О. В. Зволинский, Л. И. Крывенко, Н. Д. Сергеева, А. Т. Солдатенков, Н. С. Простаков

СИНТЕЗ И СТРОЕНИЕ 2,4-ДИМЕТИЛ-2-АРИЛ-1,2,4-ТЕТРАГИДРОХИНОЛИНОВ И 1,3-ДИЗАМЕЩЕННЫХ ИНДЕНОВ

Показано, что внутримолекулярная циклизация N-[4-арилпентен (бутен)-1-ил-4] ариламинов в условиях кислотного катализа может протекать по двум направлениям с образованием 2,4-диметил-2-арил-1,2,3,4-теграгидрохинолинов и 1,3-дизамещенных инденов.

В нашей лаборатории разработан метод синтеза 2-алкил(арил)-4-метил-1,2,3,4-тетрагидрохинолинов исходя из альдиминов, полученных конденсацией анилина (замещенных анилинов) с альдегидами. При взаимодействии этих шиффовых оснований с аллилмагнийбромидом образуются N-{[4-алкил(арил)]-1-бутенил-4}анилины, которые в условиях внутримолекулярной циклизации превращаются в указанные тетрагидрохинолины [1—3].

Аналогичные превращения кетиминов, полученных из анилина (замещенного анилина) и жирноароматических (ароматических) кетонов, ранее не изучались.

В качестве исходных шиффовых оснований были использованы: $N[(\alpha-\text{метил})$ бензилиден]- (I), $N\{(\alpha-[2.2]$ парациклофан-4-ил) этилиден }- (II), $N[(\alpha-\text{метил})-n-\text{метоксибензилиден}]$ - (III), N[(1-фенил) пропилиден-2]- (IV), $N[(\alpha-\text{фенил})$ бензилиден]- (V) анилины и $N[(\alpha-\text{метил})$ бензилиден]- α -нафтиламин (VI).

Соединения I и III получены, как описано в работах [4, 5]. Кетимины II, IV—VI синтезированы впервые. При взаимодействии кетиминов I—V с аллилмагнийбромидом с высокими выходами были получены, соответственно, не известные ранее: N-[(4-фенил)- (VII), N-[(4-[2.2] парациклофан-4-ил)- (VIII), N-[(4-n-анизил)- (IX), N-[(4-метил-5-фенил)- (X), -1-пентенил-4]анилины и N-[(4,4-дифенил)-1-бутенил-4]анилин (XI).

$$\begin{array}{c|c} R & & \\ \hline & I \\ \hline & I \\ \hline & I-V \end{array}$$

I—IV, VII—X R = CH3; V, XI R = R^1 = C₆H₅; I, VII R^1 = C₆H₅; II, VIII R^1 = C₁22] парациклофан-4-ил; III, IX R^1 = C₆H₄OCH₃-p; IV, X R^1 = CH₂C₆H₅

Из N- $[(\alpha$ -метил) бензилиден]- α -нафтиламина (VI) аналогично получен не известный ранее N-[(4-фенил)-1-пентенил-4]- α -нафтиламин (XII). Характеристики и спектры ПМР соединений II, III—XIII приведены в табл. 1, 2.

В спектрах ПМР соединений VII—XII присутствуют характерные сигналы олефиновых протонов аллильного фрагмента: мультиплет в области 4,9...5,5 м. д. (2H), относящийся к концевой винильной группе; мультиплет в области 5,5...6,2 м. д. (1H) метинового протона, взаимодействующего с протонами группы СН2; сигнал последней находится в области 2,0...2,9 м. д. и представляет собой АВ-часть спиновой системы АВМХУ с разностью химических сдвигов протонов А и В, изменяющейся в пределах 0,05...0,3 м. д. и характеристическими значениями КССВ $J_{AB} = 14~\Gamma \text{L}$, $^3J = 7,0~\Gamma \text{L}$.

