В. А. Бакулев, Н. Ю. Бирючева, В. А. Пичко

ИССЛЕДОВАНИЕ МЕХАНИЗМА ГЕТЕРОЦИКЛИЗАЦИИ 1-ГЕТЕРОБУТАДИЕНИЛКЕТЕНОВ МЕТОДАМИ МЧПДП/3, МПДП И АМ1

Показана применимость полуэмпирических методов МЧПДП/3, МПДП и АМ1 для расчета процесса циклизации 1-окса- и -азабутадиенилкетенов. Исследован механизм гетероциклизации и обнаружено, что образование новой σ -связи происходит в результате взаимодействия неподеленной электронной пары гетероатома с орбиталью $\pi^*_{\mathbf{x}}$ С=0-связи кетеновой группы.

Гетероаналоги 1,3,5-гексатриенов, в молекулах которых концевая двойная связь входит в состав кетеновой группы, — это высокореакционно-способные вещества, циклизующиеся в гетеропиклические соединения уже в условиях их получения [1]. Они являются промежуточными частицами в перегруппировочных процессах шестичленных гетероциклов [1, 2]. Реакция циклизации этих соединений является стратегией оригинального синтеза пиримидонов, оксазинов и хинолонов [2]. Изучение закономерностей циклизации 1-гетеробутадиенилкетенов открывает перспективы более глубокого понимания перегруппировок шестичленных гетеропиклов и синтеза на этой основе новых пиранонов и пиридонов, а также их гетероаналогов, в том числе обладающих высокой биологической активностью [3].

Вместе с тем, в химии этих соединений имеется ряд нерешенных вопросов. Например, неясно, почему замена концевой метиленовой группы в бутадиенилкетенах на гетероатомы приводит к ускорению циклизации. Неясно также, по какому механизму происходит образование новой σ -связи: по электроциклическому (а) или, подобно циклизации имидоилкета [4], при взаимодействии неподеленной пары на гетероатоме X и свободной $\pi^*_{\rm X}$ орбиталью, локализованной на атоме углерода кетеновой группы (б).

Для ответа на эти вопросы мы провели квантово-химический расчет циклизации 1-окса (I)- и 1-аза-1,3,5-гексатриен-6-онов (II) в 2-пиран (III) и 2-пиридон (IV) соответственно. Энергетические барьеры и структура переходного состояния изучаемых реакций были найдены при помощи методики реакционной координаты [5]. Расчеты выполнялись полуэмпирическими методами МЧПДП/З [6], МПДП [7] и АМ1 [8]. Геометрические характеристики соединений получены в результате полной оптимизации геометрии по методу Бройдена—Флетчера—Гольдфарба—Шанно [9].

Геометрические параметры реакции I ——— III, полученные методом МПДП

						1				
Параметр			•		Стру	уктура			-	
парамотр	1	2	3	4	5	6	7	8	. 9	10
Длина связи, Å		*			8					
C ₍₁₎ -O ₍₂₎	2,885	2,850	2,647	2,484	2,181	1,970	1,748	1,624	1,452	1,390
$O_{(2)}-C_{(3)}$	1,228	1,227	1,230	1,223	1,237	1,250	1,274	1,278	1,291	1,353
C ₍₃₎ -C ₍₄₎	1,475	1,474	1,484	1,471	1,462	1,448	1,435	1,430	1,415	1,370
C ₍₄₎ -C ₍₅₎	1,361	1,358	1,363	1,366	1,372	1,377	1,430	- 1,347	1,341	1,450
C ₍₅₎ -C ₍₆₎	1,443	1,442	1,434	1,449	1,437	1,421	1,399	1,395	1,382	1,363
C ₍₆₎ -C ₍₁₎	1,340	1,340	1,337	1,350	1,359	1,370	1,440	1,435	1,446	1,400
C ₍₁₎ -O ₍₇₎	1,175	1,175	1,173	1,174	1,177	1,181	1,188	1,189	1,202	1,224
Валентный угол, град			I	I		1				
O ₍₂₎ -C ₍₃₎ -C ₍₄₎	126,61	125,90	120,88	121,30	121,88	122,00	121,35	121,34	120,74	122,20
$C_{(3)}-C_{(4)}-C_{(5)}$	131,84	130,70	124,97	122,91	122,09	121,40	120,76	120,55	119,82	119,70
$C_{(4)}-C_{(5)}-C_{(6)}$	131,96	133,10	134,88	131,63	126,74	125,10	124,40	123,95	123,03	118,80
$C_{(5)}-C_{(6)}-C_{(1)}$	130,22	129,50	131,81	133,03	131,02	126,90	120,41	120,04	117,37	120,30
$C_{(6)}-C_{(1)}-C_{(7)}$	175,06	175,40	174,60	173,31	166,49	158,10	153,75	143,35	135,88	113,90
$E_{ m aKT}$	-28,1141	-28,1586	-25,7167	-23,579	-19,9867	-17,6326	-19,1331	-29,0259	-39,3919	-39,3919

