Э. Лукевиц, М. Трушуле, С. Германе, И. Туровский

СИНТЕЗ И НЕЙРОТРОПНЫЕ СВОЙСТВА N-АЦИЛФЕНОТИАЗИНОВ

Синтезированы N-ацилфенотиазины — производные фурановых и фталиламинокислот и изучены их нейротропные свойства. Установлено, что производные фталил- γ -аминомасляной кислоты увеличивают продолжительность гексеналового наркоза (в 1,7 раза) и усиливают стимулирующую активность фенамина (в 2,1 раза), а производное глицина продлевает жизнь животных в условиях гипоксии на 77%.

Производные фенотиазина нашли широкое применение в медицинской практике. Некоторые из них являются нейролептическими препаратами. Однако на основе фенотиазинов созданы также антидепрессанты (фторацизин), коронарорасширяющие препараты (нонахлазин), антиаритмические (этмозин) и противорвотные средства [1].

$$CF_3$$
 $CC(CH_2)_2NEt_2 \cdot HCI$ $OC(CH_2)_2N$ $OC(CH_2)_2N$ $OC(CH_2)_2N$ $OC(CH_2)_2N$ $OC(CH_2)_2N$ $OC(CH_2)_2N$ $OC(CH_2)_2N$ $OC(CH_2)_2N$

нонахлазин

Для изучения психотропных свойств новых производных фенотиазина нами [2] синтезированы амиды фурановых (IVa—e) и фталиламинокислот (Va—в) взаимодействием фенотиазина (I) с хлорангидридами соответствующих кислот (IIa—e, IIIa—в).

$$R$$
 О $(CH=CH)_nCOCI$ O -КСИЛОЛ O -КОИЛОЛ O -КСИЛОЛ O -КОИЛ O -КОИЛОЛ O -КОИЛОЛ O -КОИЛОЛ O -КОИЛОЛ O -КОИЛОЛ O -КОИЛ O -КОИЛОЛ O

II, IV a n=0, R=H; 6 n=0, R=Br; n=0, n=0, n=1, n=

Характеристика N-ацилфенотиазинов IVa-е, Va-в и VIII

Соеди- нение	Бругго- формула	T _{III} *, ℃	R_f^{*2}	Выход, %
T77-	C II NO 5	146 149	0.42	77
IVa	C ₁₇ H ₁₁ NO ₂ S	146148	0,43	77
IVб	C ₁₇ H ₁₀ BrNO ₂ S	191193	0,58	70
IVв	$C_{17}H_{10}N_2O_4S$	194197	0,34	78
IVг	C ₁₉ H ₁₃ NO ₂ S	149151	0,43	67
IVд	C ₁₉ H ₁₂ BrNO ₂ S	159160	0,49	73
IVe	C19H12N2O4S	265267	0,17	78
Va	C22H14N2O3S	232236	0,19	79
Vб	C23H16N2O3S	266269	0,13	70
VB	$C_{24}H_{18}N_2O_3S$	185188	0,14	84
VIII	C20H16BrN3O2S	259261		75

^{*} Соединения IVa—е, Va—в очищены перекристаллизацией из *о*-ксилола с добавлением осветляющего угля марки Б, соединение VIII — из этанола.

*2 Гексан—эфир, 1:1.