Спектры ЯМР ¹³С также подтверждают строение соединений VII—XII. В качестве примера можно привести сигналы в спектре соединения IX, характеризующие алкеновый фрагмент: С₍₁₎ 119,15 (СН₂), С₍₂₎ 133,7 (СН), С₍₃₎ 48,96 (СН₂); С₍₄₎ 57,16 (С четв.), С₍₅₎ 25,66 (СН₃). В ИК спектрах этих соединений отсутствует полоса валентных колебаний связи С=N при 1650...1680, а в области 3400...3415 см⁻¹ наблюдается полоса валентных колебаний связи NH.

При нагревании (60...70 °C) соединений VII, X и XII в хлороформе в присутствии концентрированной серной кислоты образуется сложная смесь веществ, из которых хроматографически были выделены соответственно 2,4-диметил-2-фенил- (XIII), 2,4-диметил-2-бензил- (XIV) -1,2,3,4-тетрагидрохинолины и 2,4-диметил-2-фенилбензо [h]-1,2,3,4-тетрагидрохинолин (XV).

VII, XIII R = Ph; X, XIV $R = CH_2-Ph$

В табл. 3 приведены спектральные характеристики соединений XIII—XV. На основании данных спектра ПМР замещенного тетрагидрохинолина XIII установлено, что он образуется в виде двух изомеров (в соотношении 3:1) с различным расположением метильной и фенильной групп в положении 2. В обоих изомерах пиперидиновый цикл имеет конформацию «полукресло» и метильная группа в положении 4 ориентирована экваториально. Об этом KCCB величины вицинальных свидетельствуют $J_{3a,4a} = 11.0$ Гц, $J_{3a,4c} = 5.8$ Гц (3.05 м. д.) — в преобладающем изомере и $J_{3a,4a} = 12,6$ Γ ц, $J_{3a,4e} = 4,6$ Γ ц (2,37 м. д.) — в минорном изомере. Ориентация заместителей в положении 4 была установлена с помощью исследования ядерного эффекта Оверхаузера (ЯЭО) [6]. При насыщении сигнала 2-СН3 группы преобладающего изомера наблюдается ЯЭО на протонах 4а-Н и 3е-Н (1,97 м. д.), а в минорном изомере — только на протоне 3a-H (1,76 м. д.). Это свидетельствует о том, что преобладающий изомер имеет иис-(2e-Ph, 4e-Me)-конфигурацию, а минорный изомер транс-(2a-Ph, 4e-Me)-конфигурацию.

Хроматографически установлено, что при нагревании соединений VII и X в продуктах реакции содержится анилин, а в случае соединения XII из реакционной смеси был выделен с выходом 15% α -нафтиламин. Образование этих ароматических аминов, вероятно, связано с иным направлением реакции циклизации.

Такое предположение было подтверждено при циклизации N-[(4-[2,2]парациклофан-4-ил)-1-пентенил-4]анилина (VIII). Из реакционной смеси в этом случае были выделены два вещества: 2,4-диметил-2-([2,2]парациклофан-4-ил)-1,2,3,4-тетрагидрохинолин (XVI) и 4,5-(1,3-диметилциклопентено) [2,2]парациклофан (XVII). Хроматографически установлено, что в продуктах этой реакции также содержится анилин, который, по-видимому, отщепляется при образовании индена XVII.

