И. Б. Старченков, В. Г. Андрианов, А. Ф. Мишнев

ХИМИЯ ФУРАЗАНО[3,4-b]ПИРАЗИНА

1. СИНТЕЗ И ТЕРМОДИНАМИЧЕСКОЕ ПРОГНОЗИРОВАНИЕ 4,8-ДИГИДРОДИФУРАЗАНО[3,4-*b,e*]ПИРАЗИНА И ЕГО ПРОИЗВОДНЫХ

Изучена термодинамическая стабильность антиароматического 4,8-дигидродифуразано [3,4-*b,e*] пиразина (I) квантово-химическим способом. Исследована молекулярная структура методом рентгеноструктурного анализа и вычислен индекс ароматичности этого соединения. Показано, что окисление или нитрование соединения I приводит к ароматическому стабильному бирадикалу.

С недавнего времени класс фуразанопиразинов привлекает внимание специалистов в области энергоемких соединений [1-3]. Среди них наибольший интерес представляют 4,8-дигидродифуразано [3,4-b,e] пиразин (I) и его производные [4-7].

Изучение строения молекулы 4,8-дигидродифуразано [3,4-b,e] пиразина необходимо для прогнозирования термодинамической стабильности его производных. Дигидропиразиновый цикл содержит на π -орбиталях 8 электронов, а вся система вместе с фуразановыми циклами — 16 электронов, т. е. является антиароматической. Обычно такие соединения химически неустойчивы, так как сопряжение в антиароматических системах энергетически невыгодно. Стабильность соединения I можно объяснить лишь сильными электроноакцепторными свойствами двух фуразановых циклов, способствующих делокализации избыточной электронной плотности. Невыгодность циклического сопряжения в антиароматических структурах должна приводить к нарушению планарности циклов. В частности для атомов азота дигидропиразинового цикла более выгодным должно быть состояние sp^3 гибридизации, а не sp^2 . В этом случае соединение I может иметь три конформера, отличающихся положением атомов водорода.

С целью изучения его строения был произведен квантово-химический расчет полуэмпирическим методом MNDO с полной оптимизацией геометрии молекул. Термодинамически наиболее устойчивым оказался конформер А с молекулой, как и предполагалось, неплоской, причем угол между плоскостями равен 163,7°. Угол между связью N—H и линией, соединяющей атомы азота дигидропиразинового цикла, составляет 153,4°, а отклонение атома водорода 0,44 Å.

При расчете конформера Б с оптимизацией валентных углов дигидропиразиновых азотов оказалось, что ему не соответствует минимум на потенциальной кривой, описывающей превращение конформера Б в А. Таким образом, оптимизация геометрии конформера Б привела к геометрии конформера А.

При расчете конформера В было установлено, что в этом случае гетероциклическая система плоская, а атомы водорода эквивалентны и отклоняются от плоскости на 0.56~Å:

Однако этот изомер оказался термодинамически менее выгодным, чем изомер А. Теплота образования изомера А — 110,87 ккал/моль, а изомера В — 111,71 ккал/моль. Небольшая разница в теплотах образования изомеров (0,84 ккал/моль) и безбарьерное превращение конформера Б в А свидетельствуют о высокой конформационной подвижности дигидродифуразанопиразиновой системы.

Дигидродифуразанопиразин I антиароматичен, однако удаление с его π -орбиталей двух электронов могло бы приводить к ароматической структуре. Такое превращение, в принципе, не встречает препятствий в случае, например, неконденсированных аналогов:

Как видно, ароматизацию дигидропрозводных можно осуществить или дегидрированием, или окислением.

В случае соединения I положение осложняется тем, что наличие конденсированных фуразановых циклов делает невозможной рекомбинацию электронов в пиразиновом цикле с образованием дополнительной связи. В результате образующееся соединение должно быть или бирадикалом, или отражаться набором резонансных структур с разделенными зарядами:

Использование квантово-химического расчета показало, что дифуразанопиразин (II) может существовать в виде как радикала, так и мезоиона с закрытыми оболочками, причем для изолированной молекулы радикальная структура менее выгодна. Разница составила 15,37 ккал/моль. В обоих случаях гетероциклическая система оказалась плоской и содержащей на π -орбиталях 14 электронов. Ниже приведены значения длин связей в дифуразанопиразине II (данные для расчета молекулы с закрытыми оболочками) и его дигидропроизводном I.

Из этих данных следует, что в дифуразанопиразине II произошло сокращение длин (а также увеличение порядков) одинарных связей и увеличение длин (и уменьшение порядков) двойных связей. Это является свидетельством появления ароматичности в циклической системе. Причем тот факт, что длина одинарной связи С—С несколько увеличилась, говорит о том, что делокализация электронов происходит, главным образом, по внешнему контуру молекулы. Более высокая степень участия атома кислорода в сопряжении приводит к увеличению π -заряда на нем с +0,249 в дигидропроизводном I до +0,482 в ароматической структуре II.

Наличие весьма значительного отрицательного л-заряда на атомах азота фуразанового цикла свидетельствует о том, что строение молекулы дифуразанопиразина II наиболее точно отражает набор резонансных структур, в которых отрицательный заряд локализован на азоте фуразанового цикла, а положительный — на кислороде:

Чтобы определить, насколько выгодно образование дифуразанопиразина II из дигидропроизводного I, и оценить, какой вклад в стабилизацию молекулы вносит возникновение циклической делокализации электронов, мы сравнили теплоты реакций:

Теплоты образования перечисленных соединений вычислены методом MNDO с полной оптимизацией геометрии молекул и даны в ккал/моль. Таким образом, из приведенных данных следует, что если при дегидрировании дигидропиразина энергетический эффект от возникновения циклической делокализации полностью компенсирует проигрыш в энергии, связанный с потерей двух связей (N—H), то в случае дигидрофуразанопиразина I такой эффект отсутствует и при циклической делокализации электронов энергетической стабилизации молекулы не наблюдается.