За координату реакции выбрано расстояние между атомами С(1) и О(2), поскольку связь $C_{(1)}$ — $O_{(2)}$ единственная, которая образуется в результате циклизации. Длины связей, валентные и двугранные углы для начальной и конечной структур были выбраны стандартными. Затем были оптимизированы все геометрические параметры для 10 промежуточных структур вдоль координаты реакции. Для исходной и конечной структур, а также для переходного состояния (ПС) был проведен расчет матрицы Гесса, подтвердивший, что исходной и конечной структурам соответствуют минимумы на поверхности потенциальной энергии (ППЭ), а переходному состоянию соответствует одно отрицательное собственное значение матрицы Гесса [10]. Вычисленные энтальпии активации, определенные методами МЧПДП/3, МПДП и АМ1, составляют 7,85, 10,32 и 2,66 ккал/моль. Сравнение с экспериментально определенной энергией активации (9,4 ккал/моль) [11] показало, что методы МЧПДП/3 и МПДП, в отличие от метода АМ1, достаточно хорошо воспроизводят экспериментально определенную энергию активации реакции.

Данные МПДП расчетов длин связей и валентных углов между тяжелыми атомами приведены в табл. 1. В таблицах 1—4 реактанту соответствует структура 1, переходному состоянию — структура 5, а продукту реакции — структура 10. Данные расчетов двугранных углов не приводятся в таблицах, так как все тяжелые атомы, а также атомы водорода при С(3) и С(6) остаются в плоскости. Согласно критерию [12, 13], расположение этих атомов водорода в переходном состоянии по одну сторону плоскости молекулы или по разные свидетельствует о дисротаторном или конротаторном механизме циклизации. Таким образом, результаты расчетов свидетельствуют о том, что в процессе циклизации не происходит

Таблица2

Изменение зарядов на атомах вдоль координаты реакции I — III, полученные методом МПДП

Струк-		Заряд на атоме									
тура	C ₍₁₎	O ₍₂₎	C ₍₃₎	C ₍₄₎	C ₍₅₎	C ₍₆₎	O ₍₇₎				
**		jk				1. 14.47 1					
1	0,37	-0,34	0,31	-0,25	0,13	-0,31	-0,11				
2	0,37	-0,34	0,31	-0,25	0,12	-0,30	-0,11				
3	0,38	-0,36	0,31	-0,26	0,13	-0,31	-0,12				
4	0,40	-0,37	0,31	-0,27	0,13	-0,32	-0,12				
5	0,43	-0,39	0,32	-0,29	0,15	-0,34	0,13				
6	0,46	-0,39	0,33	-0,33	0,17	-0,36	-0,16				
7	0,46	-0,37	0,29	-0,36	0,17	-0,31	-0,20				
8	0,44	-0,31	0,28	-0,33	0,14	-0,30	-0,24				
9	0,39	-0,24	0,22	-0,27	0,09	-0,23	-0,29				
10	0,37	-0,24	0,15	-0,21	0,04	-0,17	-0,31				

Изменение	π -	атом	ной	заселенности	вдоль	координаты
реакции	I		Ш,	полученное	методом	МПДП

Струк- тура	C ₍₁₎	O ₍₂₎	C ₍₃₎	C ₍₄₎	C ₍₅₎	C ₍₆₎	0(7)
1	0,8621	1,34479	0,71291	1,15694	0,87275	1,36405	1,68328
2	0,86184	1,34533	0,71288	1,15745	0,87243	1,3652	1,68477
3	0,85432	1,3572	0,70846	1,16251	0,86915	1,36913	1,67938
4	0,84297	1,36387	0,70574	1,16965	0,85816	1,37511	1,66823
5	0,81675	1,40467	0,6925	1,20375	0,83436	1,40123	1,64674
6	0,78216	1,4723	0,6827	1,24892	0,80328	1,41252	1,59803
7	0,73934	1,62393	0,72036	1,29823	0,78708	1,35522	1,47568
8	0,75686	1,65969	0,741	1,26198	0,81783	1,31441	1,44817
9	0,78393	1,71516	0,81882	1,20496	0,86291	1,20611	1,40688
10	0,77627	1,78151	0,90895	1,139	0,8966	1,10817	1,38951

