, 12,8	9,8	261263	4.	• segreto	95
ΧV	C ₁₅ H ₁₂ N ₂ S	71,6	4,9	11,0	12,5	71,4	4,8	11,1	12,7	136138	0,63	Бензол-этилацетат, 6:1	68

масло.
В случае соединения IV на Silufol UV-254, остальные — на Alufol

и ангулярных соединений (Δ $E_{\text{ст}}$) вносит торсионная составляющая (Δ $E_{\text{тор}}$ = 29,4 и 32,89 кДж/моль для соединений IV, IX (R = H) и их возможных изомеров X и XI соответственно), величина которой отражает заметное нарушение плоской структуры ароматического скелета, возникающее из-за стерического отталкивания между метильной группой у атома $C_{(11)}$ и водородным атомом в положении $C_{(1)}$ в соединениях X—XII.

Так, величины двугранных углов $C_{(1)}C_{(11c)}C_{(11b)}C_{(11a)}=14,54^\circ$, $C_{(11)}C_{(11a)}C_{(11b)}C_{(11c)}=23,97^\circ$ для пиридина X; $C_{(1)}C_{(11c)}C_{(11b)}C_{(11a)}=14,86^\circ$, $C_{(11)}C_{(11a)}C_{(11b)}C_{(11c)}=24,75^\circ$ для пиридона XI. Кроме того, метильная группа у атома $C_{(11)}$ в соединении X выведена из плоскости на $18,4^\circ$, а в соединении XI — на $20,45^\circ$. Такое отклонение от плоской структуры приводит к нарушению sp^2 -гибридизации углеродных атомов $C_{(1)}C_{(11c)}C_{(11b)}C_{(11a)}C_{(11)}$ и дестабилизации этих молекул.

Сказанное выше в полной мере относится к пиридону VI и его возможному изомеру XII, где $\Delta E_{\rm CT}=48,3$ кДж/моль, $\Delta E_{\rm TOP}=20,74$ кДж/моль, причем значительной деформации подвергается бензольный фрагмент молекулы XII: $C_{(2)}C_{(1)}C_{(11c)}C_{(11b)}=177,25^\circ$, а $C_{(7a)}C_{(11a)}C_{(11b)}C_{(11c)}=166,26^\circ$, вместе с тем наблюдается большая разница в теплотах образования пиридина VI ($H_f=-61,1$ кДж/моль) и его изомера XII ($H_f=15,8$ кДж/моль). Все изложенное выше свидетельствует о намного более предпочтительном образовании изомера с линейным сочленением колец VI.

Построение структуры с угловым сочленением колец удалось реализовать только в случае пристройки пиррольного цикла к 1,3,6-триметил-5-нитробензо [b]тиено [2,3-c]пиридину XIII по Леймгруберу—Батчо.

Реакция заключается в конденсации нитропиридина XIII с диметилацеталем диметилформамида в кипящем ДМФА с последующим образованием пиррольного цикла восстановлением полученного енамина (XIV) на Pd/C в метаноле с хорошим выходом до 2,4-диметилпиридо [3,4-b] пирроло [2,3-e]-бензо [b] тиофена (XV).

Спектральные характеристики соединений II, IV, VI, VIII, IX, XIV, XV

Соеди- нение	ИК спектр, ν , см ⁻¹	Спектр ПМР, δ , м. д., КССВ (J), Гц					
II	3410, 3320 (N-H)*	2,58 (1H, c, 3-CH ₃), 2,71 (1H, c, 1-CH ₃), 4,25 (2H, c, 6-NH ₂), 7,31 (1H, μ , μ					
IV	· · · · · · · · · · · · · · · · · · ·	2,34 (6H, c, 2,4-(CH ₃) ₂), 2,53 (1H, c, 7-CH ₃), 3,14 (1H, c, 9-CH ₃), 7,056 (1H, c, 1-H), 7,064 (1H, c, 8-H), 7,18 (1H, c, 6-H), 7,49 (1H, c, 11-H)* ²					
VI	1690 (C=O), 1720 (O-C=O), 1610 (C=C)	2,68 (1H, c, 2-CH ₃), 2,81 (1H, c, 4-CH ₃), 3,91 (1H, c, 8-(CO ₂ CH ₃), 7,88 (1H, c, 1-H), 7,92 (1H, c, 6-H), 7,96 (1H, c, 9-H), 8,00 (1H, c, 11-H)* ²					
VIII	3410, 3320 (N-H)*	2,57 (1H, c, 3-CH ₃), 2,71 (1H, c, 1-CH ₃), 2,76 (1H, c, 8-CH ₃), 4,23 (2H, c, 6-NH ₂), 7,34 (1H, μ , μ , μ = 3,2, 7-H), 7,60 (1H, c, 4-H), 7,90 (1H, μ , μ , μ = 3,2, 5-H)					
IX	1625 (C=O), 3140 (N-H)	2,36 (1H, c, 2-CH ₃), 2,71 (1H, c, 4-CH ₃), 2,58 (1H, c, 6-CH ₃), 2,68 (1H, c, 7-CH ₃), 7,07 (1H, c, 1-H), 7,09 (1H, c, 8-H), 7,53 (1H, c, 11-H)* ²					
XIV	1620 (C=C), 1210 (C-N)	2,48 (1H, c, 3-CH ₃), 2,62 (1H, c, 1-CH ₃), 3,51 (6H, c, 2'-N(CH ₃) ₂), 6,07 (1H, μ , μ , μ = 6,6, 2'-H), 7,11 (1H, μ , μ = 6,6 1'-H), 7,17 (1H, c, 4-H), 7,60 (1H, μ , μ = 8,2, 7-H), 8,61 (1H, μ , μ = 8,2, 8-H)					
xv	3200 (N-H)	2,51 (1H, c, 2-CH ₃), 2,67 (1H, c, 4-CH ₃), 6,73 (1H, μ , μ , μ = 5,4, 8-H), 7,06 (1H, μ , μ = 5,4, 9-H), 7,28 (1H; c, 1-H), 7,43 (1H, μ , μ = 6,6, 7-H), 7,51 (1H, μ , μ = 6,6, 6-H), 9,23 (1H, c, N-H)					