Аналогичное сравнение мы провели для реакций:

H
N
$$-2 e^{-}$$
H
 N^{+}
 $-39,95$
 $-489,73$

H
 N^{+}
 N^{+}

Как видно из теплот реакций, ароматизация с образованием депротонированного производного из дифуразанопиразина II на 103,51 ккал/моль менее выгодна, чем в случае неконденсированного аналога, т. е. различие проявляется еще больше, чем для непротонированных производных. Это, очевидно, объясняется значительно меньшим сродством к протону атомов азота, связанных с сильным акцептором электронов — фуразановым циклом.

Таким образом, из квантово-химических расчетов следует, что изолированная молекула дигидрофуразанопиразина I конформационно весьма подвижна и минимуму потенциальной энергии соответствует неплоская структура с экваториально расположенными атомами водорода. Циклическая делокализация электронов по внешнему контуру молекулы отсутствует. Удаление двух электронов (окисление или дегидрирование) приводит к плоской гетероциклической системе с 14 л-электронами и сопровождается выравниванием длин и порядков связей на атомах гетероциклов. Однако энергетического выигрыша за счет ароматизации не наблюдается, в результате чего образующаяся система оказывается значительно менее стабильной.

С целью изучения строения дигидродифуразанопиразина I было проведено рентгеноструктурное исследование монокристалла этого соединения, полученного при кристаллизации из водного раствора.

Сравнение длин связей в молекуле I с длинами связей в диаминофуразане [10] показывает, что эти геометрические параметры практически идентичны (различие составляет в среднем около 0,01 Å) и что замыкание пиразинового цикла не сопровождается сколько-нибудь существенным изменением электронного строения фуразанового цикла. Представляет интерес тот факт, что в кристаллическом состоянии молекула плоская, в то время как из результатов квантово-химического расчета следует, что для изолированной молекулы энергетически более выгодно состояние, в котором дигидропиразиновый цикл имеет конформацию «ванны». Уплощение молекулы, очевидно, связано с более выгодной упаковкой плоских молекул. К тому же разность в энергиях плоского и неплоского конформеров составляет всего 0,84 ккал/моль. Несомненно, что сильный электроноакцепторный эффект двух фуразановых способствует делокализации электронных пар атомов азота дигидропиразинового цикла, тем самым уменьшая степень их пирамидальности и способствуя уплощению дигидропиразинового цикла. Это подтверждается тем, что дигидропиразиновый цикл, конденсированный с менее электроноакцепторными циклами, например, в дигидрофлавинах, имеет неплоскую структуру [11].

Нами была предпринята попытка количественной оценки ароматичности дигидродифуразанопиразина I с использованием метода Берда, который находится в хорошем согласовании с экспериментальными данными для различных гетероциклов (в том числе и полициклических) [12]. Суть метода заключается в определении индекса ароматичности Iа молекулы, который рассчитывается на основании статистической обработки отклонений в порядках периферийных связей. Порядки связей могут быть легко определены из экспериментальных длин связей рентгеноструктурного анализа. Оказалось, что дигидродифуразанопиразин I обладает низкой степенью ароматичности Ia = 41, близкой к свободному фуразану (Ia = 43) [13].

По данным рентгеноструктурного анализа была рассчитана плотность дигидродифуразанопиразина — $2,008 \pm 0,003$ г/см³.

Монокалиевая соль этого соединения представляет собой призматические кристаллы, крайне чувствительные к механическим воздействиям. Ниже приведены геометрические параметры соли I.

Как и в предыдущем случае, молекула плоская. Каждый катион калия координирован с четырьмя анионными остатками, причем координация осуществляется с атомами азота фуразанового цикла, а не пиразинового.

Этот факт согласуется с данными квантово-химических расчетов, согласно которым на атомах азота фуразанового цикла сосредоточен значительно больший отрицательный заряд, чем на атомах азота пиразинового цикла. В целом же геометрические параметры монокалиевой соли мало отличаются от параметров основания. Плотность соли равна $2,07 \pm 0,003 \text{ г/см}^3$.

При изучении свойств дигидродифуразанопиразина I было установлено, что под действием различных нитрующих агентов он образует продукт дегидрирования II.

Это соединение имеет интенсивную окраску и стабильно в кристаллическом состоянии. Эфирный или спиртовой раствор дегидропроизводного II нестабилен, в течение нескольких минут происходит его обеспвечивание и конечным продуктом превращения является соединение І. Большей устойчивостью отличается апетонитрильный раствор. Свежеприготовленный ацетонитрильный раствор имеет три максимума поглощения в УФ спектре — 860, 465 и 332 нм. При его хранении интенсивность двух длинноволновых полос уменьшается, а коротковолновой увеличивается. Добавление к раствору воды ускоряет этот процесс, и появляется новая полоса с максимумом поглощения при 286 нм, относящаяся к дигидропроизводному I. Спектр ЭПР кристаллического вещества и ацетонитрильного раствора показывает наличие радикалов. На основании этих данных можно предположить, что дегидропроизводное II в твердом состоянии находится или в радикальной форме IIб или в виде равновесной смеси радикальной и мезоионной форм. При растворении смеси радикальная форма, которой соответствует поглощение при 860 и 465 нм, быстро переходит в более стабильную (согласно данным квантово-химического расчета) форму с максимумом поглощения 332 нм. Последняя медленно восстанавливается с образованием дигидродифуразанопиразина I. Можно было предположить, что образование бирадикала IIб происходит через стадию образования неустойчивого нитрамина, но тот факт, что продукт II образуется при обработке соединения I фтором или горячей кислотой Каро, говорит о том, что более вероятным является окислительный механизм образования радикала.

