Р. Ф. Амбарцумова, М. Г. Левкович, Е. Г. Мильгром, Н. Д. Абдуллаев

1,3-ТИАЗЕПИНЫ

1. СИНТЕЗ И СПЕКТРАЛЬНЫЕ СВОЙСТВА 2-ИМИНОГЕКСАГИДРО-1,3-ТИАЗЕПИНОВ

Взаимодействием 4-аминобутанола-1 с изотиоцианатами RNCS синтезированы N-(4-оксибутил)-N'-R-тиомочевины, которые циклизацией под действием галоидводородных кислот превращены в соответствующие 2-(R-имино) гексагидро-1,3-тиазепины. Строение полученных соединений подтверждено данными ПМР, ИК и масс-спектров.

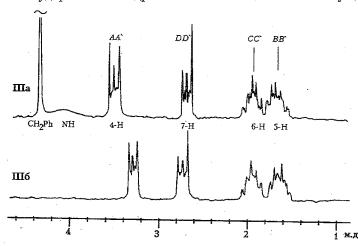
2-Аминотиазепины-1,3 и их гидрированные производные являются мало изученным классом гетероциклических аминов [1, 2], которые содержат амбифункциональную систему атомов N—С=N, позволяющую ожидать в реакциях нуклеофильного замещения и присоединения образование как замещенных аминов, так и иминов. Вместе с тем они представляют несомненный интерес как соединения, обладающие биологической активностью [3—5].

C целью синтеза новых производных аминотиазепина и изучения их физико-химических свойств нами было осуществлено взаимодействие 4-аминобутанола-1 с изотиоцианатами (Ia—3). Образующиеся при этом N-(4-оксибутил)-N'-замещенные тиомочевины (IIa—3) без дополнительной очистки были подвергнуты дегидратации и циклизации кипячением с концентрированными галоидводородными кислотами.

$$NH_2(CH_2)_4OH$$
 + RNCS \xrightarrow{HX} RNHCNH(CH₂)₄OH \xrightarrow{NH} NR $\stackrel{N}{II}_{a-3}$ $\stackrel{N}{II}_{a-3}$ $\stackrel{N}{II}_{a-3}$

В целях идентификации продукты IIа—з были выделены в чистом виде и охарактеризованы (табл. 1). Соединения IIа, б описаны ранее [6]. Из всех изотиоцианатов, кроме Iз, были получены соответствующие целевые гексагидротиазепины (IIIа—ж). В случае аллилизотиоцианата Із при попытке выделить продукт IIIз из кислого раствора путем нейтрализации наблюдалось его интенсивное разложение с выделением серы. То же самое происходило и при синтезе соединения IIIз из очищенной тиомочевины IIз. По-видимому, оно столь же нестабильно, как и 2-аминотетрагидротиазепин [7].

Строение синтезированных тиомочевин IIв—з и производных тиазепина IIIа—ж подтверждено данными IIMP, ИК и масс-спектров (табл. 2, 3). Ранее по аналогии с 1,3-тиазинами соединению IIIа было приписано строение замещенного амина, а соединению IIIб— имина [6].


В ИК спектрах соединений Ив—з присутствуют полосы поглощения связанных водородной связью групп NH и OH. В спектрах гекса-