Таблица 1 Физико-химические характеристики синтезированных соединений II, VI—XIX

Соеди- нение	Бругто- формула	<u>Найдено N, %</u> Вычислено N, %	<i>Rf</i> *	<i>T</i> _{III} , ℃	M ⁺	ИК спектр, ν, см ⁻¹	Выход, %
п	C ₂₄ H ₂₃ N	<u>4,31</u> 4,36	0,75	5658	325	1653 (CN)	75,5
. IV	C ₁₅ H ₁₅ N	_	0,56	Масло* ²	209	1651	60
v	C ₁₉ H ₁₅ N		0,56	115116	257	1649	36
VI	C ₁₈ H ₁₅ N	_	0,68	7476	245	1650	35
VII	C17H19N	5,90 5,83	0,75	3840	237	3400 (NH)	90
VIII	C27H29N	3,87 3,81	0,63	Масло	367	3413	52,5
IX	C ₁₈ H ₂₁ NO	5,24 5,22	0,77	Масло	267	3405	84
X	Ċ18H21N	<u>5,57</u> 5,59	0,58	Масло	251	3415	51
XI	C22H21N	4,68 4,57	0,62	7071	299	3420	67
XII	C ₂₁ H ₂₁ N	4,87 4,88	0,73	6668	287	3410	82
XIII	C ₁₇ H ₁₉ N	<u>5,9</u> 5,91	0,77	Масло	237	3380	10
XIV	C ₁₈ H ₂₁ N	5,57 5,51	0,60	Масло	251	3415	10
XV	C ₂₁ H ₂₁ N	4.87 4,90	0,68	Масло	287	3415	15
XVI	C27H29N	3.81 3,78	0,73	Масло	367	3440	15
XVII	C ₂₁ H ₂₂		0,73	173175	274	ļ 	30
xvIII	C ₁₁ H ₁₃ O		0,81	Масло	161	-	30
XIX	C ₁₆ H ₁₄		0,80	Масло	206	_	15

^{*} Элюент гептан—этилацетат, 3:1.

^{*2} Ткин 170...175 °С (9 мм рт. ст.).

Строение инденового производного XVII подтверждается спектрально. В его спектре ПМР присутствуют два сигнала метильных групп при $1,66\,\mathrm{m}$. д., д, $J=7,1\,\mathrm{Fu}$ (1-CH3) и $1,86\,\mathrm{m}$. д., д, $J=1,1\,\mathrm{Fu}$ (3-CH3) и сигнал олефинового протона 2-H при $5,0\,\mathrm{m}$. д. (узкий мультиплет). Сигнал протона 1-H перекрывается с мультиплетом метиленовых протонов парациклофана (2,7...3,5 м. д.) и обнаруживается при развязке от метильной группы в положении 1 при $3,15\,\mathrm{m}$. д. Протоны ароматических колец парациклофана образуют мультиплет в области $6,0...6,65\,\mathrm{m}$. д.

