В. И. Теренин, П. Г. Контарев, О. А. Малошицкая, Е. В. Кабанова

СИНТЕЗ 1-ГЕТАРИЛИЗОХИНОЛИНОВ ЦИКЛИЗАЦИЕЙ НИТРИЛИЕВЫХ СОЛЕЙ

Из нитрилов карбоновых кислот гетероциклического ряда, β -фенилэтилхлорида и хлорида олова (IV) осуществлен синтез 1-гетарилзамещенных 3,4-дигидроизохинолинов и их ароматических аналогов.

Внутримолекулярная циклизация нитрилиевых солей, образующихся при взаимодействии эквимолекулярных количеств β -галогенэтилбензолов, нитрилов карбоновых кислот и хлорида олова (IV), является удобным методом синтеза 1-замещенных 3,4-дигидроизохинолинов [1]. Выходы производных 3,4-дигидроизохинолина в данной реакции варьируются в широких пределах и зависят от природы нитрила. Для алифатических нитрилов наблюдаются высокие выходы (90...100%). В случае акрилонитрила и его гомологов выход 3,4-дигидроизохинолинов составляет не более 13%. При использовании нитрилов бензойной и фенилуксусной кислот выходы не превышают 55...65%, причем введение электронодонорных заместителей в бензольное кольцо исходного нитрила резко снижает выход [2].

Нами изучена возможность использования нитрилов гетероциклического ряда для синтеза 3,4-дигидроизохинолинов, содержащих в положении 1 гетарильный заместитель. В реакции использованы следующие соединения: 2-цианофуран, 5-метил-2-цианофуран, 2-цианопиррол, N-метил-2-цианопиррол, 3-цианопирол и 3-цианопиридин. Установлено, что в тех случаях, когда нитрилиевая соль, получаемая при смешивании нитрила, β -хлорэтилбензола и хлорида олова, имеет выраженную кристалличность и не осмоляется при нагревании, последующая циклизация протекает успешно и приводит к соответствующему 3,4-дигидроизохинолину. Положительных результатов удалось достичь при использовании следующих соединений: 2-цианофурана (IIa), 5-метил-2-цианофурана (IIб), N-метил-2-цианопиррола (IIв) и 3-цианопиридина (IIг). В результате проведенной циклизации был получен ряд 3,4-дигидроизохинолинов IVа—г, содержащих в положении 1 фурановый, пиррольный или пиридиновый заместитель. Строение получен

II—V а R = 2-фурил, б R = 5-метил-2-фурил, в R = N-метил-2-пирролил, г R = 3-пиридил

Данные элементного	анализа,	константы	И	выходы
синтезиро				

Соеди- нение Брутто- формула пикрата		Пикрат. Найцено, % Вычислено,%		т _{пл} пикрата, °С	т _{кип} , °С/мм рт. ст.	Выход, %	
		С	н	N		₹.	
		,			1		
IVa	C19H14N4O8	53,82 53,52	2,96 3,29	13,37 13,15	167	130132/2	22
. IV6 ·	C ₂₀ H ₁₆ N ₄ O ₈	54,60 54,55	3,64 3,64	12,71 12,73	137	130132/2	. 26
IVв	C ₂₀ H ₁₇ N ₅ O ₇	<u>54,97</u> 54,67	3.58 3,87	15.84 15,95	165	187190/7	13
IVr	C20H15N5O7	54,09 54,92	3.05 3,43	16.94 16,02	172	146148/2	21
Va	C19H12N5O8	54,48 53,77	2.75 2,83	13.27 13,21	153	135137/2	50
Vб	C20H14N5O8	54.13 54,80	2.53 3,20	12,26 12,79	162; 63*	135138/1	86
VB	C ₂₀ H ₁₅ N ₅ O ₇	54,51 54,92	3,24 3,43	15.98 16,02	198; 90*	138140/2	48
Vг	C ₂₀ H ₁₃ N ₄ O ₇	54,83 55,17	2,39 2,99	15.83 16,09	190	143/2	80

 $T_{\Pi\Pi}$ замещенного изохинолина.