Необходимо отметить очень высокий электрохимический потенциал бирадикала, поскольку восстановление его при взаимодействии с водой должно приводить к образованию или свободного кислорода, или перекиси водорода.

Изучая реакционную способность группы NH в дигидродифуразанопиразине I, мы установили, что они проявляют слабокислые свойства ($pK_a = 6.94 \pm 0.03$) и легко алкилируются метилвинилкетоном или соединениями, содержащими подвижный галоген:

 $III R = CH_2CH_2C(O) CH_3$; $IV R = CH_3$, X = I; $V R = CO_2CH_3$, X = CI; $VI R = CH_2CO_2CH_2CH_3$, X = CI; $VII R = CH_2OC(O) C(CH_3)$, X = CI; $VIII R = CH_2C(O) CH_3$, X = Br; IX R = 2,3-элоксипропил, X = CI; $X R = CH_2C_6H_5$, X = Br

Замещение сложноэфирной группы в соединении VI гидразином гладко приводит к соответствующему гидразиду XI: R = CH₂C(O)NHNH₂.

Так же легко протекает реакция ацилирования:

 $XIIR = C(O)CH_3$, X = Br; $XIIIR = CO_2CH_2C_6H_5$, X = Cl

Дигидродифуразанопиразин I образует устойчивое диметилольное производное XIV и основания Манниха XV—XVII с практически количественными выходами:

XIV R = OH; XV R = NHCH₂CH₂SH; XVI R = NHC₆H₄Cl-p; XVII R = N - морфолил

Оксиметильные группы в соединении XIV были превращены в ряд других производных:

XVIII $R = OC(O) CH_3$, (a) Ac_2O ; XIX $R = ONO_2$, (b) Ac_2O , HNO₃; XX R = Cl, (b) $SOCl_2$; XXI $R = N_3$, (c) NaN_3

Метилизотиоцианат присоединяется только по одному азоту дигидродифуразанопиразина I даже в жестких условиях. В щелочной среде анион соединения I легко аминируется гидроксиламинсерной кислотой с образованием N-аминопроизводного XXIII и XXIV:

XXIII R = H; XXIV $R = NH_2$

N-Аминопроизводное XXIV взаимодействует с формальдегидом или уксусным антидридом по всем реакционным центрам с образованием тетразамещенных продуктов XXV и XXVI, в то время как с хлорацетальдегидом образуется дизамещенный гидразон XXVII:

XXV $R = CH_2OH$; XXVI $R = C(O)CH_3$

При нитровании и окислении N-аминопроизводного XXIV образуется только дифуразанопиразин II. Нитрованием тетраметильного производного XXV был получен нитрат XXVIII, обработкой хлористым тионилом — хлорметильное производное XXIX, хлор которого достаточно активирован для замещения азид-анионом:

NHCH₂C(NO₂)₃

$$O$$
NHCH₂C(NO₂)₃
 O
NHCH₂C(NO₂C(NO₂)₃
 O
NHCH₂C(NO₂C(NO₂C(NO₂)₃
 O
NHCH₂C(NO₂C(

XXVIII R = CH_2ONO_2 , (a) Ac_2O , HNO_3 ; XXIX R = CH_2Cl , (6) $SOCl_2$; XXX R = CH_2N_3 , (6), (8) NaN_3

При изучении реакции Манниха тетраметилольного производного XXV с нитроформом было установлено, что реакция сопровождается гидролизом с отщеплением двух оксиметильных групп и образованием в конечном счете ди-, а не тетратринитроэтилпроизводного. Это согласуется с экспериментальными данными по устойчивости оснований Манниха, согласно которым нитроформ дает лишь однозамещенные основания и только с аммиаком получается бис (2,2,2-тринитроэтил) амин [14].

Стабилизация тринитроэтильных оснований Манниха со свободным NH фрагментом эффективно осуществляется введением нитрогруппы, благодаря которому происходит снижение электронной плотности на аминном азоте за счет сопряжения свободной пары электронов аминного азота с нитрогруппой. Однако нитрование тринитроэтиламина XXXI различными нитрующими агентами (смеси азотной кислоты с уксусным, трифторуксусным ангидридом, серной кислотой, фторборат нитрония в ацетонитриле) неожиданно привело не к нитрамину, а к продукту окисления — 4,8-ди (тринитроэтиленамино) дифуразано [3,4-*b,e*] пиразину (XXXII).

Образование гидразона XXXII, видимо, следует объяснить большей термодинамической стабильностью по сравнению с нитрамином, который является промежуточным продуктом, исходя из того положения, что такой мягкий нитрующий агент, как фторборат нитрония, не проявляет окислительных свойств.

