А. Рутавичюс, С. Валюлене, З. Куодис

СИНТЕЗ И СТРОЕНИЕ ДИГИДРАЗОНОВ, ПОЛУЧАЕМЫХ НА ОСНОВЕ ДИГИДРАЗИДА 1,3,4-ТИАДИАЗОЛ-2,5-ДИТИОГЛИКОЛЕВОЙ КИСЛОТЫ

Методом спектроскопии ПМР установлено, что дигидразоны, полученные путем конденсации дигидразида 1,3,4-тиадиазол-2,5-дитиогликолевой кислоты с альдегидами, кетонами или β -дикарбонильными соединениями, в растворах существуют в виде смеси стереоизомерных форм за счет конформационной и геометрической изомерии.

E',Z'-Конформационная (поворотная) изомерия за счет заторможенного вращения вокруг амидной связи N—CO и E,Z-геометрическая cuh-, ahmu-изомерия относительно связи N=C в гидразонах $[1,\ 2]$ и ароилгидразонах [3] изучена достаточно подробно. Однако в литературе отсутствуют данные о подобном явлении в амбифункциональных соединениях, содержащих две гидразоновые группы. С целью заполнения существующего пробела в этой области мы провели синтез и изучили строение дигидразонов на основе дигидразида 1,3,4-тиадиазол-2,5-дитиогликолевой кислоты (I).

В патенте [4] исходный дигидразид (I) получен путем этерификации соответствующей кислоты и последующей конденсации образующегося диэфира (IIa) с гидразингидратом.

Нами предложен более удобный и простой метод синтеза дигидразида I. Диэфиры IIа,б были получены в результате прямого алкилирования 2,5-димеркапто-1,3,4-тиадиазола соответствующими эфирами монобромуксусной кислоты в присутствии едкого кали как в среде изопропанола, так и в воде в условиях межфазного катализа в присутствии хлористого триэтилбензиламмония (ТЭБА). Соединения IIа,б легко взаимодействуют в

 $\begin{aligned} \text{IIIa} &-\pi \ R^1 = \text{H}; \ o-\text{y} \ R^1 = \text{Me}; \ a \ R^2 = \text{Me}; \ 6 \ R^2 = \text{C}_4 \text{H}_3 \text{O}; \\ \text{в } R^2 = 2 - \text{HO} - 3 - \text{MeOC}_6 \text{H}_3; \ \text{г} R^2 = 4 - \text{MeOC}_6 \text{H}_4; \ \text{д} \ R^2 = 3,4 - (\text{OCH}_2\text{O}) - \text{C}_6 \text{H}_3; \\ \text{e } R^2 = 2,4 - (\text{HO})_2 \text{C}_6 \text{H}_3; \ \text{ж} \ R^2 = 3,4 - (\text{HO})_2 \text{C}_6 \text{H}_3; \ \text{з} \ R^2 = 4 - \text{Me}_2 \text{NC}_6 \text{H}_4; \ \text{μ} \ R^2 = 2, \ 3 - (\text{MeO})_2 \text{C}_6 \text{H}_3; \\ \text{к} \ R^2 = 2 - \text{HOC}_6 \text{H}_4; \ \text{π} \ R^2 = \text{CH}_2 \text{CH}(\text{OH}) \text{CH}_3; \ \text{o} \ R^2 = \text{Me}; \ \text{п} \ R^2 = \text{CH}_2 \text{CH}_2 \text{CH} = \text{CH}_2; \\ \text{p} \ R^2 = \text{CH} = \text{C}(\text{CH}_3)_2; \ \text{c} \ R^2 = \text{Ph}; \ \text{т} \ R^2 = 2 - \text{OHC}_6 \text{H}_4; \ \text{y} \ R^2 = 4 - \text{HOC}_6 \text{H}_4 \\ \text{м} \ R^1 + R^2 = (-\text{CH}_2 -)_5; \ \text{h} \ (R^1 + R^2) = \text{N-метилпиперидон} \end{aligned}$

изопропаноле с гидразингидратом, образуя дигидразид I, конденсация которого с альдегидами или кетонами приводит к дигидразонам (IIIa—y). Их характеристики приведены в таблицах 1 и 2.