Таблица 2 Параметры снектров ПМР соединений II—XII*

Соеди- нение	Химический сдвиг, δ , м. д.
II* ²	2,15 (3H, c, CH ₃); 2,703,30 (7H, м, CH ₂ -PCP); 3,73 (1H, м, CH ₂ -PCP); 6,307,0 (7H, м, ArH-PCP); три группы сигналов: 6,88 (2H, д, $J=8,3$ Гц); 7,12 (1H, т, $J=8,0$ Гц) и 7,42 (2H, т, $J=7,7$ Гц) (N-ArH)
m	2,10 (3H, c, CH ₃); 3,70 (3H, c, OCH ₃); 7,7 (2H) и 6,70 (2H) (два д, расшепл. 9,0 Гц, O-ArH); 6,47,2 (5H, м, =N-ArH)
IV	2,17 (3H, c, CH ₃); 3,54 и 3,86 (2H, спектр типа AB, J_{AB} = 13,8 Гц, CH ₂ -Ar); 6,707,60 (10H, м, ArH)
V	6,757,80 (м, АгН)
VI	2,17 (3H, c, CH ₃); 6,868,13 (12H, M, ArH)
VII	1,70 (3H, c, CH ₃); 2,62 (2H, м, CH ₂); 4,1 (1H, ш. c, NH); 5,085,12 (2H, м, =CH ₂); 5,70 (1H, м, =CH); три группы сигналов: 6,33 (2H, д), 6,62 (1H, т) и 7,0 (2H, т, $J=8$ Γ ц, N-ArH); 7,307,50 (5H, м, ArH)
VIII	1,68 (3H, c, CH ₃); 2,302,60 (2H, м, CH ₂); 2,903,30 (7H, м, CH ₂ —PCP+NH); 3,90 (1H, м, CH ₂ -PCP); 5,05 (2H, м, =CH ₂); 5,50 (1H, м, =CH); 6,307,10 (12H, м, ArH)
IX	1,75 (3H, c, CH ₃); 2,70 (2H, м, CH ₂); 3,90 (3H, c, OCH ₃); 4,2 (1H, ш. c, NH); 5,205,30 (2H, м, =CH ₂); 5,57 (1H, м, =CH); 7,0 (2H) и 7,50 (2H) (два д, $J=8,8$ Гц, O-ArH); три группы сигналов: 6,47 (2H, д, $J=8,2$ Гц), 6,72 (1H, т, $J=7,7$ Гц) и 7,12 (2H, д. д, $J=7,7$, 8,2 Гц, N-ArH)
X	1,58 (3H, c, CH ₃); 2,602,95 (2H, м, CH ₂); 3,24 и 3,43 (2H, спектр типа AB, J_{AB} = 14 Γ u, CH ₂ Ar); 3,80 (1H, ш. c, NH); 5,405,55 (2H, м, =CH ₂); 6,25 (1H, м, -CH); 7,007,71 (10H, м, ArH)
XI	3,42 (2H, м, CH ₂); 4,51 (1H, с, NH); 5,2 (2H, м, =CH ₂); 5,68 (1H, м, =CH); 6,527,73 (15H, м, ArH)
XII	1,97 (3H, м, CH ₃); 2,89 (2H, м, CH ₂); 5,20 (1H, ш. с, NH); 5,42 (2H, м, =CH ₂); 6,22 (1H, м, =CH); 7,128,09 (12H, м, ArH)

^{*} Химические сдвиги и константы спин-спинового взаимодействия рассчитаны в приближении первого порядка во всех случаях, за исключением спиновой системы типа AB.

^{*2} Здесь и далее сокращение РСР используется для обозначения парациклофанового фрагмента.