 $^{^*}$ ИК спектры записаны в хлороформе, остальные — в таблетках КВг. Спектры ПМР записаны в пиридине-D5 (ТМС), остальные — в CDCl3 (ТМС).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР записаны на приборе Gemini-200 (200 МГц) в CDCl₃ для соединений II, VIII, XIV, XV и пиридине-D₅ (внутренний стандарт ТМС) — для соединений IV, VI, IX. ИК спектры записаны на приборе Specord M-80 в хлороформе для соединений II, VIII и таблетках КВг — для соединений VI, IX, XIV. Характеристики синтезированных соединений приведены в табл. 1, а данные ПМР и ИК спектров — в табл. 2. Контроль за чистотой и содержанием изомеров проводили с помощью ТСХ на пластинах Silufol UV-254 (IV) и Alufol (остальные соединения).

Исходные соединения (I, VII и XIII) синтезированы по [1].

Общая методика восстановления соединений I и VII. Восстановление нитропиридинов I и VII проводят водородом в метаноле с использованием в качестве катализатора 10% палладия на угле. После окончания поглощения водорода Pd/C отфильтровывают, растворитель упаривают, остаток хроматографируют на окиси алюминия (элюент смесь бензол—хлороформ, 1:1). Растворитель удаляют и получают амины II и VIII в виде вязкого желтого масла.

- 2,4,7,9-Тетраметилдипиридо[3,4-b:2,3-f]бензо[b]тиофен (IV). Смесь 1,53 ммоль амина II и 10 мл ацетилацетона кипятят 90 мин на масляной бане. Охлаждают, добавляют 0,5 мл концентрированной серной кислоты и кипятят еще 30 мин. Охлаждают, выливают в избыток воды и экстрагируют хлороформом. Экстракт промывают раствором бикарбоната натрия и водой, сущат над сульфатом магния. Растворитель удаляют, а остаток продукта IV хроматографируют на силикагеле (элюент бензол—этилацетат, 10:1), собирая фракцию с R_f 0,64. Соединение IV перекристаллизовывают из бензола.
- 2,4-Диметил-8-карбометоксидипиридо [3,4-b : 2,3-f]бензо [b] тиофен-7-(10H) он (VI). Смесь 0,88 ммоль амина П и 0,9 ммоль метилового эфира этоксиметиленмалоновой кислоты в 5 мл толуола кипятят 4 ч. Растворитель удаляют, а к остатку добавляют 5 мл дифенилового эфира и кипятят еще 2 ч. Охлаждают, выливают в 15 мл петролейного эфира. Выпавший осадок пиридина VI отфильтровывают, промывают петролейным эфиром, сушат на воздухе и перекристаллизовывают из изопропилового спирта.
- 2,4,6,7-Тетраметилдипиридо[3,4-b : 2,3-f]бензо[b]тиофен-9(10H)-он (IX). Смесь 0,95 ммоль амина VIII, 5 мл ацетоуксусного эфира и 0,5 мл концентрированной серной кислоты кипятят 30 мин. Охлаждают, выливают в избыток воды, нейтрализуют водным раствором бикарбоната натрия. Выпавший осадок соединения IX отфильтровывают, промывают водой, сушат на воздухе и перекристаллизовывают из изопропилового спирта.
- 2,4-Диметилпиридо[3,4-b]пирроло[2,3-e]бензо[b]тиофен (XV). Смесь 1,1 ммоль нитропиридина XIII и 1,3 ммоль диметилацеталя диметилформамида в 7 мл ДМФА кипятят 5 ч. Избыток растворителя отгоняют при пониженном давлении. Остаток выливают в избыток воды и экстрагируют хлороформом. Экстракт промывают водой и сушат над сульфатом магния. Растворитель удаляют, а остаток енамин XIV перекристаллизовывают из метанола.

Восстанавливают 1,05 ммоль енамина XIV водородом в метаноле с использованием в качестве катализатора палладия на угле. По окончании поглощения водорода Pd/C отфильтровывают, растворитель упаривают, а остаток продукта XV перекристаллизовывают из смеси бензол—гексан.

СПИСОК ЛИТЕРАТУРЫ

- 1. Толкунов С. В., Кальницкий М. Н., Дуленко В. И. // ХГС. 1993. № 5. С. 706.
- Толкунов С. В., Кальницкий М. Н., Лящук С. Н., Дуленко В. И. // ХГС. 1994. № 5. С. 701.
- 3. Gribble G. W., Saulnier M. G. // Heterocycles. 1985. Vol. 23. P. 1277.
- 4. Fujiwara A. N., Acton E. M., Goodman L. // J. Heterocycl. Chem. 1969. Vol. 6. P. 379.
- 5. PCMODEL. V. 3. Serena Software. P. O. Box 3076, Bloomington, USA.

Поступило в редакцию 11.11.96

Институт физико-органической химии и углехимии им. Л. М. Литвиненко НАН Украины, Донецк 340114