На основании данных работы [1] можно было предполагать, что дигидразоны IIIа—у существуют в виде четырех стереоизомерных форм за счет E',Z'-конформационной и E,Z-геометрической изомерии. Нами установлено, что эти соединения в растворах ДМСО и ДМФА существуют в виде смеси двух стереоизомеров, что следует из удвоения сигналов протонов групп CH₂CO, =CH и NH в спектрах ПМР, которые коалесцируют при нагревании указанных растворов до 120 °C.

Согласно литературным данным [1, 5, 6], сигналы протонов групп CH_2CO и NH Z'-конформера в дигидразонах IIIa—у находятся в более сильном поле, а сигнал протона группы =CH — в более слабом по сравнению с соответствующими сигналами E'-конформера. Из таблицы 2 видно, что равновесие всех дигидразонов, кроме IIIв, е, к, в растворах сильно полярных растворителей IMCO или $IM\Phi$ A сдвинуто в сторону E'-изомера.

Известно, что ацилгидразоны как в E'-, так и в Z'-формах способны к образованию межмолекулярных водородных связей (ММВС), причем лишь в E'-форме могут получаться циклические димеры [3,5]. Однако в дигидразонах IIIв,е,к, полученных на основе 2-гидроксибензальдегидов, явно преобладает Z'-изомер. Эти соединения обладают люминесценцией, объяснимой образованием в азометинах жесткой группировки (A), которая связывает электронный дублет азинного азота протоном [7] и которая явно предпочтительнее может возникнуть в преобладающем Z'-изомере. В нашем случае слабая люминесценция замечена и для гидразонов, имеющих конформационные изомеры, в которых определенная часть поглощенной энергии расходуется на превращения конформеров [8].

В литературе имеются данные о том, что продукты взаимодействия β -дикарбонильных соединений с гидразидами кислот образуют системы с таутомерной гидразоновой, 5-оксипиразолиновой или пиразольной формой [1, 9]. Мы установили, что реакция дигидразида I с разными β -дикарбонильными соединениями протекает региоспецифично и в каждом случае образуется по одному продукту конденсации. Так, в случае ацетилацетона был выделен дипиразол (IV), нагревание которого в растворе ДМФА не вызывает коалесценции сигналов протонов группы CH₂CO. По-видимому, амидная связь N—CO в пиразоле IV находится в состоянии сопряжения с пиразольным кольцом, что резко повышает барьер вращения относительно этой связи по сравнению с другими дигидразонами. Сопряженность системы подтверждает и смещение полосы поглощения карбонильной группы в ИК спектре до 1715, в то время как полосы поглощения карбонильной группы остальных дигидразонов находятся в области 1660...1680 см $^{-1}$.

Реакция дигидразида I с ацетоуксусным эфиром приводит к образованию соединения (V) с линейной гидразоновой структурой, что подтверждают данные ПМР и ИК спектра. В спектре ПМР дигидразона V сигнал метильной группы (\mathbb{R}^1) находится при 1,84, сигналы группы $\mathrm{OC_2H_5}$ (\mathbb{R}^2) — при 1,13 ($\mathrm{CH_3}$) и 3,98 м. д. ($\mathrm{CH_2}$). В ИК спектре этого соединения наблюдаются две интенсивные полосы поглощения при 1667 и 1707, соответствующие валентным колебаниям (ν) группы CO в группировках $\mathrm{CONH-}$ и $\mathrm{COO-}$ соответственно, а также сильная полоса поглощения при 3160 см $^{-1}$, соответствующая ν группы NH .