Характеристики синтезированных соединений

Соеди- нение	Брутто- формула		айдено, % ычислено, %	5	Тпл, °С	Выход, %	
ncanc	формуна	С	H	И			
ΙΙв	C ₁₅ H ₁₈ N ₂ OS	65,71 65,66	6,59 6,61	10,17 10,21	117,5118	66	
Пг	C ₁₃ H ₂₁ N ₃ OS	$\frac{58,24}{58,39}$	$\frac{7,88}{7,92}$	15,64 15,71	112,5113,5	87	
Пд	C ₁₃ H ₂₀ N ₂ OS	$\frac{61,95}{61,87}$	7,88, 7,98	10,97 11,10	8687	99	
Пе	C ₁₄ H ₂₂ N ₂ OS	$\frac{63,00}{63,12}$	$\frac{8,41}{8,32}$	10,49 10,52	5657	42	
ІІж	C ₁₂ H ₁₅ F ₃ N ₂ OS	$\frac{49,17}{49,31}$	$\frac{4,89}{5,17}$	$\frac{9,71}{9,58}$	5960	86	
Пз	C ₈ H ₁₆ N ₂ OS	$\frac{50,92}{51,03}$	$\frac{8,28}{8,56}$	14,59 14,88	Масло	63	
Ша	C ₁₂ H ₁₆ N ₂ S				70,571,5	30	
Шб	C ₁₁ H ₁₄ N ₂ S			·	127128	57	
Шв	C ₁₅ H ₁₆ N ₂ S	$\frac{70,22}{70,27}$	$\frac{6,17}{6,29}$	10,87 10,93	154155	45	
HIr	C13H19N3S	$\frac{62,54}{62,61}$	7,69 7,68	$\frac{16,81}{16,85}$	143144	50.	
Шд	C ₁₃ H ₁₈ N ₂ S	$\frac{66,69}{66,62}$	$\frac{7,63}{7,74}$	11,77 11,95	127127,5	77	
Ше	C ₁₄ H ₂₀ N ₂ S	$\frac{67,76}{67,70}$	8,15 8,12	11,05 11,28	130131	78	
жШ	C ₁₂ H ₁₃ F ₃ N ₂ S	$\frac{52,39}{52,54}$	$\frac{4,62}{4,78}$	$\frac{10,13}{10,21}$	130131	. 56	

гидротиазепинов IIIа—ж эти полосы из-за отсутствия групп ОН смещены в сторону более низких частот. Поглощение связи C=N этих соединений наблюдается в интервале $1617...1630~{\rm cm}^{-1}$, что закономерно для предложенной нами структуры имина (см. схему), но противоречит строению амина, приписанному ранее [6] продукту IIIа.

В масс-спектрах тиомочевин IIв—з присутствуют интенсивные пики молекулярных ионов, а также фрагментов RNCS⁺ и RNH₂⁺. Поведение под электронным ударом гексагидротиазепинов IIIа—ж имеет существенные

Сигналы протонов метиленовых групп гетероцикла в спектрах ПМР соединений Ша и Шб

Спектральные характеристики соединений Ив—3

Соеди-	ИК спектр, ν, см ⁻¹			Масс-сп	лектр, <i>m/z (I, %)</i>	Спектр ПМР, δ , м. д.								
	NHC=S	NH, OH	M ⁺	RNCS+.	Другис фрагменты	-CH ₂ CH ₂ - (4H, м)	СН ₂ О, СН ₂ N (м)	Наром	NHAr (1H, ш. с)	NHAlk (ш. с)	ОН (1Н)	Другие сигналы		
IIB ·	1560	3440, 3270, 3187	274(89)	185(100)	187(46), 186(91), 169(34), 168(51), 160(56), 153(61), 143(96), 127(90), 126(56)	1,201,70	3,303,67 (4H)	7,308,06 (7H, м)	7,807,90*	5,98 (1H)	*2			
Пг	1555	3370, 3250	267(30)	178(100)	233(13), 177(61), 162(26), 161(18), 153(27), 136(85), 135(39), 121(27)	1,401,70	3,353,75 (4H)	6,65 (2H, д*3), 7,05 (2H, д*3)	7,70	6,08 (1H)	1,80 (ш. с)	2,90 (6H, c, 2Me)		
ΙΙд	1555	3350, 3270, 3160	252(52)	163 (48)	237 (95), 219 (46), 218 (29), 165 (27), 164 (22), 147 (39), 146 (37), 130 (42), 121 (100)	1,341,66	3,403,84 (4H)	7,20 (3H, ш. c)	7,76	5,87 1H)	1,90 (ш. с)	2,20 (6H, c, 2Me)		
IIe	1548	3376, 3247	266(100)	177(30)	251 (50), 233 (36), 161 (30), 160 (27), 152 (36), 135 (95), 134 (28), 120 (31)	1,421,70	3,453,62 (4H)	6,90 (2H, c)	7,35	5,67 (1H)	1,80 (ш. с)	2,15 (6H, c, 2Me), 2,23 (3H, c, Me)		
ІІж	1554	3253, 3063	292(58)	203(57)	259(32), 187(34), 186(36), 161(100), 149(29), 145(46)	1,401,75	3,453,70 (4H)	7,45 (4H, c)	8,18	6,52 (1H)	1,75 (c)			
Пз	1570	3350, 3100	188(100)		173(73), 129(14), 115(18), 57(48)	1,291,90	3,003,80 (4H), 3,804,20*4 (2H)			6,85 (2H)		5,10*5 (1H, M, CH ₂), 5,18*6 (1H, M, CH ₂), 5,90*7 (1H, M, CH)		