Таблица 4

Квадраты коэффициентов МО в реакции I — III, полученные методом МПДП

Структура	O _I	Орбитали (атом, №, ориентация)					
, отрушура	O ₍₂₎ -17, p _X	C ₍₁₎ -20, p _X	O ₍₇₎ -20, p _x				
		4	i				
1	0,59770	0,62336	0,30010				
. 2	0,58820	0,62440	0,30060				
3	0,50498	0,62533	0,29612				
4	0,47143	0,61627	0,28571				
5	0,45630	0,61983	0,27112				
6	0,42250	0,57710	0,23090				
7	0,33597	0,00000	0,00000				
8	0,25413	0,00000	0,00000				
9	0,15294	0.00000	0,00000				
10	0,12120	0.00000	0,00000				

поворота концевых атомов относительно терминальных π -связей триеновой системы.

Для десяти структур, лежащих на реакционном пути и полученных методом наискорейшего спуска из переходных состояний в исходную и конечную структуры, был проведен расчет зарядов, π -атомных заселенностей и квадратов собственных векторов для граничных орбиталей (см. табл. 2, 3). Данные расчетов показали, что до достижения переходного состояния π -структура молекулы изменяется слабо и лишь после достижения длины связи $C_{(1)}$ — $O_{(2)}$ значения 1,97 Å происходит перестройка π -системы; длины $O_{(2)}$ — $C_{(3)}$, $C_{(1)}$ — $C_{(6)}$, $C_{(4)}$ — $C_{(5)}$ связей увеличиваются, а длины связей $C_{(3)}$ — $C_{(4)}$, $C_{(5)}$ — $C_{(6)}$ — уменьшаются. Анализ изменения π -атомных заселенностей и зарядов на атомах позволяет сделать вывод, что до и после достижения переходного состояния происходят различные процессы: до значения координаты реакции 1,9 происходит уменьшение электронного заряда на атомах $C_{(1)}$, $C_{(3)}$ и $C_{(5)}$ и увеличение — на $O_{(2)}$, $C_{(4)}$ и $C_{(6)}$. Затем, после прохождения реакцией переходного состояния, наблюдается обратная

Таблица 5

Геометрические нараметры реакции II — IV, полученные методом МПДП

						Структура		•			
Параметр	1	2	3	4	. 5	6	7	8	9	10	11
Длина связи, Å								k.			1
C ₍₁₎ -N ₍₂₎	2,787	2,651	2,632	2,480	2,330	2,167	1,941	1,769	1,567	1,430	1,427
O ₍₂₎ -C ₍₃₎	1,292	1,301	1,301	1,301	1,301	1,300	1,301	1,301	1,301	1,390	1,301
C(3)-C(4)	1,462	1,461	1,459	1,461	1,459	1,453	1,437	1,431	1,418	1,372	1,404
C ₍₄₎ -C ₍₅₎	1,359	1,357	1,362	1,359	1,365	1,368	1,385	1,376	1,362	1,445	1,359
C ₍₅₎ -C ₍₆₎	1,442	1,440	1,443	1,437	1,438	1,432	1,404	1,360	1,376	1,366	1,368
C ₍₆₎ -C ₍₁₎	1,340	1,345	1,355	1,346	1,349	1,360	1,387	1,425	1,430	1,480	1,426
C ₍₁₎ -O ₍₇₎	1,770	1,177	1,176	1,176	1,179	1,181	1,187	1,194	1,205	1,229	1,219
]		·		·		
алентный угол, град		. '					•			• .	
N ₍₂₎ -C ₍₃₎ -C ₍₄₎	122,70	120,98	122,20	122,87	120,48	119,60	119,51	119,33	119,01	120,70	118,52
$C_{(3)}-C_{(4)}-C_{(5)}$	131,20	130,63	127,32	126,14	124,99	123,90	123,53	123,21	122,62	119,60	121,92
C ₍₄₎ -C ₍₅₎ -C ₍₆₎	133,00	131,71	131,96	130,84	129,08	127,80	125,72	125,28	124,44	120,30	123,55
$C_{(5)}-C_{(6)}-C_{(1)}$	130,00	129,47	132,62	130,01	130,74	128,90	124,49	120,85	115,32	121,60	112,95
$C_{(6)}-C_{(1)}-O_{(7)}$	174,40	172,87	174,45	171,26	166,11	162,30	148,29	150,90	142,67	117,30	134,82
$E_{ m aKT}$	22,71794	22,8415	23,60426	23,9185	25,08889	25,58089	23,14621	19,83885	13,10275	-7,0248	11,116