Характеристики гидразонов IIIа—y, IV—VI

Соеди- нение	Найдено, %			Брутто-	Вычислено, %			$T_{\Pi \Pi}$, °C	Выход, %
	С	H	S	формула	С	Н	S	Z HJD	,
IIIa	34,76	4,09	27.82	C II N O S	24.67	4.07	27,76	190191	89
Ща	42,76	l .	27,82	$C_{10}H_{14}N_6O_2S_3$	34,67	4,07	21,35	176177	83
	'	3,05	21,53	$C_{16}H_{14}N_6O_4S_3$	42,66	3,13			80
Шв	47,21	4,06	16,82	$C_{22}H_{22}N_6O_6S_3$	46,96	3,94	17,10	182183	
IIIL,	49,66	4,31	18,28	$C_{22}H_{22}N_6O_4S_3$	49,79	4,18	18,13	176178	72
Шд	47,39	3,35	17,10	$C_{22}H_{18}N_6O_6S_3$	47,30	3,24	17,22	215217	95
IIIe	44,82	3,54	18,24	$C_{20}H_{18}N_6O_6S_3$	44,93	3,38	17,99	224227	84
жШ	44,99	3,31	18,15	$C_{20}H_{18}N_6O_6S_3$	44,93	3,38	17,99	140 (разл.)	51
III3	51,70	5,02	17,44	C ₂₄ H ₂₈ N ₈ O ₂ S ₃	51,78	5,07	17,28	213214	81
Ши	49,15	4,24	16,10	C ₂₄ H ₂₄ N ₆ O ₆ S ₃	48,96	4,11	16,34	217218	92
IIIĸ	47,58	3,80	18,91	$C_{20}H_{18}N_6O_4S_3$	47,80	3,61	19,14	214215	91
Шл	38,52	5,27	22,32	C ₁₄ H ₂₂ N ₆ O ₄ S ₃	38,70	5,10	22,13	182183	46 .
IIIM	47,50	5,69	21,08	$C_{18}H_{26}N_6O_2S_3$	47,56	5,76	21,16	149151	86
III _H ^a	44,49	6,05	19,68	$C_{18}H_{28}N_8O_2S_3$	44,61	5,82	19,84	9798	71
IIIo	38,70	4,68	25,42	$C_{12}H_{18}N_6O_2S_3$	38,49	4,84	25,68	195196	86
Шп	47,48	5,79	21,41	$C_{18}H_{26}N_6O_2S_3$	47,55	5,76	21,16	9495	87
IIIp	47,58	5,68	21,36	$C_{18}H_{26}N_6O_2S_3$	47,55	5,76	21,16	159160	80
IIIc	53,25	4,31	19,20	$C_{22}H_{22}N_6O_2S_3$	53,05	4,45	19,31	221222	46
IIIT	49,72	4,35	17,92	$C_{22}H_{22}N_6O_4S_3$	49,80	4,18	18,13	144145	68
IIIy	49,53	4,28	18,39	$C_{22}H_{22}N_6O_4S_3$	49,80	4,18	18,13	184185	58
IV	43,78	4,02	22,09	$C_{16}H_{18}N_6O_2S_3$	43,61	4,11	21,84	140141	34
V.	41,56	5,22	18,36	$C_{18}H_{26}N_6O_6S_3$	41,69	5,05	18,55	170171	85
VI .	53,67	4,68	16,71	$C_{26}H_{26}N_6O_4S_3$	53,59	4,50	16,51	134135	62

IV $R^1 = R^2 = Me$; V $R^1 = Me$, $R^2 = OEt$; VI $R^1 = Me$, $R^2 = Ph$

Изучение спектра ПМР продукта конденсации дигидразида I с бензоилацетоном показало, что образуется дигидразон (VI), имеющий 5-гидроксипиразолиновую структуру. Сигнал группы СН2 пиразолинового кольца находится при 3,04, а сигнал протона гидроксила — при 7,00 м. д. Последний, как и следовало ожидать, при добавлении трифторуксусной кислоты исчезает. Можно предположить, что отщепление воды от гидроксипиразолина V в данных условиях затруднено из-за -I эффекта фенильного заместителя, который препятствует отщеплению гидроксильной группы. При конденсации с ацетилацетоном метильная группа, имеющая +I эффект, способствует отщеплению воды и реакция не останавливается на 5-гидроксипиразолине, а протекает до образования дипиразола IV.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получены на спектрометре UR-10 для таблеток КВг, спектры ПМР — на спектрометре Hitachi R-22 (90 МГц), внутренний стандарт ГМДС. Количественные определения проведены на основании спектров ПМР пятикратным интегрированием сигнала группы CH₂CO.

. Характеристики синтезированных соединений приведены в табл. 1, данные спектров ΠMP — в табл. 2.