Сигнал перекрывается сигналом нафтильного заместителя. Сигнал перекрывается мультиплетом метиленовых протонов. КССВ (J=9 Γ ц). Упиренный квинтет. J=9.8, 3.0, 3.0 Γ ц, J=15.0, 3.0, 3.0 Γ ц, J=15.0, 9.8, 4.0, 4.0 Γ ц.

различия. Для соединения IIIа характерны малая вероятность образования фрагмента RN = C = NH $^+$ (m/z 132; C₈H₈N₂; 132,06950) и выраженный распад с образованием осколочных ионов RNH $^+$ и R $^+$ (m/z 106 и 91 соответственно). В спектрах соединений III6—ж, напротив, имеется интенсивный сигнал указанного фрагмента и отсутствует пик иона RNH (за исключением соединения Ir) (табл. 3).

В спектрах ПМР замещенных тиомочевин IIа—з метиленовые протоны представлены двумя сложными четырехпротонными мультиплетами в интервалах 1,4...1,7 и 3,4...3,7 м. д. В спектрах соединений IIг—ж сигнал гидроксильного протона имеет вид уширенного синглета в области 1,75...1,90 м. д., а в спектрах соединений IIв и IIз он перекрывается сигналами метиленовых протонов. Протоны групп NH тиомочевин IIв—ж проявляются двумя уширенными синглетами в области 5,67...6,85 и 7,50...8,18 м. д. (в случае нафтилтиомочевины IIв низкопольный сигнал перекрывается сигналами протонов нафталинового ядра). В спектре аллилтиомочевины IIз практически эквивалентные протоны двух групп NH представлены двухпротонным широким синглетом при 6,85 м. д.

В спектрах ПМР иминов IIIа—з также имеется несколько характерных групп сигналов. Всегда хорошо выделяются сигналы метиленовых протонов цикла, соседних с атомами азота и серы. Метиленовые протоны в положениях 5 и 6 проявляются в виде двух сложных мультиплетов, часто перекрывающих друг друга. По характеру мультиплетности сигналов можно заключить, что все геминальные протоны цикла магнитно-эквивалентны и образуют спектр типа AA'BB'CC'DD' (А — протоны Н(4), D — протоны Н(7)). Сигналы частей AA' и DD' хорошо выделяются в спектре, имеют одинаковую ширину и характерную структуру с несколько различным перекосом в сторону своих вицинальных партнеров (см. рисунок). По расстоянию между их крайними интенсивными линиями можно заключить, что в обоих случаях мультплет определен двумя вицинальными КССВ с суммой около 10,0 Гц. Сигнал протона группы NH всех соединений III сильно уширен (до 80 Гц) и находится в области 4,13...6,5 м. д.