Соеди- ненис	Брутто- формула	<i>Т</i> пл, °С	ИК спектр, $ u$, см $^{-1}$				ПМР спектр, δ , м. д.			
			OH, NH	СН2	фуразан	другие	OH, NH	CH ₂	другие	_ Выход, %
1	2	3	4	5	6	7	8	9	10	11
II	C ₄ N ₆ O ₂	145 (разл.)			1030 (1012 вМеСN)	1582, 1536 (C≔N)				97
Ш	$C_{12}H_{14}N_6O_4$	161162		3038	1050	1600 (C=O)	·	3,02 (4H, т), 3,93 (4H, т)	2,11 (6H, c, CH ₃)	80
IV	C ₆ H ₆ N ₆ O ₂	217218	·			1			3,42 (6H, c, CH ₃)	88
V	C ₈ H ₆ N ₆ O ₆	242245							4,04 (6H, c, CH ₃)	93
VI	$C_{12}H_{14}N_6O_6$	>260						1,95 (4H, кв), 4,71 (4H, с)	1,20 (6Н, т)	73
VII	$C_{16}H_{22}N_6O_6$	186187		3040	1010	1750 (C=O), 1583 (C=N)	· <u>-</u>	5,70 (4H, c)	1,13 (18H, c, CH ₃)	90
VIII	$C_{10}H_{10}N_6O_4$	277278			·			4,87 (4H, c)	2,27 (6H, c, CH ₃)	74
IX	$C_{10}H_{10}N_6O_4$	135137					· -	2,78 (4H, c), 3,91 (4H, c)	5,64 (2H, c, CH)	58
X	C ₁₈ H ₁₄ N ₆ O ₂	196197; 170175 (разл.) [15]			962	1500, 1592 (Ph), 1641 (C=N)	-	4,93 (4H, c); 5,02 (ацетон- D ₆) [15]	7,297,56 (10H, т, Ph); 7,5 (ацетон- D ₆) [15]	94, 93 [15]
XI .	C ₈ H ₁₀ N ₁₀ O ₄	>260					4,82 (4H, c), 10,33 (2H, c)	4,47 (4H, c)		72

1	2	3	4	5	6	7	8	9	10	11
XII	C ₈ H ₆ N ₆ O ₄	260262			٠				2,64 (6H, c, CH ₃)	68
XIII	C ₂₀ H ₁₄ N ₆ O ₆	228229		,				5,53 (4H, c)	7,317,56 (10H, м, Ph)	81
XIV	C ₆ H ₆ N ₆ O ₄	310315	3400		1000		7,05 (2Н, т)	5,18 (4H, c)	•	95
XV	C ₁₀ H ₁₆ N ₈ O ₂ S ₂	171173	,	,				3,113,27 (8H, м, CH ₂ , SH, NH), 4,11 (4H, с), 4,51 (4H, с)		88
XVI	$C_{18}H_{14}N_8O_2Cl_2$	170172			· - -		11,82 (2H, c)	4,89 (4H, c)	6,667,33 (8H, м, Ph)	91
XVII	C ₁₄ H ₂₀ N ₈ O ₄	228229		· <u> </u>	·		_	2,71 (8H, c), 3,56 (8H, c), 4,64 (8H, c)	· -	91
XVIII	$C_{10}H_{10}N_6O_6$	195196			·—			5,81 (4H, c)	2,04 (6H, c, CH ₃)	65
XIX	C ₆ H ₄ N ₈ O ₈	210211 (разл.)		3040	1006	1665, 1280 (ONO ₂)	,	6,24 (4H, c)		83
XX	C ₆ H ₄ N ₆ O ₂ Cl ₂	261262		3060	972	1595 (C=N)		5,82 (4H, c)	•	88
XXI	$C_6H_4N_{12}O_2$	118118,5			1000	2150 (N ₃), 1595 (C=N)		5,31 (4H, c)		87
XXII	$C_6H_5N_7O_2S$	>260 (разл.)			· 		12,51 (2H, c)		3,11 (3H, c, CH ₃)	85
XXIII	C ₄ H ₃ N ₇ O ₂	>260 (разл.)	,		! 		6,24 (3H, c)			4
XXIV	C ₄ H ₄ N ₈ O ₂	295300 (разл.)	3310, 3240		966	1615 (C=N)	5,69 (4H, c)		· _	91
XXV	$C_{18}H_{12}N_8O_6$	190192	3250		988		6,00 (4H, c)	4,60 (8H, c)		91

1	2	3	4	5	6	7	8	9	10	11
XXVI	C ₁₂ H ₁₂ N ₈ O ₆	210212		·	995	1760, 1730 (C=O)			2,55 (12H, c, CH ₃)	93
XXVII	C ₈ H ₆ N ₈ O ₂ Cl ₂	192193	·					4,58 (4Н, д)	8,55 (2H, т, CH)	77
XXVIII	C ₈ H ₈ N ₁₂ O ₁₄	193194 (разл.)		3040	1013	1670, 1373, 1283 (ONO ₂)		6,15 (8H, c)		81
XXIX	C ₈ H ₈ N ₈ O ₂ Cl ₄	198199		3050	980		.ـ	5,62 (8H, c)	· - -	95
XXX	C ₈ H ₈ N ₁₈ O ₂	115116			995	2107 (N ₃), 1580 (C=N)		4,84 (8H, c)		69
XXXI	C ₈ H ₆ N ₁₄ O ₁₄	150152 (разл.)	3325	,		1570, 1307 [C(NO ₂) ₃]	7,73 (2Н, т)	5,13 (4H, c)		83
XXXII	C ₈ H ₂ N ₁₄ O ₁₄	168172 (разл.)			955	1603, 1295 C(NO ₂) ₃ , 3010 (CH)		·—	9,31 (2H, c, CH)	87
XXXIV	C ₆ H ₂ N ₈ O ₂	315320	3295		1020	1625, 1570 (C≔N)	10,38 (2H, c)			65
XXXVI	C ₆ N ₈ O ₂	170 (разл.)	·	·			· <u></u>	· · · · ·	·	87
XXXVII	$C_8H_6N_8O_4$	280290	3450	·	1000	1610 (C=N)	7,97 (2H, c)	3,33 (4H, c)		95
XXXVIII	C ₈ H ₄ N ₁₀ O ₈	195200 (разл.)	,		1020	1655, 1275 (ONO ₂), 1605 (C=N)		6,58 (4H, c)		83