Эфиры 1,3,4-тиадиазол-2,5-дитиогликолевой кислоты (Па,б). А. К смеси 400 мл изопропанола и 37,5 г (0,25 моль) 2,5-димеркапто-1,3,4-тиадиазола приливают раствор 28,6 г (0,51 моль) едкого кали в 15 мл воды, далее при перемешивании и температуре 35 °C по каплям добавляют 85,2 г (56,6 мл, 0,51 моль) этилового эфира монобромуксусной кислоты, после чего смесь перемешивают еще 1,5 ч при 65...70 °C, разбавляют водой, выпавшие кристаллы диэтилового эфира Пб отфильтровывают, промывают водой. Выход 70%. $T_{\Pi\Pi}$ 57...58 °C. Лит. $T_{\Pi\Pi}$ 59...60 °C [4]. Аналогично из метилового эфира монобромуксусной кислоты получают диметиловый эфир Па. Выход 59%. $T_{\Pi\Pi}$ 73...74 °C. Лит. $T_{\Pi\Pi}$ 73...74 °C [4].

Б. В 200 мл воды растворяют 16,8 г (0,42 моль) едкого натра и 0,5 г ТЭБА, добавляют 30 г (0,2 моль) 2,5-димеркапто-1,3,4-тиадиазола и по каплям 61,2 г (38 мл, 0,4 моль) метилового эфира монобромуксусной кислоты с такой скоростью, чтобы температура не превышала 30 °С, после чего смесь перемешивают еще 1 ч при комнатной температуре. Выпавшие кристаллы продукта Па отфильтровывают и многократно промывают водой. Выход 70%. $T_{\rm ПЛ}$ 72...73 °С.

Дигидразид 1,3,4-тиадиазол-2,5-дитиогликолевой кислоты (I). В раствор 29,4 г (0,1 моль) диметилового эфира На в 350 мл изопропанола при температуре 30...40 °C добавляют по каплям 50 мл гидразингидрата. Выпавший обильный аморфный осадок продукта I отфильтровывают, промывают изопропанолом. Выход 98%. $T_{\rm III}$ 154 °C. Лит. $T_{\rm III}$ 164 °C [4].