тенденция: увеличение заряда на $C_{(1)}$, $C_{(3)}$ и $C_{(5)}$ и уменьшение на атомах $C_{(2)}$, $C_{(4)}$ и $C_{(6)}$. По-видимому, на первом этапе циклизации (на отрезке 2,85...1,9) происходит альтернированное изменение зарядов в π -сопряженной системе, обычно наблюдаемое при введении в ароматические системы π -донорных заместителей, и на втором этапе (на отрезке 1,9...1,4), когда образуется новая σ -связь, перестраивается π -система; формируется неподеленная электронная пара на атоме кислорода, расположенная перпендикулярно к плоскости молекулы, образуются новые двойные связи $C_{(3)}$ — $C_{(4)}$ и $C_{(5)}$ — $C_{(6)}$.

В таблице 4 приведены изменения квадратов собственных векторов, соответствующих несвязывающей орбитали $O_{(2)}$ и π^* C=O кетеновой группы, расположенной ортогонально π -системе молекулы. Из таблицы видно, что после достижения координатой реакции значения 1,9 Å происходит резкое уменьшение заселенностей орбиталей, что подтверждает вывод об участии этих орбиталей в процессе циклизации и образовании $C_{(1)}$ — $O_{(2)}$.

ЦИКЛИЗАЦИЯ 1-АЗА-1,3,5-ГЕКСАТРИЕНА (II) В 2-ПИРИДОН (IV)

В отличие от 1-оксабутадиенилкетена I 1-азабутадиенилкетен II имеет у концевого гетероатома атом водорода, по положению которого в переходном состоянии может быть сделан однозначный вывод о механизме образования новой σ -связи.

Аналогично случаю для кетена I за координату реакции была выбрана длина образующейся $C_{(1)}$ — $N_{(2)}$ связи. В табл. 5—8 реактанту соответствует структура I, переходному состоянию — структура 6, а продукту реакции—структура 10. Определенная энергия активации составила 3,1 ккал/моль, что примерно на 6 ккал/моль ниже, чем для 1-оксааналога. Такое изменение $E_{\text{акт}}$ согласуется с большей доступностью неподеленной электронной пары атома азота по сравнению с атомом кислорода для атаки электрофила.

Изменение зарядов на атомах вдоль координаты реакции $\Pi \longrightarrow IV$, полученное методом МПДП

Таблица 6

				,			
Струк- тура	, C ₍₁₎	N ₍₂₎	C ₍₃₎	C ₍₄₎	C ₍₅₎	C ₍₆₎	O ₍₇₎
1	0,375	-0,294	0,111	-0,173	0,103	-0,297	-0,132
2	0,386	-0,306	0,115	-0,182	0,107	-0,302	-0,134
3	0,391	-0,311	0,116	-0,183	0,112	-0,302	-0,134
4	0,404	-0,322	0,122	-0,191	0,114	-0,311	-0,139
5	0,426	-0,329	0,129	-0,205	0,123	-0,318	-0,158
6	0,452	-0,352	0,153	-0,230	0,136	-0,333	-0,180
7	0,486	-0,378	0,200	-0,293	0,163	-0,347	-0,231
8	0,470	-0,380	0,203	-0,316	0,157	-0,304	-0,266
9	0,409	-0,328	0,181	-0,290	0,124	-0,253	-0,338
10	0,383	-0,339	0,128	-0,195	0,044	-0,167	-0,361
11	0,358	-0,277	0,145	-0,251	0,083	-0,200	-0,387