В результате изучения окисления 1,4,5,8-тетраазадифуразано [3,4-e]-[3,4-h]декалина (XXXIII) [2] было установлено, что под действием таких окислителей, как ферроцианид калия, перманганат калия, двуокись селена в пергидроле, образуется аналог дигидродифуразанопиразина I-1,5H-1,4,5,8-тетраазадифуразано [3,4-h][3,4-h]дигидронафталин (XXXIV), а под действием трифторнадуксусной кислоты — 3-амино-4-нитрофуразан (XXXV):

Дигидропроизводное XXXIV может существовать в двух таутомерных формах XXXIVа и XXXIVб, однако данные спектральных анализов не позволяют сделать однозначный выбор между ними. При нитровании амина XXXIV вместо ожидаемого нитрамина был получен продукт дальнейшего окисления XXXVI, не содержащий в молекуле водорода:

XXXIV
$$\stackrel{NO_2^+}{\longrightarrow}$$
 $\stackrel{N}{\longrightarrow}$ $\stackrel{N$

Продукт реакции имеет интенсивную черную окраску, исчезающую при нагревании (до 170 °C) и во влажных органических растворителях. Спектр ЭПР показывает, что продукт находится в радикальной форме как в твердом состоянии, так и в растворе ацетонитрила. Раствор является менее стойким, скорость превращения радикала составляет около 2% в минуту. Тем не менее ацетонитрильный раствор бирадикала XXXVI является более стабильным, чем раствор описанного бирадикала II. Повышенная стойкость бирадикала XXXVI, по-видимому, объясняется меньшей энтальпией образования и большим набором возможных резонансных структур.

Также как соединение I, дигидропроизводное XXXIV было превращено в диметилольное производное XXXVII, а далее в динитрат XXXVIII:

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

УФ спектры регистрировали на спектрофотометре Specord UV-vis. ИК спектры сняты на приборе Perkin-Elmer 580В в нуйоле. Спектры ПМР сняты в DMSO-D6 на спектрометре Bruker WH-90/DS (90 МГц), внутренний стандарт ТМС. Масс-спектры получены на спектрометре VS-50AET (70 эВ). Контроль чистоты продуктов осуществляли методом ТСХ на пластинках Silufol UV-254, а также методом ВЭЖХ на хроматографе Du Pont 850 на колонке Zorbax SIL, 4,6 × 250 мм. Элементный анализ на C, H, N, S проводили на приборе Perkin-Elmer.

Молекулярная структура соединений определена с помощью дифрактометра Синтекс $P2_1$ ($\theta/2\theta$ -сканирование, λ CuK α , графитовый монохроматор, $2\theta_{\max}=150^\circ$). Структуры расшифрованы прямым методом по программе MULTAN и уточнены МНК в анизотропном приближении. Дериватограммы сняты на дериватографе ОД-102 МОМ-Венгрия. Скорость нагрева 5 град/мин. Навеска 50...80 мг.

Дифуразано [3,4-b,e] пиразин (II). При $-30\,^{\circ}$ С в нитросмесь, состоящую из 4,6 мл трифторуксусного ангидрида и 2 мл безводной азотной кислоты, добавляют 0,83 г (0,005 моль) 4,8-дигидродифуразано [3,4-b,e] пиразина (I). Выдерживают 1 ч при 0 °С, затем отгоняют кислоту под вакуумом при 20 °С. Твердый остаток промывают сухим хлороформом 2 × 10 мл. После сушки над щелочью получают черные кристаллы бирадикала II. Масс-спектр, m/e: 164 (M $^+$). Найдено, %: С 28,80; N 50,81. С4N6O2. Вычислено, %: С 29,27; N 51,22.

4,8-Ди(3-оксобутил) дифуразано [3,4-*b,e*] пиразин (ПП). Кипятят в 20 мл эфира в течение 1 ч 1,66 г (0,01 моль) 4,8-дигидродифуразано [3,4-*b,e*] пиразина (П), 2,80 г (0,04 моль) метилвинил-кетона с добавкой нескольких кристаллов гидрохинона и капли соляной кислоты. При медленном охлаждении кристаллизуются бесцветные призматические кристаллы, которые отфильтровывают, промывают эфиром и сушат. Масс-спектр, m/e: 306 (М $^+$), 275 (М-ОСН₃), 263 (М-СОСН₃), 249 (М-СН₂СОСН₃), 234 (М-СН₂СОСН₃), 164 (М-2СН₂СОСН₃). Найдено, %: С 46,51; Н 4,75; N 26,93. С12H₁4N₆O₄. Вычислено, %: С 47,00; Н 4,60; N 27,45.