Данные спектров ПМР соединений IIIа—у, IV—VI

Таблица 2

Coe-	Раство-	Химические сдвиги, δ , м. д.							
ди- нение	ритель	CH ₂ C=O, c	=СН, с	NH, c	Другие сигналы	мер, %			
Ша	дмсо-D ₆	3,91 (Z'), 4,27 (E')	7,24 (1Н, м)	11,07 (Z'), 11,11 (E')	1,76 (3Н, д, СН ₃)	65			
Шб	дмсо-D ₆	4,03 (Z'), 4,41 (E')	7,75 (E'), 7,95 (Z')	11,44 (Z'), 11,51 (E')	_	64			
Шв	дмсо-D ₆	4,05 (Z'), 4,43 (E')	8,20 (E'), 8,27 (Z')	11,20 (Z'), 11,50 (E')	8,93 (1H, c, OH), 3,71 (3H, c, CH ₃)	40			
$\mathbf{III}_{\mathbf{\Gamma}}$	ДМФА-D7	4,11 (Z'), 4,53 (E')	8,01 (E'), 8,15 (Z')	11,33 (Z'), 11,58 (E')	3,71 (3H, c, CH ₃)	61			
Шд	ДМФА-D7	4,13 (Z'), 4,47 (E')	7,96 (E'), 8,11 (Z')	11,38 (Z'), 11,60 (E')	6,00 (2H, c, OCH ₂ O)	62			
Ше	ДМСО-D6	4,02 (Z'), 4,38 (E')	7,96 (E'), 8,07 (Z')	10,82 (Z'), 11,13 (E')	9,60 (1H, д, OH), 11,44 (1H, с, OH)	31			
Шж	ДМФА-D ₇	4,04 (Z'), 4,47 (E')	7,78 (E'), 7,89 (Z')		· -	67			
Ш3	дмсо-D ₆	3,96 (Z'), 4,38 (E')	7,69 (E'), 7,87 (Z')	11,13 (Z'), 11,20 (E')	2,84 (6H, c, 2CH ₃)	62			
Ши	ДМСО-D ₆	4,01 (Z'), 4,40 (E')	8,13 (E'), 8,29 (Z')	11,42 (Z'), 11,58 (E')	3,67 (6Н, д, 2СН ₃)	63			
IIIĸ	дмсо-D ₆	4,07 (Z'), 4,47 (E')	8,24 (E'), 8,33 (Z')	11,51 (Z'), 11,82 (E')		47			
Шл	дмсо-D ₆	3,98 (Z'), 4,33 (E')	7,38 (1Н, м)	10,82 (Z'), 10,90 (E')	0,98 (3H, д, CH ₃), 2,18 (2H, т, CH <u>CH₂</u>), 3,67	73			
Шм	дмсо-D ₆	3,96 (Z'), 4,27 (E')	—	10,18(Z'), 10,31 (E')	(1H, м, <u>CH</u> CH ₃) —	52			
Шн	дмсо-D ₆	4,04 (Z'), 4,38 (E')		10,51 (Z'), 10,64 (E')	2,13 (3H, c), 2,33 (8H, м, (CH ₂) ₂ C(CH ₂) ₂)	57			
IIIo	ДМСО-D6	4,01 (Z'), 4,31 (E')	_	10,14 (Z'), 10,27 (E')	1,79 (c, CH ₃) (E), 1,82 (c, CH ₃) (Z)	55			
Шп	дмсо-D ₆	4,02 (Z'), 4,31 (E')	_	10,13 (Z'), 10,31 (E')	1,75 (c, CH ₃) (E), 1,81 (c, CH ₃) (Z)	58			
Шр	дмсо-D ₆	4,07 (Z'), 4,33 (E')		10,17 (Z'), 10,33 (E')	1,73 (c, CH ₃) (E), 1,84 (c, CH ₃) (Z), 5,59 (1H, c, =CH)	56			
Шс	дмсо-D ₆	4,11 (Z'), 4,33 (E')	_	10,57 (Z'), 10,80 (E')	2,18 (3H, c, CH ₃)	64			
Шт	дмсо-D ₆	3,87 (Z'), 4,00 (E')	-	10,96 (E',Z')	2,27 (3H, c, CH ₃), 12,62 (1H, c, OH)	61			
Шу	дмсо-D ₆	4,18 (Z'), 4,47 (E')	· —	10,49 (Z'), 10,62 (E')	2,11 (3H, c, CH ₃), 9,64 (1H, c, OH)	65			
IV	дмФА-D ₇	4,07 (Z'), 4,86 (E')	6,02	_	2,09 (3H, c, CH ₃ C=C), 2,36 (3H, c, CH ₃ C=N)	65			
V	дмсо-D6	4,31 (E')		10,42 (Z'), 10,60 (E')	1,13 (3H, т, <u>CH</u> ₃ CH ₂), 1,84 (3H, с, CH ₃), 3,98 (кв, <u>CH</u> ₂ CH ₃)	*			
VI	дмсо-D6	4,47 (E')			1,95 (3H, c, CH ₃), 3,04 (2H, c, C—CH ₂ —C), 7,00 (1H, c, OH)	100			

^{*} Соотношение E',Z'-конформеров не рассчитано ввиду наложения сигнала CH2CO Z'-конформера с сигналом группы $\underline{\text{CH}}_2\text{CH}_3$.