ных соединений доказано с помощью спектров ЯМР ¹Н высокого разрешения. Для соединений Па—г характерными являются сигналы протонов 3-Н и 4-Н изохинолинового ядра, проявляющиеся в виде двух дублетов при 2,74...2,88 и 3,61...3,88 м. д. с КССВ 7,1...7,7 Гц. Кроме того, в спектре наблюдаются сигналы протонов бензольного и гетероциклических ядер.

Нитрилиевые соли, полученные из 2-цианопиррола и 3-цианопиндола, оказались неустойчивы в условиях проводимой реакции, что не позволило осуществить гетероциклизацию. Реакции проводили при температуре 100...115 °C, за исключением циклизации нитрила никотиновой кислоты IIг, для которого потребовалось 140...150 °C, что связано с высокой температурой плавления нитрилиевой соли. Дегидрирование над палладиевой чернью в ксилоле приводит к ароматизации пиридинового цикла и образованию соединений Va—г, более стабильных, чем исходные IVa—г.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакций осуществлялся с помощью TCX на пластинках Silufol UV-254. Спектры ЯМР 1 Н соединений IVa—r и Va—r записаны на приборе Varian VXR-400 в CDCl3, (внутренний стандарт TMC).

1-Гетарил-3,4-дигидроизохинолины IVa—г (общая методика). К смеси 0,1 моль нитрила II и 0,1 моль β -хлорэтилбензола при перемешивании добавляют 0,1 моль хлорида олова (IV) и нагревают при температуре 110...115 °C в случае нитрилов IIa,6, при 100...105 °C — нитрила IIв и при 140...150 °C нитрила IIг в течение 3 ч. Выливают реакционную смесь в холодную воду, подщелачивают концентрированным раствором гидроксида натрия. Отделяют органический слой, водный экстрагируют эфиром. Эфирные вытяжки объединяют, сушат сульфатом магния, эфир отгоняют, остаток перегоняют в вакууме.

1-Гетарилизохинолины Va—г (общая методика). Нагревают до кипения смесь 0,1 моль дигидроизохинолина IV и 0,1 г палладиевой черни в 50 мл ксилола, не содержащего сернистых соединений, в течение 6...8 ч до прекращения выделения водорода. Отфильтровывают катализатор, растворитель упаривают, остаток перегоняют в вакууме.