Общая методика алкилирования дигидродифуразано [3,4-*b*,*e*] пиразина (I). В раствор, состоящий из 10 мл воды, 3 мл ацетонитрила и 1,20 г (0,03 моль) гидроокиси натрия, добавляют 1,66 г (0,01 моль) дигидродифуразано [3,4-*b*,*e*] пиразина (I), затем по каплям при интенсивном перемешивании 0,03 моль алкилирующего агента. После перемешивания в течение суток при комнатной температуре отфильтровывают осадок, промывают водой, эфиром и перекристаллизовывают из водного ацетона. Получают соединения IV—X.

- **4,8**-Дибензилдифуразано [3,4-*b,e*] пиразин (**X**). Масс-спектр, m/e 346 (M $^+$). Найдено, %: C 62,61; H 4,07; N 24,51. C₁₈H₁₄N₆O₂. Вычислено, %: C 62,43; H 4,05; N 24,28.
- 4,8-Ди(2-ацетогидразид) дифуразано [3,4-b,e] пиразин (XI). К суспензии 1,01 г (0,03 моль) 4,8-ди(2-этилацето) дифуразано [3,4-b,e] пиразина (VI) в 5 мл этанола добавляют при перемешивании 1 мл безводного гидразина. Через 1 ч отфильтровывают выпавший осадок, промывают спиртом и водой. Сырой продукт перекристаллизовывают из 300 мл воды. Найдено, %:С 30,95; Н 3,02; N 45,16. С8 $H_{10}N_{10}O_4$. Вычислено, %: С 30,97; Н 3,24; N 45,15.
- 4,8-Диацетодифуразано[3,4-b,e]пиразин (XII). В раствор, состоящий из 15 мл ацетонитрила и 10 мл пиридина, добавляют 1,66 г (0,01 моль) дигидродифуразанопиразина I и при перемешивании и охлаждении льдом 3,0 мл (0,03 моль) бромистого ацетила. Перемешивают 2 ч при 0 °С, отфильтровывают выпавший осадок, промывают его водой и перекристаллизовывают сырой продукт из водного ацетона. Найдено, %: С 41,25; Н 2,39; N 32,86. СвН6 N 6 О4. Вычислено, %: С 41,23; Н 2,31; N 32,05.

Аналогично получают Z-производное XIII.

4,8-Ди(оксиметил) дифуразано [3,4-*b,e*] пиразин (XIV). Диспергируют в ультразвуковой бане 8,30 г (0,05 моль) дигидродифуразано [3,4-*b,e*] пиразина (I) с 20 мл 37% формалина и 5 мл воды 10 мин, а затем перемешивают 1 сут. Отфильтровывают осадок и промывают его водой (3 × 20 мл). Бесцветные кристаллы метилольного производного сушат над пятиокисью фосфора. Найдено, %: С 31,75; H 2,58; N 37,23. С₆H₆ N $_6$ O₄. Вычислено, %: С 31,86; H 2,65; N 37,17.

Аналогично получают тетраметилольное производное XXV и диметилольное производное XXXVII.

4,8-Ди (N-метиленморфолино) дифуразано [3,4-b,e] пиразина (XVII). К суспензии 1,66 г (0,01 моль) дигидродифуразано [3,4-b,e] пиразина (I) в 20 мл воды и 30 мл метанола добавляют 2,62 мл (0,03 моль) морфолина, а затем 2,8 мл 31% формалина. Через 30 мин суспензию охлаждают до 0 °С, отфильтровывают осадок и промывают водой (3 \times 10 мл). Сырой продукт перекри-

сталлизовывают из ацетона. Найдено, %: С 46,52; H 5,60; N 30,66. С $_{14}$ H $_{20}$ N $_{8}$ О $_{4}$. Вычислено, %: С 46,15; H 5,53; N 30,75.

Аналогично получают основания Манниха XV и XVI.

- 4,8-Ди(О-ацетилоксиметил) дифуразано [3,4-b,e] пиразин (XVIII). Смесь 2,26 г (0,01 моль) 4,8-ди(оксиметил) дифуразано [3,4-b,e] пиразина (XIV), 0,50 г безводного ацетата натрия и 8 мл уксусного ангидрида при перемешивании нагревают 10 мин при 80 °C. Охлаждают до 0 °C и выдерживают 1 ч при этой температуре. Отфильтровывают осадок, промывают водой и перекристаллизовывают из смеси 15 мл ацетона и 10 мл изопропилового спирта. Найдено, %: С 38,57; Н 3,20; N 27,27. С10H₁₀ N 6 O6. Вычислено, %: С 38,72; Н 3,25; N 27,08.
- 4,8-Ди (нитроксиметил) дифуразано [3,4-b,e] пиразин (XIX). К нитросмеси, состоящей из 60 мл уксусного ангидрида и 30 мл безводной азотной кислоты, при 10...12 °C в течение 5 мин небольшими порциями присыпают 11,30 г (0,05 моль) 4,8-ди (оксиметил) дифуразано [3,4-b,e] пиразина (XIV). Перемешивают 2 ч при температуре 15...20 °C. Нитромассу выливают на лед с водой (300 г). Отфильтровывают осадок и промывают его водой (4 × 100 мл). Продукт перекристаллизовывают из водного ацетона. После сушки над щелочью получают бесцветные кристаллы. Температура начала интенсивного разложения ($T_{\rm HUP}$) 170 °C. Найдено, %: С 23,04; Н 1,25; N 35,25. С₆H₄ N ₈ O₈. Вычислено, %: С22,78; Н 1,26; N 35,44.

Эта методика является общей для получения тетранитрата XXVIII ($T_{\rm Hup}$ 153 °C), а также динитрата XXXVIII.

