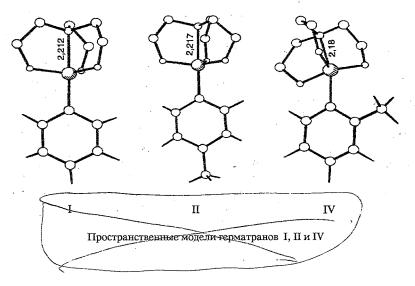
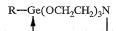
Э. Лукевиц, Л. Игнатович, Л. Хохлова, С. Беляков


СИНТЕЗ, СТРОЕНИЕ И ТОКСИЧНОСТЬ АРИЛГЕРМАТРАНОВ

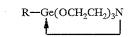
Синтезирован ряд толилгерматранов, методом рентгеноструктурного анализа установлены их структура и длина трансаннулярной связи $N \to Ge$. Показано, что арилгерматраны менее токсичны, чем соответствующие силатраны.

Гетарилгерматраны и -силатраны имеют широкий спектр биологического действия [1—4]. Для изучения влияния ароматического заместителя на строение и биологические свойства герматранов нами синтезирован ряд новых фенил- и толилгерматранов. Для их получения использовали реакцию внедрения диоксаната дибромида германия по связи С—галоген (а) [5] или реакцию галогенарилов с четыреххлористым германием в присутствии порошка меди (b) [6] с последующим алкоголизом и переэтерификацией полученных тригалогенпроизводных:


 $IR = H, X = I; IIR = 4-CH_3, X = Br; IIIR = 3-CH_3, X = Br; IVR = 2-CH_3, X = Br$

Выход соединений I—IV, данные элементного анализа и спектров ЯМР 1 Н приведены в табл. 1. Структура герматранов I, II и IV изучена методом рентгеноструктурного анализа. Общий вид молекул приведен на рисунке, а

275


Физико-химические характеристики арилгерматранов

R	<i>Т</i> _{ПЛ} , °С	Брутто- формула	<u>Найцено</u> , % Вычислено , %			ямр ¹ н, δ, м. д.	Вы- ход, %
		формула	C H N				
C ₆ H ₅	233235	C12H ₁₇ NO ₃ Ge	48.69 48,72	5.72 5,79	4.64 4,73	2,91 (6H, т, N—CH ₂); 3,89 (6H, т, О—CH ₂); 7,317,71 (5H, м, С ₆ H ₅)	67
4-CH ₃ C ₆ H ₄	211213	C13H ₁₉ NO ₃ Ge	<u>50.04</u> 50,39	6,30 6,18	4,55 4,52	2,30 (3H, c, CH ₃); 2,90 (6H, τ , N—CH ₂); 3,88 (6H, τ , O—CH ₂); 7,097,18 (2H, τ , C ₆ H ₄); 7,577,66 (2H, τ , C ₆ H ₄)	15
3-CH ₃ C ₆ H ₄	217218	C13H ₁₉ NO ₃ Ge	50,07 50,39	6,17 6,18	4,54 4,52	2,31 (3H, c, CH ₃); 2,89 (6H, T, N—CH ₂); 3,89 (6H, T, O—CH ₂); 7,117,56 (4H, M, C ₆ H ₄)	28
2-CH ₃ C ₆ H ₄	192194	C13H ₁₉ NO ₃ Ge	50,16 50,39	6,20 6,18	4,49 4,52	2,56 (3H, c, CH ₃); 2,89 (6H, T, N—CH ₂); 3,84 (6H, T, O—CH ₂); 7,15 (3H, M, C ₆ H ₄); 7,85 (1H, M, C ₆ H ₄)	14

Таблица 2

Геометрические параметры молекул герматранов

Параметры	C ₆ H ₅	4-CH3C6H4	2-CH ₃ C ₆ H ₄
Кристаллическая система	Орторомбическая	Моноклинная	Орторомбическая
a, Å	15,910(2)	13,608(3)	9,759(2)
<i>b</i> , Å	6,661(1)	14,012(3)	12,719(2)
c, Å	11,719(2)	14,330(2)	11,011(2)
$eta,^\circ$	90,0	99,13(1)	90,0
$V \text{Å}^3$	1242,0(3)	2697,8(9)	1366,7(5)
Пространственная группа	P na2 ₁	P 2 ₁ /c	P na2 ₁
$oldsymbol{z}$	4	8	4
$D_{\rm x},~{\rm g\cdot cm}^{-3}$	1,582(1)	1,526(1)	1,506(1)
Количество отражений	1083	2872	915
R-фактор	0,0323	0,0458	0,1083
Ge—N, Å	2,212(5)	2,217(4)	2,18(1)
Ge—C, Å	1,947(6)	1,946(5)	1,94(1)
	1,797(4)	1,791(3)	1,79(1)
< N—Ge—C, град	177,5(2)	178,9(2)	145(2)

основные геометрические параметры — в табл. 2. Кристаллические структуры герматранов I и II изоморфны соответствующим силатранам [7, 8]. В соединениях II и IV наблюдается разупорядоченность молекул в кристалле. Изменение положения заместителя в ароматическом кольце существенно влияет на угол N—Ge—C и почти не изменяет длину трансаннулярной связи N—Ge (табл. 2).

В кристаллическом состоянии длина связей N—Ge в арилгерматранах несколько больше, чем в соответствующих фурил- и тиенилгерматранах [9]. Введение метильного заместителя в o-положение бензольного кольца уменьшает угол N—Ge—C с $177,5^\circ$ до 145° (табл. 2).

Известно, что фенилсилатран, а еще в большей степени n-толилсилатран, необычно ядовиты для теплокровных животных: смертельная доза (LD_{50}) 1-фенилсилатрана для белых мышей составляет 0,33 мг/кг, а n-толилсилатрана — 0,20 мг/кг [1]. Изучение биологической активности герматранов I, II показало, что 1-фенилгерматран (LD_{50}) 35,5 мг/кг в 100 раз менее токсичен своего кремниевого аналога, а введение метильной группы в n-положение ароматического кольца еще более снижает токсичность (LD_{50}) 70,5 мг/кг соединения II.

СПИСОК ЛИТЕРАТУРЫ

- 1. Воронков М.Г., Зелчан Г.И., Лукевиц Э.Я. // Кремний и жизнь. Рига: Зинатне, 1978.
- 2. Лукевиц Э.Я., Гар Т.К., Игнатович Л.М., Миронов В.Ф. // Биологическая активность соединений германия. Рига: Зинатне, 1990.
- 3. Lukevics E., Ignatovich L. // Appl. Organomet. Chem. 1992. Vol. 6, N 2. P. 113.
- 4. Lukevics E., Ignatovich L., Germane S. // XΓC. 1995. № 10. C. 1412.
- 5. Lukevics E., Ignatovich L., Porsiurova N., Germane S. // Appl. Organomet. Chem. 1988. Vol. 2, N 2. P. 115.
- 6. Лукевиц Э., Игнатович Л.М., Попелис Ю.Ю. // Журн. общ. химии. 1984. Т. 54, вып. 1. С. 129.
- 7. Párkányi L., Simon K., Nagy J. // Acta Cryst. 1974. Vol. B30. P. 2328.
- Párkányi L., Hencsei P., Bihatsi L., Kovacs I., Szollosy A. // Polyhedron. 1985. Vol. 4. P. 243.
- 9. Lukevics E., Ignatovich L. // Main Group Met. Chem. 1994. Vol. 17. P. 133.

Латвийский институт органического синтеза, Рига LV-1006

Поступило в редакцию 09.01.97