Разница в значениях химических сдвигов протонов гетероцикла производных тиазепина IIIa и III6-ж очень мала. Наибольшее отклонение проявляет сигнал метиленовых протонов при С(4) (около 0,24 м. д.). Первоначально это было объяснено различием в строении указанных соединений, что согласовывалось с отнесением производного IIIa к 2-аминотетрагидротиазепинам [6]. Однако в спектре соединения IIIa, как и в спектрах соединений IIIб—ж, отсутствует взаимодействие протонов групп NH и CH₂ (рис.), хотя оно должно иметь место в линейной цепи =C—NH—CH₂—Ph, т. е. в случае экзопиклической аминогруппы [8]. Известно, что у соединений с эндоциклической группой NH такое взаимодействие не проявляется [9, 10]. Следовательно, продукт IIIa, скорее, является 2-бензилиминогексагидротиазепином. Различия же в массспектрах иминов IIIа и IIIб—ж, как и в химических сдвигах протонов групп 4-СН2, обусловлены характером заместителей — бензильного в соединении IIIа и ароматических в соединениях III6—ж. Окончательный вывод позволит сделать рентгеноструктурное исследование строения соединения IIIa.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на спектрометре UR-20 в таблетках КВг, масс-спектры — на приборах МХ 1310 и МХ 1321. Обзорные спектры электронного удара получены с использованием прямого ввода пробы СВП-5 при температуре ионизационной камеры 150...170 °C, температуре ампулы нагревателя 80...120 °C, ионизирующем напряжении 70 эВ, токе коллектора 60 мкА. Спектры ПМР регистрировали на спектрометре Tesla BS-667 с рабочей частотой 100 МГц в растворе дейтерохлороформа, внутренний стандарт ГМДС.

Спектральные характеристики соединений Ша-ж

Соеди- нение	ИК спектр, $ u$, см $^{-1}$		Масс-спектр, <i>m/z</i> (<i>I</i> , %)						Спектр ПМР, δ , м. д., КССВ, J , Гц						
	C=N	NH	M ⁺	[M-1]+	[M-SH] ⁺	RN=C=NH ⁺	R [†]	Другие фрагменты	4-Н (2H, м)	5-Н (м)	6-Н (м)	7-Н (2H, м)	Наром	NН (1H, ш. c)	Другие сигналы
IIĮa	1630	32203040	220 (64)	219 . (7)	187 (9)	132	91 (100)	106 (90), 87 (18), 65 (16)	3,52	1,69 (2H)	1,94 (2H)	2,69	7,24 (5H, c)	4,13	4,34 (2H, c, CH ₂ Ph)
Шб	1620	3225	206 (80)	205 (100)	173 (19)	118 (32)	77 (22)	131 (10), 130 (14), 119 (16)	3,33	1,64 (2H)	1,96 (2H)	2,77	6,807,38 (5H, м)	5,30	
Шв	1622	3238, 3170, 3130, 3050	256 (100)	255 (70)	223 (14)	168 (88)	127 (19)	185 (13), 154 (13), 153 (18), 141 (18), 140 (18)	3,39	1,54 (2H)	1,96 (2H)	2,69	6,758,00 (7H, м)	5,80	
IIIr	1620	3220, 3145, 3110	249 (100)	248 (16)	216 (1)	161 (63)	120 (2)	160 (23), 145 (10), 135 (22)	3,28	1,402,10 (4H)		2,70	6,73 (2H, д, J = 9,00), 6,76 (2H, д, J = 9,00)	5,50	2,82 (6H, c, 2NMe)
Шд	1625	32203100	234 (100)	233 (4)	201 (37)	146 (64)	105 (11)	219 (55), 158 (18), 145 (35), 130 (19), 103 (11), 77 (12)	3,28	1,402,10 (4H)		2,78	6,807,35 (3H, м)	6,40	2,13 (6H, c, 2MeAr)
IIIe	1630	32203100	248 (100)	247 (4)	21 <i>5</i> (3 <i>5</i>)	160 (84)	119 (9)	233 (77), 173 (11), 172 (19), 159 (45), 145 (39)	3,28	1,402,10 (4H)		2,77	6,90 (2H, c)	6,25	2,03(6H, c, 2MeAr), 2,22 (3H, c, MeAr)
Шж	1617	3230	274 (97)	273 (100)	241 (53)	186 (71)	145 (55)	203 (14), 174 (10), 171 (11)	3,29		2,10 (H)	2,76	6,937,40 (4H, м)	6,50	