Параметры спектров ПМР соединений XIII - XIX*

Соеди- нение	Химические сдвиги, δ , м. д., КССВ, J , Гц
џис- ХІП	1,27 (3H, д, J = 6,5 Γ ц, 4-CH ₃); 1,60 (3H, c, 2-CH ₃); 1,97 (1H, д. д, J = 13,0, 5,8 Γ ц, 3 e -H); 1,83 (1H, д. д, J = 13,0, 11,0 Γ ц, 3 a -H); 3,05 (1H, м, 4-H); 4,3 (1H, ш. с, NH); 6,53 (1H, д. д, J = 8,1, 1,3 Γ ц, 8-H); 6,58 (τ д, J = 7,4, 1,2 Γ ц, 6-H); 7,08 (1H, τ , 7-H); 7,23 (1H, д, J = 7,4); три группы сигналов 7,26 (1H, τ), 7,37 (2H, τ) и 7,58 (2H, τ , ArH)
транс- XIII	1,29 (3H, д, $J=6,5$ Гц, 4-CH ₃); 1,55 (3H, с, 2-CH ₃); 1,76 (1H, т, $J=12,5$ Гц, 3a-H); 2,25 (1H, д. д, $J=12,4$, 4,6 Гц, 3e-H); 2,37 (1H, м, 4-H); 3,7 (1H, ш. с, NH); 6,58 (1H, д. д, $J=8,4$, 1,2 Гц, 8-H); 6,70 (1H, т. д, 7,4; 1,2, 6-H), остальные сигналы в ароматической области перекрываются сигналами преобладающего изомера μuc -XIII
XIV	1,32 (3H, c, 2-CH ₃); 1,55 (3H, д, J = 6,6 Γ ц, 4-CH ₃); 2,02 (1H, д. д, J = 12,9, 5,5 Γ ц, 3 e -H); 1,75 (1H, уш. т, J = 12,6 Γ ц, 3 e -H); 2,93 и 2,98 (спектр типа AB, J = -13,0 Γ ц, CH ₂ -Ar); 3,12 (1H, м, 4-H); 3,7 (1H, ш. с, NH); 6,64 (1H, д. д. д. J = 7,9, 1,3 Γ ц, 8-H); 6,88 (1H, т. д. J = 7,4, 1,3 Γ ц, 6-H); 7,19 (1H, т. J = 7,6 Γ ц, 7-H); 7,38 (1H, д. д. J = 7,6, 1,2 Γ ц, 5-H); 7,77,6 (5H, м, ArH)
XV	1,29 (3H, $_{\rm H}$, $_{\rm J}$ = 6,8 $_{\rm H}$, 4-CH ₃); 1,70 (3H, $_{\rm C}$, 2-CH ₃); 1,96 (1H, $_{\rm H}$, $_{\rm H}$, $_{\rm J}$ = -13,1, 10,2 $_{\rm H}$, 3 $_{\rm a}$ -H); 2,12 (1H, $_{\rm H}$, $_{\rm H}$, $_{\rm J}$ = -13,1, 6,0 $_{\rm H}$, 3 $_{\rm e}$ -H); 3,24 (1H, $_{\rm M}$, 4-H); 4,7 (1H, $_{\rm H}$, $_{\rm C}$, NH); 7,27,9 (12H, $_{\rm M}$, ArH)
XVI	1,30 (3H, c, 2-CH ₃); 1,65 (3H, д, $J=7,0$ Гц, 4-CH ₃); 1,903,80 (11H, м, перекрываются сигналы протонов 3-H, 4-H и CH ₂ -PCP); 3,90 (1H, ш. c, NH); 6,27,4 (11H, м, ArH)
XVII	1,66 (3H, д, $J = 7,1$, 1-CH ₃); $1,86$ (3H, д, $J = 1,1$ Гц, 3-CH ₃); $2,703,60$ (9H, м, 1-H + CH ₂ —PCP); $5,0$ (1H, узк. м, 2-H); $6,606,70$ (6H, м, ArH)
XVIII	1,39 (3H, π , $J = 7.4 \Gamma\pi$, 1-CH ₃); 2,2 (3H, ym. c, 3-CH ₃); 3,5 (1H, ym. π , 1-H); 3,9 (3H, c, OCH ₃); 6,1 (1-H, ym. c, 2-H); 6,93 (1H, π , π
XIX	1,42 (3H; д, J = 7,0 Γ ц, 1-CH ₃); 3,62 (1H, уш. к, J = 7,0 Γ ц, 1-H); 6,55 (1H, д, J = 1,1 Γ ц, 2-H); 7,007,90 (1H, м, ArH)

* См. примечание к табл. 2.

При циклизации фенилалкениламинов IX и XI были выделены только замещенные индены, соответственно: 1,3-диметил-5-метоксиинден (XVIII) (выход 30%) и 1-метил-3-фенилинден (XIX). Следовательно, в этих случаях циклизация протекает не по анилиновому фрагменту, а по арильному радикалу бутенильной группы.

$$\begin{array}{c|c} R & Me \\ \hline R & NHPh \\ \hline IX, XI & XVIII, XIX \end{array}$$

IX, XVIII R = OMe, $R^1 = Me$; XI, XIX R = H, $R^1 = Ph$

В спектре ПМР замещенного индена XVIII наблюдаются сигналы протонов 1-H при 3,5 м. д.(уш. к), 2-H (6,1 м. д., уш. с), три сигнала метильных групп при 1,4 (J=7,4 Γ ц, 1-CH₃); 2,2 (с, 3-CH₃) и 3,9 (с, 5-OCH₃) и три сигнала ароматических протонов при 7,40 (д, J=2,2 Γ ц, 4-H); 6,87 (д, д, J=8,2; 2,2 Γ ц, 6-H) и 7,20 м. д. (д, J=8,2 Γ ц, 7-H). В спектре ЯМР 13 С присутствуют сигналы трех метильных групп при 12,95, 16,56 и