Спектры ЯМР ¹Н полученных соединений

Соеди- нение	Спектр ЯМР, δ , м. д. (J, Гц)
IVa	2,74 (2H, $_{7}$, $_{$
Va	6,64 (1H, π . π , $J_{4'3'} = 3,4$, $J_{4'5'} = 1,8$, $4'-H$); 7,19 (1H, π . π , $J_{3'4'} = 3,4$, $J_{3'5'} = 0,8$, $3'-H$); 7,58 (1H, π , $J_{43} = 5,7$, $4-H$); 7,63 (1H, π . π . π , $J_{67} = 6,8$, $J_{65} = 8,1$, $J_{68} = 1,4$, $6-H$); 7,69 (1H, π . π . π , $J_{76} = 6,8$, $J_{78} = 8,5$, $J_{75} = 1,5$, $7-H$); 7,71 (1H, π . π , $J_{5'4'} = 1,9$, $J_{5'3'} = 0,9$, $J_{5'-H}$); 7,84 (1H, $J_{56} = 1,5,5,5$); 8,58 (1H, $J_{54} = 1,5,5,5$); 8,78 (1H, $J_{57} = 1,5,5,5,5$); 8,78 (1H, $J_{57} = 1,5,5,5,5,5$); 8,78 (1H, $J_{57} = 1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5$
IV6	2,41 (3H, c, CH ₃); 2,74 (2H, T, $J_{43} = 7,1$, 4-CH ₂); 3,83 (2H, y _{III} . T, $J_{34} = 7,1$, 3-CH ₂); 6,12 (1H, π . κ , $J_{4'3'} = 3,1$, 4'-H); 6,73 (1H, π , $J_{3'4'} = 3,1$, 3'-H); 7,26 (1H, π , $J_{56} = 7,7$, 5-H); 7,32 (1H, π . π , π , $J_{67} = 7,6$, $J_{65} = 7,6$, $J_{68} = 1,2$, 6-H); 7,4 (1H, π . π , π , $J_{76} = 7,6$, $J_{78} = 7,4$, $J_{75} = 1,4$, 7-H); 7,72 (1H, π . π , $J_{87} = 7,8$, $J_{86} = 1,2$, 8-H)
·Vб	2,50 (3H, c, CH ₃); 6,23 (1H, π . κ , $I_{4'3'} = 3,4$, $I_{4'-\text{CH}3} = 0,7$, $4'-\text{H}$); 7,08 (1H, π , $I_{3'4'} = 3,4$, $3'-\text{H}$); 7,53 (1H, π , $I_{43} = 5,4$, $4-\text{H}$); 7,61 (1H, π . π . π , $I_{67} = 6,9$, $I_{65} = 8,3$, $I_{68} = 1,5$, 6-H); 7,67 (1H, π . π . π , $I_{76} = 6,9$, $I_{78} = 8,1$, $I_{75} = 1,5$, 7-H); 7,82 (1H, π , $I_{56} = 8,3$, 5-H); 8,55 (1H, π , $I_{34} = 5,4$, 3-H); 8,75 (1H, π , $I_{87} = 8,1$, 8-H)
IVв	2,88 (2H, $_{\rm T}$, $J_{43} = 7,1$, 4-CH ₂); 3,61 (2H, $_{\rm T}$, $J_{34} = 7,1$, 3-CH ₂); 3,94 (3H c, CH ₃); 6,03 (1H, $_{\rm L}$, $_{\rm L}$, $J_{4'3'} = 3,9$, $J_{4'5'} = 2,5$, 4'-H); 6,38 (1H, $_{\rm L}$, $_{\rm L}$, $J_{3'4'} = 3,9$, $J_{3'5'} = 2,5$, 3'-H); 6,68 (1H, $_{\rm L}$, $_{\rm L}$, $J_{5'4'} = 2,0$, $J_{5'3'} = 2,5$, 5'-H); 7,23 (2H, $_{\rm M}$, 5-H, 6-H); 7,32 (1H, $_{\rm L}$, $_{\rm L}$, $J_{76} = 7,0$, $J_{78} = 8,0$, $J_{75} = 1,0$, 7-H); 7,70 (1H, $_{\rm L}$, $_{\rm L}$, $J_{87} = 8,0$, 8-H)
V _B	3,79 (3H, c, CH ₃); 6,28 (1H, M, 4'-H); 6,54 (1H, M, 3'-H); 6,85 (1H, π , $J_{5'4'} = 2,5$, S' -H); 7,56 (2H, M, 4-H, 6-H); 7,68 (1H, π , π
IVr	2,83 (2H, $_{7}$, $_{43}$ = 7,5, 4-CH ₂); 3,88 (2H, $_{9}$ III. $_{7}$, $_{34}$ = 7,5, 3-CH ₂); 7,22 (1H, $_{7}$, $_{156}$ = 6,7, 5-H); 7,27 (1H, $_{7}$, $_{8}$, $_{16}$ = 7,8, $_{165}$ = 6,7, 6-H); 7,29 (1H, $_{9}$ III. $_{18}$, $_{187}$ = 7,8, 8-H); 7,37 (1H, $_{7}$, $_{7}$, $_{156}$ = 5,5, $_{152}$ = 0,8, 5'-H); 7,42 (1H, $_{7}$, $_{7}$, $_{8}$, $_{178}$ = 7,6, $_{176}$ = 7,8, $_{175}$ = 1,5, 7-H); 7,94 (1H, $_{7}$, $_{8}$, $_{8}$, $_{145}$ = 7,8, $_{145}$ = 1,9, $_{142}$ = 2,1); 8,68 (1H, $_{7}$, $_{8}$, $_{8}$, $_{187}$ = 5,5, $_{8}$, $_{164}$ = 1,9, $_{8}$ = 1,9, $_{8}$ = 0,8, $_{8}$ 2'-H)
Vr	7,50 (1H, α , α , β

Работа выполнена при финансовой поддержке РФФИ (грант № 96-03-32157a).

СПИСОК ЛИТЕРАТУРЫ

- Lora-Tamayo M., Madronero R., Garcia Munos G. // Chem. Ber. 1960. Bd 93. S. 289.
 Johonson F., Madronero R. // Adv. Heterocycl. Chem. 1966. Vol. 5. P. 95.

Поступило в редакцию 23.12.96