Таблица 2

Соеди- нение	Химические сдвиги, δ , м. д. (КССВ, J , Гц)
IVa	7,71 (1H, д. д, $J=1.8$ и 0,9, фуран H ₍₅₎); 7,77,2 (8H, м, фенотиазин); 6,49 (1H, д. д, $J=3.6$ и 1,8, фуран H ₍₄₎); 6,30 (1H, д. д, $J=3.6$ и 0,9, фуран H ₍₃₎)
IV6	7,677,25 (8H, м, фенотиазин); 6,24 и 6,60 (2H, дублеты, $J=3,6,$ фуран $H_{(3,4)}$)
IVв	7,777,25 (9H, м, фенотиазин H + фуран H(4)); 6,46 (1H, д, $J=4,0$, фуран H(3))
ÍVr	7,747,18 (10H, м, фенотиазин H + фуран H(5) + =CH-); 6,88 (1H, д, $J=3,3$, фуран H(3)); 6,55 (1H, д. д, $J=3,3$ и 1,8, фуран H(4)); 6,48 (1H, д, $J=15,3$, -CH=)
IVд	7,737,22 (8H, м, фенотиазин); 7,22 (1H, д, $J=15,6,=$ CH $-$); 6,93 (1H, д, $J=3,0,$ фуран H(3)); 6,71 (1H, д, $J=3,0,$ фуран H(4)); 6,45 (1H, д, $J=15,6,-$ CH $=$)
IVe	7,737,34 (10H, м, фенотиазин H + фуран H(4) + -CH=); 7,20 (1H, д, J = 3,9, фуран H(3)); 6,77 (1H, д, J + 15,4, -CH=)
Va	7,84 (4H, c, фталимид); 7,847,24 (8H, м, фенотиазин); 4,50 (2H, c, CH ₂)
Vб	7,82 (4H, c, фталимид); 7,627,25 (8H, м, фенотиазин); 3,75 (2H, т, $J = 7.5$, CH ₂); 2,86 (2H, т, $J = 7.5$, CH ₂)
VB	7,81 (4H, с, фталимил); 7,587,07 (8H, м, фенотиазин); 3,51 (2H, т, <i>J</i> = 6,6, CH ₂); 2,48 (2H, т, <i>J</i> = 6,6, CH ₂); 1,80 (2H, кв, <i>J</i> = 6,6, CH ₂)
VIII	12,5 (1H, c, NOH); 8,96 и 8,22 (2H, дублеты, $J = 6,4$, пиридил H); 8,37 (1H, c, -CH=); 7,877,26 (8H, м, фенотиазин); 5,8 (2H, ш. c, CH ₂)

Спектры ПМР соединений IVa-е, Va-в в ДМСО-D6

Взаимодействием N-бромметилкарбонилфенотиазина (VI) с 4-пиридинальдоксимом (VII) в ацетонитриле синтезирован бромид 1-[2'-(фенотиазинил-10)-2'-оксоэтил]-4-оксиминометилпиридиния (VIII).

S NCCH₂Br + N CH=NOH

VII

$$M_{eCV}$$

VII

 $NCCH_2$ N CH=NOH

Br

Исследованные производные фенотиазина, за исключением соединения VIII (LD_{50} 355 мг/кг), являются малотоксичными веществами, LD_{50} которых превышает 1000 мг/кг. В ряду фенотиазинамидов фталиламинокислот (Va—в) токсичность зависит от длины углеродной цепочки и составляет 1410 мг/кг при п = 1, 2050 мг/кг при п = 3, 8900 мг/кг при п = 2. В ряду производных фурановых кислот LD_{50} около 5000 мг/кг и выше. Поэтому в случае обнаружения выраженной нейротропной активности терапевтический индекс может быть достаточно высоким.

Исследования нейротропной активности по тестам «вращающегося стержня», «трубы» и «подтягивания на перекладине» показывают, что только фенотиазинамиды 3-(5-нитро-2-фурил) акриловой кислоты IVe и фталилглицина Va проявляют небольшую депримирующую активность (ED_{50} 69...178 мг/кг). Другие изученные N-ацилфенотиазины этой активностью не обладают (ED_{50} > 500 мг/кг).

Гипотермическое действие синтезированные соединения обнаруживают примерно в таких же дозах, что и депримирующая активность. Ни одно из исследованных веществ не имеет анальгезирующих свойств.

Амиды 5-нитро-2-фуранкарбоновой (IVв) и 3-(5-нитро-2-фурил) акриловой (IVe) кислот, а также производные глицина (Va), аланина (Vб) и γ -аминомасляной кислоты (Vв) проявляют антигипоксическую активность; производное глицина продлевает жизнь животных в условиях гипоксии на 77%.

Установлено, что N-ацилфенотиазины продлевают гексеналовый наркоз. В ряду производных фурановых кислот наиболее активны бромпроизводные IVб,д, еще более — производное нитрофурилакриловой кислоты IVe. У производных фталиламинокислот существенную роль играет длина углеродной цепочки. Продолжительность гексеналового наркоза увеличивается в ряду n=1 < n=2 < n=3 в 1,45, 1,55 и 1,74 раза соответственно (Va—в).