4,8-Ди(хлорметил)дифуразано [3,4-b,e] пиразин (XX). Кипятят с обратным холодильником 22,6 г (0,1 моль) 4,8-ди (оксиметил) дифуразано [3,4-b,e] пиразина (XIV) в 58 мл хлористого тионила в течение 3 ч. Избыток хлористого тионила отгоняют под вакуумом при температуре бани 50 °C. Твердый остаток сушат над щелочью, а затем кристаллизуют из водного ацетона. Найдено, %: С 27,77; Н 1,61; N 31,67; Cl 26,80. С₆Н4N6O₂Cl₂. Вычислено, %: С 27,38; Н 1,52; N 31,94; Cl 27,00.

Аналогично получают N,N'-тетра (хлорметил) -4,8-дифуразано [3,4-b,e] пиразин (XXIX).

4,8-Ди (азидометил) дифуразано [3,4-b,e] пиразин (XXI). Перемешивают 13,15 г (0,05 моль) 4,8-ди (хлорметил) дифуразано [3,4-b,e] пиразина (XX) и 9,00 г азида натрия в 45 мл ацетона в течение суток при комнатной температуре. Отфильтровывают неорганику и осадок на фильтре, промывают ацетоном (2 × 10 мл). К объединенным фильтратам прибавляют 10 мл этанола и раствор оставляют в холодильнике при -20 °C на ночь для кристаллизации. Затем отфильтровывают бесцветные кристаллы и промывают их этанолом. $T_{\rm Hup}$ 165 °C. Найдено, %: С 26,32; Н 1,39; N 60,79. С6 $H_4N_{12}O_2$. Вычислено, %: С 26,09; Н 1,45; N 60,87.

Аналогично получают 4,8-ди(диазидометиламино)дифуразано [3,4-b,e] пиразин (XXX) с T_{нир} 147 °C.

- 4-Гидро-8-(1-тиокарбонилметиламино) дифуразано [3,4-b,e] пиразин (XXII). Смесь 0,83 г (0,005 моль) дигидродифуразано [3,4-b,e] пиразина (I) и 0,88 г (0,012 моль) метилизотиоцианата кипятят с обратным холодильником в 5 мл ацетонитрила 2 ч. Охлаждают до 0 °С, отфильтровывают, промывают 5 мл ацетонитрила и 2 × 10 мл водой. Перекристаллизовывают из 25 мл диметилформамида. Найдено, %: С 30,22; Н 2,08; N 41,57. С6H5N7O2S. Вычислено, %: С 30,13; Н2,10; N 41,00.
- 4,8-Диаминодифуразано [3,4-b,e] пиразин (XXIV). К раствору 4,89 г (0,03 моль) 4,8-дигидродифуразано [3,4-b,e] пиразина (I) и 7,42 г (0,07 моль) карбоната натрия в 140 мл воды при 70...75 °C доливают раствор 9,94 г (0,08 моль) гидроксиламиносульфокислоты в 50 мл воды в течение 30 мин, рН поддерживается 9...10 добавлением раствора бикарбоната натрия. Выдерживают массу 1 ч при температуре 70...75 °C. Охлаждают до 20 °C, осадок отфильтровывают, промывают водой (3 × 30 мл), ацетоном (30 мл) и сущат. Продукт может быть перекристаллизован из диметилформамида. Масс-спектр, m/e: 196 ($\rm M^+$), 181 ($\rm M$ –NH), 180 ($\rm M$ –NH2). При нейтрализации щелочного маточника соляной крислотой выпадает продукт монозамещения XXIII, который промывают водой и сущат. Он может быть перекристаллизован из диоксана. Найдено, %: С 24,75; Н 1,84; N 57,51. С4Н4N8O2. Вычислено, %: С 24,49; Н 2,04; N 57,14.

4,8-Ди (диацетамидо) дифуразано [3,4-b,e] пиразин (XXVI). Кипятят с обратным холодильником 1,96 г (0,01 моль) 4,8-диаминодифуразано [3,4-b,e] пиразина (XXIV) в 30 мл уксусного ангидрида в течение 1 ч. Затем отгоняют 20 мл уксусного ангидрида, охлаждают, отфильтровывают осадок и промывают водой. Сырой продукт перекристаллизовывают из водного ацетона. Массспектр, m/e: 364 (M^+), 322 (M-Ac+H), 280 (M-2Ac+2H), 238 (M-3Ac+3H). Найдено, %: С 39,58; H 3,10; N 30,78. С₁₂H₁₂N $_8$ O $_6$. Вычислено, %: С 39,56; H 3,29; N 30,77.