В работе использованы реагенты: 4-аминобутанол-1 и изотиоцианаты Іб,в,з, очищенные перегонкой в вакууме. Соединение Іа получено термическим разложением бензилроданида при 200 °C [11], соединения Іг—е синтезированы по методу работы [12], а изотиоцианат Іж— по известной методике [13].

N-(4-Оксибутил)-N'-R-тиомочевины (Па—3) и 2-R-иминогексагидротиазепины-1,3 (Ша—ж). К раствору 17,8 г (0,2 моль) 4-аминобутанола-1 в 35 мл сухого ацетона добавляют по каплям при перемешивании и температуре 15...20 °C раствор 0,2 моль изотиоцианата Іа—ж в 15 мл ацетона. Реакционную смесь выдерживают сутки при комнатной температуре, затем кипятят 1...3 ч и после отгонки при пониженном давлении ацетона получают тиомочевину Па—з. Продукты Па—ж очищают перекристаллизацией из бензола или водного этанола, Пз—колоночной хроматографией на силикагеле L100/160; элюент гексан, бензол. Для получения соединения Па—ж к реакционной массе после отгонки ацетона добавляют 200 мл конц. НС1 или НВг и кипятят 5 ч. К упаренной наполовину реакционной смеси добавляют 100 мл воды и при охлаждении нейтрализуют раствором щелочи. Продукт Па—ж отфильтровывают, промывают водой, сушат и перекристаллизовывают из гексана или ацетона.

СПИСОК ЛИТЕРАТУРЫ

- 1. Wunsch K.-H., Ehlers A. // Z. Chem. 1970. Bd 10. S. 361.
- 2. Леваи A. // XГС. 1986. № 11. С. 1443.
- 3. Garmaise D. L., Paris G. J., Efthymaidis G. // Canad. J. Chem. 1971. Vol. 49. P. 971.
- Pat. 7487 Hung. / Toldy L., Reiter J., Szilagyi Mrs. G., Toth I., Borsy J., Szekely J., Schafer I. // C. A. — 1974. — Vol. 80. — 95928.
- Pat. 2429290 Ger. /Hideg K., Hankovsky O., Palosi E., Hajos G., Szporny L. // C. A. 1975. — Vol. 82. — 156307.
- Olszenko-Piontkowa Z., Urbanski T. // Org. Prep. Proc. Int. 1971. Vol. 3. P. 27;
 C. A. 1974. Vol. 74. 125665.
- Kato T., Katagiri N., Izumi U., Miura J., Jamazaki T., Hirai Y. // Heterocycles. 1981. Vol. 15. — P. 399.
- 8. Alexandrou N. E., Nikolaides D. N. // Org. Magn. Res. 1972. Vol. 4. P. 591.
- Cherbuliez E., Baehler Br., Espejo O., Jindra H., Willhalm B., Rabinowitz J. // Helv. Chim. Acta. — 1967. — Vol. 50. — P. 331.
- Toldy L., Sohar P., Farago K., Toth I., Bartalits L. // Tetrah. Lett. 1970. Vol. 25. P. 2167.
- Cherbuliez E., Weber G., Wyss G., Rabinowitz J. // Helv. Chim. Acta. 1965. Vol. 48. P. 1031.
- 12. Волынкин Н. И. // ЖОрХ. 1957. T. 27. C. 485.
- 13. Kurzer F., Canelle I. // Tetrahedron. 1963. Vol. 19. P. 1603.

Институт химии растительных веществ АН Республики Узбекистан, Ташкент 700170 Поступило в редакцию 19.03.96 После переработки 23.10.96