Продолжительность этанолового наркоза увеличивается в присутствии производных фурилакриловых кислот в 1,92 (IVr) и 1,84 (IVe) раза, а также фенотиазида фталиллицина (Va), но практически не изменяется при воздействии фуранкарбоновых кислот (IVa—в).

Антиконвульсивные свойства исследованных фенотиазинамидов при коразоловых судорогах выражены слабо. Так, клоническую фазу уменьшают соединения IVa,в,г, а летальный исход отдаляют соединения Vв и (особенно) VIII. Ни один из фенотиазинамидов не предупреждает судороги, вызванные максимальным электрошоком.

О депримирующей активности веществ свидетельствует также их антагонизирующее действие на фармакологические эффекты фенамина. Поведение фенотиазинамидов в этом тесте зависит от типа кислотного

Нейротропная	активность		производны	х фенотиазина
(M +	m), %	K	контролю (100%)

-		Tecr					
Соеди- нение	<i>LD</i> ₅₀ , mr/kr	гизмопит	фенами- новая гипер- активность	гексена- ловый наркоз	этаноло- вый наркоз	коразоловые судороги, мл/с	УРПИ* ² / РА* ³ , %
IVa	4470 (31305960)	90,4	35,0*	90,4	118,6	140,3*/132,1	92,5*/83
ΙVб	>5000	100,0	146,0*	151,5*	98,6	83,9/74,1	19,1/50
IVв	>5000	134,4*	245,8*	116,3*	123,6	146,0*/127,3	63,3*/67
IVг	>5000	104,0	135,5*	126,0*	192,5*	142,5*/133,3	54,1*/33
IVд	4470 (31305960)	114,3	130,7	148,3*	114,3	125,3*/132,3	70,8*/83
IVe	7080 (50109250)	130,4*	61,4*	164,7*	184,8*	117,3/90,4	50,8/50
Va	1410 (6502090)	176,9*	56,5*	145,8*	155,4*	82,6/107,9	35,8/50
Vб	8900 (560012900	140,5*	131,4*	155,0*	82,7	85,9/113,7	1,9/17
Vв	2050 (14682880)	135,0*	210,0*	174,4*	84,7	122,5/176,8*	42,5/83
VIII	355 (249461)	121,3	37,3*	127,0*	115,5	125,3/243,9*	48/50

^{*} Различия по отнощению к контролю статистически достоверны при P < 0.05.

остатка. Так, фенотиазинамиды фуранкарбоновой (IVa), нитрофуранкарбоновой (IVд) и фталаминоуксусной (Va) кислот антагонизируют стимулирующее действие фенамина. Производные бром- (IVб) и нитрофурилакриловой (IVв) кислот, наоборот, усиливают стимулирующую активность фенамина в 1,46 и 2,46 раза. Среди производных фурилакриловой кислоты слабое усиливающее действие фенамина обнаруживают соединения IVг,д. Фенотиазинамиды фталиламинопропионовой (Vб) и фталиламиномасляной (Vв) кислот усиливают фенаминовую локомоторную активность животных.

Таким образом, производное γ-аминомасляной кислоты (Vв) проявляет высокую активность в трех тестах: увеличивает продолжительность гексеналового наркоза в 1,74 раза, усиливает стимулирующую активность фенамина в 2,1 раза и отдаляет летальный исход при коразоловых судорогах.

Соединения, имеющие в спектре фармакологической активности компоненты активирующего действия (усиливающие стимулирующие эффекты фенамина и коразола, сокращающие длительность гексеналового и этанолового наркоза и проявляющие антигипоксическую активность), облегчали процесс обучения экспериментальных животных и уменьшали или предупреждали ретроградную амнезию, вызванную электрошоком (IVa,в,д).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Ход реакций, а также чистоту продуктов контролировали TCX на пластинках Silufol UV-254 в системе эфир—гексан, 1:1.

Данные элементного анализа на С, Н и N соответствуют вычисленным.

Общая методика получения соединений IVa—е и Va—в. Смесь соединений IIa—е или IIIa—в и фенотиазина в молярных соотношениях 1,1...1,2:1 кипятят в среде o-ксилола в течение

^{*2} Условный рефлекс пассивного избегания, с.

^{*3} Ретроградная амнезия, %.