55,4 м. д., пяти групп СН при 43,5, 109,4, 111,3, 119,2 и 134,0 м. д. и четырех четвертичных атомов углерода при 137,6, 138,4, 151,7 и 158,1 м. д. Можно предположить, что промежуточной стадией этой реакции является образование замещенного индана, отщепление от которого молекулы анилина приводит к термодинамически более выгодной системе индена.

Таким образом, показано, что электрофильная циклизация арилалкениламинов может протекать по двум направлениям с образованием тетрагидрохинолинов и инденов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР синтезированных соединений записаны на спектрометрах с рабочей частотой для протонов 200 и 30 МГц фирмы Bruker в CDCl₃. ИК спектры записаны на приборе Specord IR-75. Масс-спектры получены на приборе МХ-1303. Контроль за ходом реакций и индивидуальностью полученных соединений осуществляли методом TCX на пластинках Silufol UV-254.

Кетимины I—VI. Раствор 0,01 моль амина, 0,01 моль кетона в 30 мл абсолютного толуола и каталитических количеств ледяной уксусной кислоты кипятят с насадкой Дина—Старка в течение 24...30 ч. По окончании реакции отгоняют растворитель. Из остатка кетимина выделяют перегонкой в вакууме или дробной кристаллизацией.

Арилалкениламины VII—XII. К раствору аллилмагнийбромида, приготовленному из 0,12 моль магния, 0,06 моль аллилбромида в 100 мл абсолютного эфира, постепенно добавляют 0,03 моль соответствующего кетимина I—VI и нагревают при кипении растворителя в течение 3 ч. Разлагают насыщенным раствором хлористого аммония. Эфирный слой отделяют, а водный экстрагируют эфиром (3×50 мл), сущат MgSO4. Эфир упаривают, продукты реакции выделяют хроматографически на колонке с Al_2O_3 (h=20 см, d=2 см, элюент гексан). Характеристики соединений VII—XII приведены в табл. 1 и 2.

Замещенные 1,2,3,4-тетрагидрохинолинов XIII—XVI и замещенные индены XVII—XIX. Смесь 0,03 моль соответствующего арилалкениламина VII—XII, растворенного в 10 мл СНС l_3 и 5 мл l_2 SO4 (моногидрат), нагревают при 60 °C 3...4 ч. Выливают на лед и разлагают водным раствором аммиака до рН 8...9. Экстрагируют хлороформом (3×20 мл). Остаток после отгонки растворителя разделяют хроматографически на колонке с l_2 O3 (l_3) (l_4) см., элюент гексан—этилацетат, 30:1). Характеристики соединений XIII—XIX приведены в табл. 1, 3.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кузнецов В. В., Алиев А. Э., Пальма А. Р., Варламов А. В., Простаков Н. С. // XГС. 1991. \mathbb{N}^2 7. С. 947.
- 2. Кузнецов В. В., Пальма А. Р., Алиев А. Э., Фернандес М., Простаков Н. С., Варламов А. В. // ХГС. 1993. № 6. С. 784.
- 3. Кузнецов В. В., Алиев А. Э., Простаков Н. С. // XГС. 1994. № 1. С. 73.
- Hansh C., Crosby D., Sadoski M., Leo A., Percival D. // J. Amer. Chem. Soc. 1961. Vol. 73. — P. 704.
- 5. Зволинский О. В., Плешаков В. Г., Простаков Н. С. // ХГС. 1996. № 2. С. 277.
- Chapman G., Abercrombic B. D., Cary P. D., Bradbury E. M. // J. Magn. Reson. 1978. Vol. 31. — P. 495.

Российский университет дружбы народов, Москва 117198 • Поступило в редакцию 11.09.96