Таблина 7

							
Струк- тура	C ₍₁₎	N ₍₂₎	C ₍₃₎	C ₍₄₎	C ₍₅₎	C(6)	0(7)
			- 4				
1	0,86488	1,19269	0,85225	1,13668	0,89969	1,36155	1,69109
2	0,85661	1,20437	0,84547	1,1442	0,89438	1,36919	1,68548
3	0,85249	1,20918	0,84375	1,14675	0,89067	1,36814	1,67901
4	0,84584	1,22079	0,83692	1,15612	0,88456	1,37831	1,67689
5	0,83378	1,24147	0,82705	1,16821	1,16821	1,38486	1,67014
6	0,81438	1,27916	0,81051	1,19246	0,85509	1,39629	1,65209
7	0,74352	1,49242	0,7889	1,2848	0,82273	1,35492	1,51311
8	0,76454	1,57052	0,82151	1,25345	0,84457`	1,27326	1,47087
9	0,78111	1,64629	0,90418	1,19169	0,87509	1,1492	1,45242
10	0,76577	1,70051	0,9243	1,14808	0,90226	1,11266	1,44642

Таблица 8 Квадраты коэффициентов МО в реакции II — IV, полученные методом МПДП

Структура	N(2)-16, p _X	C ₍₁₎ -20, p _X	O ₍₇₎ -20, p _X	
1	0,4562	0,6260	0,2950	
2	0,4674	0,6280	0,2917	
3	0,4665	0,6270	0,2875	
4	0,4602	0,6267	0,2853	
5	0,4435	0,6192	0,2720	
6	0,4273	0,6016	0,2512	
7	0,2608	0,0027	0,0008	
8	0,0366	0,0007	0,0002	
9	0,0000	0,0000	0,0000	
10	0,1007	0,0000	0,0000	

Рассчитанные данные геометрии и двугранных углов промежуточных структур, исходной и конечной структуры приведены в табл. 5. Двугранные углы [12, 13] $C_{(6)}$ — $C_{(1)}$ —N—H (H — атом водорода при атоме $C_{(3)}$) и N— $C_{(1)}$ — $C_{(6)}$ —H на всем пути реакции близки к 180° , что свидетельствует в пользу механизма (6). Характер изменения длин связей, зарядов, π -атомных заселенностей, квадратов AO в граничных MO для циклизации 1-аза-1,3,5-гексатриена (II) точно такой же, как и для циклизации 1-окса-1,3,5-гексатриена (II) (см. табл. 6—8).

Таким образом, на основании приведенных расчетов более быстрая циклизация 1-гетеробутадиенилкетенов по сравнению с бутадиенилкетенами объясняется реализацией другого, гетероэлектроциклического (б), механизма, для осуществления которого отсутствует необходимость вращения относительно концевых связей 1,3,5-гексатриеновой системы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Marvell E. N. Thermal Electrocyclic Reactions. N.Y.: Wiley-Interscience, 1980.
- 2. Бакулев В. А. // Успехи химии. 1995. T. 64. C. 107.
- 3. Chu O. T., Fernandes P. B. // Antimicrob. agents Chemother. 1989. Vol. 33. P. 131.
- 4. Nguyen Minh Tho, Tae-Kyu Ha, Rory A. More // J. Org. Chem. 1990. Vol. 55. P. 3251.
- 5. Dewar M. J. S. // Chem. Brit. 1975. Vol. 11. P. 97.
- 6. Bingham R. C., Dewar M. J. S., Lo H. D. // J. Amer. Chem. Soc. 1975. Vol. 97. P. 1285.
- 7. Dewar M. J. S., Thiel W. // J. Amer. Chem. Soc. 1977. Vol. 99. P. 4899.
- Dewar M. J. S., Zoebich E. G., Healy E. F., Stewart J. J. P. // J. Amer. Chem. Soc. 1985. Vol. 107. — P. 3902.
- 9. Shanno D. F. // J. Opt. Theory and Appl. 1985. Vol. 46. P. 86.
- 10. McIver J. M., Komornicki A. // J. Amer. Chem. Soc. 1972. Vol. 94. P. 2625.
- 11. Krantz A. // J. Amer. Chem. Soc. 1974. Vol. 96. P. 4992.
- 12. Пичко В. А., Симкин Б. Я., Минкин В. И. // ДАН. 1990. Т. 314, № 5. С. 1178.
- 13. Pichko V. A., Simkin B. Ya., Minkin V. I. // J. Org. Cnem. 1992. Vol. 57. P. 7087.

Уральский государственный технический университет, Екатеринбург 620002

Поступило в редакцию 10.11.96

Научно-исследовательский институт физической и органической химии Ростовского государственного университета, Ростов-на-Дону 344711