- 4,8-Ди(2-хлорэтиленамино) дифуразано [3,4-b,e] пиразин (XXVII). Кипятят 1,96 г (0,01 моль) 4,8-диаминодифуразано [3,4-b,e] пиразина (XXIV) в смеси 4 мл 50% водного хлорацетальдегида, 8 мл диоксана и 1 капли эфирата трехфтористого бора 10 мин. Охлаждают, осадок отфильтровывают и промывают водой. Сырой продукт перекристаллизовывают из диоксана. Найдено, %: С 30,49; Н 1,82; N 35,67; Cl 21,70. $C_8H_6N_8O_2Cl_2$. Вычислено, %: С 30,30; Н 1,90; N 35,33; Cl 22,35.
- 4,8-Ди(тринитроэтиламино) дифуразано [3,4-b,e] пиразин (XXXI). Перемешивают при комнатной температуре 1 сут 3,16 г (0,01 моль) 4,8-тетраметилоламинодифуразано [3,4-b,e] пиразина (XXV) и 17 мл 20% водного раствора нитроформа (0,03 моль). Отфильтровывают осадок и промывают его водой (3 × 10 мл). Бесцветный продукт сушат над гидроокисью натрия. Он может быть перекристаллизован из диоксана. Найдено, %: С 18,72; Н 1,22; N 37,25. С $_8$ H $_6$ N $_1$ 4 $_9$ 014. Вычислено, %: С 18,39; Н 1,14; N 37,54.
- 4,8-Ди(тринитроэтиленамино) дифуразано [3,4-b,e] пиразин (XXXII). К нитросмеси, состоящей из 50 мл трифторуксусного ангидрида и 23 мл безводной азотной кислоты, при -15° С в течение 10 мин присыпают небольшими порциями 10,44 г (0,02 моль) 4,8-ди (тринитроэтиламино) дифуразано [3,4-b,e] пиразина (XXXI). Нитромассу перемешивают 2 ч при температуре 10...15 °С и выливают на лед с водой (250 г). Осадок отфильтровывают и промывают водой (3 × 50 мл). Продукт сушат над щелочью и кристаллизуют из эфирно-бензольного раствора. Бесцветные кристаллы. $T_{\text{нир}}$ 80 °С. Найдено, %: С 18,98; Н 0,52; N 37,32. С8Н2N14O14. Вычислено, %: С 18,53; Н 0,39; N 37,84.
- 1,5-2H-1,4,5,8-Тетраазадифуразано[3,4-b][3,4-b][3,4-b]дигидронафталин (XXXIV). К смеси 2,22 г (0,01 моль) 1,4,5,8-тетраазадифуразано[3,4-e][3,4-b]декалина, 50 мл воды и 10 мл 1 н. раствора гидроокиси калия доливают раствор 17,5 г (0,05 моль) ферроцианида калия в 65 мл воды при комнатной температуре. Перемешивают суспензию 4 ч при 25 °C, отфильтровывают осадок, промывают 20 мл ацетона, переносят в 100 мл воды и подкисляют до рН 7. Осадок отфильтровывают и промывают водой. После сушки над пятиокисью фосфора получают бесцветные кристаллы. Масс-спектр, m/e: 218 (M^+), 188 (M^- NO), 158 (M^- NO-NO). Найдено, %: С 33,02; Н 0,92; N 51,38. С₆H₂ N₈O₂. Вычислено, %: С 32,69; Н 0,83; N 51,27.
- 1,4,5,8-Тетраазадифуразано [3,4-h] нафталин (XXXVI). Добавляют 0,44 г (0,002 моль) 1,5-2H-1,4,5,8-тетраазадифуразано [3,4-h] [3,4-h] дигидронафталина (XXXIV) при 0 °C к нитросмеси, состоящей из 5 мл трифторуксусного ангидрида и 2,2 мл безводной азотной кислоты. Выдерживают 1 ч при 0 °C, отфильтровывают осадок и промывают его сухим хлороформом (3 × 5 мл). Сушат над щелочью и получают черные кристаллы бирадикала XXXIV. $T_{\text{разл}}$ 170 °C (обесцвечивание). Найдено, %: C 33,33; N 51,85. C6N8O2. Вычислено, %: C 33,12; N 51,27.

СПИСОК -ЛИТЕРАТУРЫ

- 1. Willer L., Moore D. W. // J. Org. Chem. 1985. Vol. 50. P. 5123.
- 2. Pat. 4503229 USA / Willer R. L.// C. A. 1986. Vol. 103. P. 54099c.
- 3. Pat. 4539405 USA / Willer R. L. // РЖ Химия. 1986. Т. 12. Н224П.
- 4. *Еремеев А. В., Старченков И. Б., Андрианов В. Г.* 4,8-Дигидродифуразано [3,4-*b,e*] пиразин новая гетероциклическая система: А. с. 320130 СССР, 1986.
- Еремеев А. В., Старченков И. Б., Андрианов В. Г. Способ получения 4,8-дигидродифуразано [3,4-b,e] пиразина: А. с. 288455 СССР— 1987.
- 6. *Старченков И. Б.* Дис. ... канд. хим. наук. Рига, 1989.
- 7. Старченков И. Б., Андрианов В. Т. // XГС. 1996. \mathbb{N} 5. С. 717.
- 8. Kaim W. // J. Mol. Struct. (TEOCHEM). 1984. Vol. 109. P. 277.
- 9. Dewar M. I. S., Thiel W. // J. Amer. Chem. Soc. 1977. Vol. 99. P. 4907.
- 10. *Бацанов А. С.*, *Стручков Ю. Т.* // Ж. структ. химии. 1985. Т. 26. С. 65.
- 11. Tauscher L., Ghisla S., Hemmerich P. // Helv. Chim. Acta. 1973. Vol. 56. P. 630.
- 12. Bird C. W. // Tetrahedron. 1985. Vol. 41. P. 1409.
- 13. Kaim W. // J. Chem. Soc. Perkin Trans. II. 1985. P. 1633.
- 14. *Болдырев М. Д., Гидаспов Б. В. //* Методические указания к лабораторному практикуму. Ленингр. технол. ин-т им. Ленсовета,1978. С. 16.
- Fischer J. W., Nissan R.A., Lowe-Ma C. K. // J. Heterocycl. Chem. 1991. Vol. 28. P. 1677.