- Дигидразид I получают аналогично из диэтилового эфира Пб. Выход 96%. $T_{\Pi\Pi}$ 152...153 °C. Найдено, %: C 24,60, H 3,54, S 32,83. C₆H₁₀N₆O₂S₃. Вычислено, %: C 24,48, H 3,42, S 32,68.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон ацетальдегида (Ша). Смесь 2,94 г (10 ммоль) дигидразида I, 50 мл диоксана и 3 мл ацетальдегида перемешивают 1 ч при 70 °С, диоксан частично отгоняют, кристаллы продукта Ша отфильтровывают и промывают ацетоном.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон 2-фуральдегида (IIIб). Смесь 2,94 г (10 ммоль) дигидразида I, 50 мл диоксана, 5 мл воды и 1,92 г (20 ммоль) 2-фуральдегида перемешивают 1,5 ч при 80 °C, диоксан частично отгоняют, кристаллы продукта IIIб перекристаллизовывают из диоксана.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон 2-гидрокси-3-метоксибензальдегида (Шв) получают аналогично соединению Шб из 2,94 г (10 ммоль) дигидразида I, 50 мл диоксана, 5 мл воды и 3,04 г (20 ммоль) 2-гидрокси-3-метоксибензальдегида.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон 4-метоксибензальдегида (Шг). Смесь 2,94 г (10 ммоль) дигидразида 1,40 мл диоксана, 5 мл воды и 2,72 г (20 ммоль) 4-метоксибензальдегида перемешивают 1 ч при 75 °C, охлаждают, кристаллы продукта Шг отфильтровывают и промывают эфиром.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон 3,4-метилендиоксибензальдегида (ПІд). Смесь 2,94 г (10 ммоль) дигидразида I, 40 мл диоксана, 5 мл воды и 3 г (20 ммоль) 3,4-метилендиоксабензальдегида перемешивают 1,5 ч при 85 °C, диоксан частично отгоняют, остаток разбавляют петролейным эфиром, кристаллы продукта ПІд отфильтровывают и промывают петролейным эфиром.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон 2,4-дигидроксибензальдегида (Ше). Смесь 2,94 г (10 ммоль) дигидразида I, 50 мл диоксана, 5 мл воды и 2,8 г (20 ммоль) 2,4-дигидроксибензальдегида перемешивают 2 ч при 85 °С, диоксан отгоняют, маслообразный остаток растирают в петролейном эфире, выпавшие кристаллы продукта Ше отфильтровывают и промывают петролейным эфиром.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон 3,4-дигидроксибензальдегида (Шж) получают из 2,94 г (10 ммоль) дигидразида I, 50 мл диоксана, 5 мл воды и 2,8 г (20 ммоль) 3,4-дигидроксибензальдегида по методике, описанной для дигидразона Ше. Полученные кристаллы растворяют в ацетоне, раствор фильтруют, фильтрат упаривают, маслообразный остаток растирают в воде, кристаллы продукта Шж отфильтровывают.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон 4-диметиламинобензальдегида (IIIз) получают из 2,94 г (10 ммоль) дигидразида 1,50 мл диоксана, 5 мл воды и 2,98 г (20 ммоль) 4-диметиламинобензальдегида по методике, описанной для дигидразона IIIд.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон 2,3-диметоксибензальдегида (Ши) получают из 2,94 г (10 ммоль) дигидразида I, 50 ммоль диоксана, 5 мл воды и 3,32 г (20 ммоль) 2,3-диметоксибензальдегида по методике, описанной для дигидразона Шд.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон 2-гидроксибензальдегида (IIIк). Смесь $2,94\,\mathrm{r}$ ($10\,\mathrm{ммоль}$) дигидразида $\mathrm{I},50\,\mathrm{м}$ л диоксана, $5\,\mathrm{m}$ л воды и $2,42\,\mathrm{r}$ ($20\,\mathrm{ммоль}$) 2-гидроксибензальдегида перемешивают $3\,\mathrm{u}$ при $85\,\mathrm{°C}$, диоксан частично отгоняют, кристаллы продукта IIIк отфильтровывают и промывают водой.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон 3-гидроксибутаналя (Шл) получают из 2,94 г (10 ммоль) дигидразида 1,50 мл диоксана, 5 мл воды и 1,74 г (20 ммоль) 3-гидроксибутаналя по методике, описанной для дигидразона Шк.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон циклогексанона (IIIм) получают из 2,94 г (10 ммоль) дигидразида I, 50 мл диоксана, 5 мл воды и 1,96 г (20 ммоль) циклогексанона по методике получения дигидразона IIIб.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон N-метилпиперидона (Шн) получают из 2,94 г (10 ммоль) дигидразида I, 50 мл диоксана, 5 мл воды и 2,3 г (20 ммоль) N-метилпиперидона по методике получения дигидразона Шк.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон ацетона (Шо). Смесь 2,94 г (10 ммоль) дигидразида I и 100 мл ацетона кипятят 3 ч, ацетон частично отгоняют, кристаллы продукта Шо отфильтровывают и промывают эфиром.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон 5-гексен-2-она (Шп) получают из 2,94 г (10 ммоль) дигидразида 1,50 мл диоксана, 5 мл воды и 1,96 г (20 ммоль) 5-гексен-2-она по методике синтеза дигидразона Шб.

- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон 4-метил-3-пентен-2-она (Шр). Смесь 2,94 г (10 ммоль) дигидразида I, 50 мл диоксана, 5 мл воды и 1,96 г (20 ммоль) 4-метил-3-пентен-2-она перемешивают 2 ч при 80 °C, диоксан частично отгоняют, кристаллы продукта Шр отфильтровывают и промывают диоксаном и метанолом.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон ацетофенона (ПС) получают из 2,94 г (10 ммоль) дигидразида 1,50 мл диоксана, 5 мл воды и 2,4 г (20 ммоль) ацетофенона по методике синтеза дигидразона ПГк.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон 2-гидроксиацетофенона (Шт) получают из 2,94 г (10 ммоль) дигидразида I, 50 мл диоксана, 5 мл воды и 2,5 г (20 ммоль) 2-гидроксиацетофенона по методике синтеза дигидразона Шк.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон 4-гидроксиацетофенона (Шу) получают из 2,94 г (10 ммоль) дигидразида I, 50 мл диоксана, 5 мл воды и 2,5 г (20 ммоль) 4-гидроксиацетофенона по методике синтеза дигидразона Шк.
- 1,3,4-Тиадиазол-2,5-дитиогликолил-3,5-диметилпиразол (IV). Смесь 2,94 г (10 ммоль) дигидразида I и 50 мл ацетилацетона выдерживают 2 ч при 105 °C, ацетилацетон частично оттоняют, вязкую кристаллическую массу высушивают и перекристаллизацией из ацетона выделяют продукт IV.
- 1,3,4-Тиадиазол-2,5-дитиогликолилгидразон ацетоуксусного эфира (V). К раствору 2,94 г (10 ммоль) дигидразида I в 100 мл воды при 80 °С добавляют 2,6 г (20 ммоль) ацетоуксусного эфира, перемешивают при той же температуре 3 ч, кристаллы продукта V отфильтровывают и промывают этанолом.
- 1,3,4-Тиадиазол-2,5-дитиогликолил-3-метил-5-фенил-5-гидроксипиразолин (VI). Смесь $2,94\ r$ ($10\ ммоль$) дигидразида $I,50\ мл$ диоксан, $5\ мл$ воды и $3,22\ r$ ($20\ ммоль$) бензоилацетона перемешивают $3\ ч$ при $85\ °C$, диоксан частично отгоняют, кристаллы отфильтровывают, фильтрат упаривают, добавляют $10\ мл$ этанола, через сутки выпавшие кристаллы продукта VI отфильтровывают и промывают этанолом.

СПИСОК ЛИТЕРАТУРЫ

- 1. Рутавичюс А., Валюлене С., Куодис З. // ХГС. 1995. № 5. С. 708.
- 2. *Парпиев Н. А., Юсупов В. Г., Якимович С. И., Шарипов Х. Т.* Ацилгидразоны и их комплексы с переходными металлами. Ташкент: Фан, 1988. С. 162.
- 3. Palla G., Predieri G., Domiano P. // Tetrahedron. 1986. Vol. 42. P. 3649.
- 4. Пат. 77538 СРР / Cascayal A. // РЖХ. 1983. 8Р179П.
- 5. Бежан И. П., Хрусталев В. А., Зеленин К. Н., Николаев Б. П. // ЖОрХ. 1978. Т. 14. — С. 754.
- 6. Зеленин К. Н., Пинсон В. В., Потехин А. А., Бежан И. П., Хрусталев В. А., Лобанов П. С. // ЖОрХ. 1978. Т. 14. С. 490.
- 7. Азометины / Под ред. С. В. Пономарева. Ростов-на-Дону: Изд. Рост. ун-та, 1967. С. 293
- 8. Аграчева Е. Б., Яковенко Т. И., Гачковский В. Ф. // ЖОрХ. 1967. Т. 3. С. 1110.
- 9. Якимович С. И., Николаев В. Н., Куценко Э. Ю. // ЖОрХ. 1983. Т. 19. С. 2333.

Институт химии, Вильнюс LT-2600 Поступило в редакцию 01.07.96