4...6 ч. После охлаждения и выдерживания в течение 12 ч фильтруют, осадок промывают *о*-ксилолом. Продукт перекристаллизовывают из *о*-ксилола с добавлением активированного угля марки Б. Выход продуктов IVa—е и Va—в, температура плавления и значения *R* указаны в табл. 1.

Бромид 1-[2'-(фенотиазинил-10)-2'-оксоэтил]-4-оксиминометилпиридиния (VIII). Кипятят 4 ч 3,2 г (0,01 моль) N-бромметилкарбонилфенотиазина и 1,2 г (0,01 моль) 4-пиридинальдоксима в среде ацетонитрила, охлаждают и фильтруют, перекристаллизовывают из этанола с добавлением активированного угля марки Б. Получают 3,3 г (75%), $T_{\rm ПЛ}$ 259...261°C.

Нейротропную активность изучали на мышах линии BALB/с и линии ICR обоего пола массой 17...23 г в зимне-весенний сезон. Температуру в лабораторном помещении и виварии поддерживали в пределах 22±1,5 °C. Исследуемые вещества в виде водных суспензий, приготовленных при помощи твина-80, вводили внутрибрюшинно за 1 ч до постановки соответствующего теста. Сравнительную оценку действия вещества на показатели гипоксии, гексеналового наркоза, фенаминовой гиперактивности, коразоловых судорог, процессы памяти проводили на группах животных, состоящих из 6...8 особей, при введении производных фенотиазина в дозе 5 мг/кг. Контрольным животным инъецировали в брюшную полость такой же объем дистиллированной воды.

Действие веществ на центральную нервную систему оценивали по следующим тестам:

- 1) по влиянию на координацию движений и мышечный гонус по методикам «вращающегося стержня» на аппарате фирмы Ugo Basile (Италия) при частоте вращения 8 об./мин в течение 2 мин; тесту «трубы» (стеклянная труба 30×2 см в течение 30 с) и тесту «подтягивания на перекладине» (металлическая проволока диаметром 2 мм в течение 5 с);
- 2) по влиянию на температуру тела, измеряемую в прямой кишке при помощи электротермометра; критерием оценки служило снижение ректальной температуры на 3 °С и более;
- 3) по анальтезирующему эффекту, определенному по методике «горячей пластинки» на аппарате фирмы Ugo Basile;
- 4) по противосудорожной активности, исследованной по тесту максимального электрошока (переменный ток силой 50 мА и частотой 50 имп./с при продолжительности раздражения 0.2 с) и тесту коразоловых судорг, вызванных внутривенным титрованием 1% раствором коразола со скоростью 0.01 мл/с;
- 5) по влиянию на продолжительность гексеналового наркоза (0,4% раствор гексенала внутривенно в дозе 70 мг/кг);
- по влиянию на продолжительность жизни животных в условиях гипоксической гипоксии, вызванной помещением (поодиночке) мышей в гермокамеру емкостью 220 см³ без поглощения CO₂;
- 7) по изменению степени фенаминовой гиперактивности (0,4% раствор фенамина подкожно в дозе $10 \, \mathrm{mr/kr}$);
- 8) по влиянию на процесс обучения и ретроградную амнезию, вызванную электрошоком. Определяли также острую токсичность и устанавливали средние летальные (LD_{50}) дозы.

Экспериментальные данные обрабатывали статистически (устанавливали средние значения LD_{50} и ED_{50} по 10...20 наблюдениям с использованием экспресс-метода). Для оценки средней продолжительности наркотического действия гексенала, защитных свойств при коразоловых судорогах, гипоксии, степени фенаминовой гиперактивности вычисляли средние арифметические величины, их стандартную ошибку $(M\pm m)$. Для оценки значимости различия между средними величинами использовали критерий Стьюдента. Различия считали достоверными при уровне вероятности $P \leqslant 0,05$.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Машковский М. Д.* .// Лекарственные средства. М.: Медицина, 1987. Ч. 1. С. 39.
- Lukevics E., Trušule M., Ģērmane S. // 8th Internat. conf. on phenothiazines and structurally related psychotropic compounds. — Jaipur, India, 1996. — PS-2.

Латвийский институт органического синтеза, Рига LV-1006

Поступило в редакцию 07.10.96