Н. П. Соловьева, В. А. Макаров, В. Г. Граник

высокополяризованные енамины

3*. ИЗУЧЕНИЕ ПРОСТРАНСТВЕННОГО СТРОЕНИЯ ПРОИЗВОДНЫХ lpha, lpha-диамино-eta-нитро-eta-цианэтилена**

Методами спектроскопии 1 H и 13 C ЯМР исследовано пространственное строение различных производных α,α -диамино- β -нитро- β -цианэтилена. Показано, что конфигурация исследуемых «push-pull» енаминов определяется возможностью создания внутримолекулярной водородной связи между группами NH и NO2 или стерическими взаимодействиями. Реакцией изученных енаминов с гидразингидратом синтезирован ряд производных 3,5-диамино-5-нитропиразола.

В предыдущем сообщении этой серии [1] описан синтез и некоторые свойства «push-pull» енаминов — производных α,α -диамино- β -нитро- β -цианэтилена. Последние являются весьма интересными исходными соединениями для синтеза различных замещенных гетероциклов. В то же время наличие в их структуре полностью замещенного этиленового фрагмента создает значительные сложности для исследования их конфигурации [2] — отметим указание в литературе на то, что ранее конфигурацию соединений этого типа определить не удалось [3]. Целью настоящей работы явилось изучение тонкого строения указанных енаминов методом спектроскопии ЯМР. Первым объектом, выбранным для настоящего исследования, явился α -метиламино- α -(N,N-диметиламинометилен) амино- β -нитро- β -цианэтилен (I).

В спектрах ЯМР 1 Н этого соединения, снятых в ДМСО- D_6 и ДМФА- D_7 (см. табл. 1), наблюдаются сигналы протонов групп NH в виде квартетов при 9,82 ($^3J_{\rm NH,Me}=3,9$ Гц) и 9,96 м. д. ($^3J_{\rm NH,Me}=3,8$ Гц) соответственно. Съемка спектра при пониженной температуре в ДМФА- D_7 показывает, что положение сигнала практически остается неизменным: $\delta_{\rm NH}=10,08$ при -30 °C, а при -40 °C — 10,10 м. д. Этот факт свидетельствует о том, что для исследуемого соединения I характерна достаточно прочная внутримолекулярная водородная связь (ВМС) между группами NO2 и NH, что однозначно определяет его конфигурацию. Выяснение конформационных особенностей енамина I проведено с помощью методики гомоядерного эффекта Оверхаузера (ЯЭО). Так, в результате облучения сигнала протонов группы N—Ме (фрагмента NHMe) при 2,92 м. д. (ДМСО- D_6) наблюдается

^{*} Сообщение 2 см. [1]

^{.**} Иначе, данные соединения можно рассматривать как производные акрилонитрила.

Данные спектров ЯМР 1 Н соединений I—VIII (δ , м. д., КССВ, J, Γ ц)

Соеди-	Температура сьемки, °С	Раство- ритель	NH, NH ₂	CONOUL / CONCUL	Амидиновый фрагмент		
нение				α -NCH $_3$ / α -NCH $_2$	N(CH ₃) ₂ , c	≃СН, с	
				_			
1	+23	дмсо-D6	9,82 (1H, κ, a*-H)	$2,92$ (3H, д, ${}^{3}J_{\text{Me},a-\text{H}}=3,9$)	$3,01$ (3H, 6^{*2} -CH ₃) и 3,13 (3H, a -CH ₃)	8,11 (1H)	
	-40	ДМФА-D7	10,10 (1Н, к, а-Н)	$3,04$ (3H, д, ${}^3J_{\text{Me},a-\text{H}}=3,8$)	3,10 (3H, б-СН ₃) и 3,24 (3H, а-СН ₃)	8,20 (1H)	
II	+23	ДМСО-D ₆	8,13 (2H, уш. с) и 8,76 (1H, к, а-Н)	$2,85$ (3H, д, ${}^{3}J_{\text{Me},a-\text{H}} = 5,0$)			
	-40	ДМФА-D7	8,56 (2H, с) и 9,10 (1H, с)	$3,07$ (3H, д, ${}^3J_{\text{Me},a-\text{H}}=4,7$)			
III	+23	ДМСО-D6	7,60 (4H, c)				
e	-40	ДМФА-D7	8,29 (2H, с) и 8,42 (2H, с)				
IV	+23	ДМСО-D ₆	8,22 (1Н, уш. с, б-Н) и 8,63 (1Н, с, а-Н)		2,86 (6H)		
	-40	ДМФА-D7	8,60 (1H, c, б-H) и 9,01 (1H, c, a-H)		3,12 (6Н, уш. с)		
V	+23	ДМСО-D6	9,05 (1Н, уш. с, б-Н) и 9,32 (1Н, с, а-Н)		3,08 (3H, 6-СН3) и 3,14 (3H, а-СН3)	8,25 (1H)	
	-40	дмФА-D7	9,40 (1Н, уш. с, б-Н) и 9,60 (1Н, с, а-Н)		$3,01 (3H*^3, 6-CH3, ^4J_{6-CH3,CH}=0,7)$ и $3,26 (3H*^3, a-CH3, ^4J_{a-CH3,CH}=0,7)$	8,47 (1H)	
VI	+23	ДМСО-ДО6	· -	3,11 (3H, уш. с) и 3,17 (3H, уш. с)	3,14 (3H, б-СН ₃) и 3,24 (3H, а-СН ₃)	8,22 (1H)	
	-40	ДМФА-D ₇		3,18 (3Н, уш. с) и 3,25 (3Н, уш. с)	$3,23$ (3H* ³ , δ -CH3, ${}^4J_{\delta$ -CH3,CH = 0,8) и $3,37$ (3H* ³ , α -CH3, ${}^4J_{\alpha$ -CH3,CH = 0,7)	8,26 (1H)	
VII	+23	ДМСО-D6	_		3,10 (6H, <i>б</i> -СН ₃) и 3,19 (6H, <i>а</i> -СН ₃)	8,24 (2H)	
	-40	ДМФА-D7			3,18 (6H, б-СН3) и 3,31 (6H, а-СН3)	8,40 (2H, уш. с)	
VIIĮa	+23	ДМСО-D6	8,77 (2H, c)	3,62 [4H, c, 2-(α'-CH ₂)]]	
	-40	ДМФА-D7	9,13 (2H, ym. c)	3,88 [4H, ym. c, 2-(α'-CH ₂)]			
VIII6	+23	ДМСО-Д6	8,76 (2H, ym. c)	$_{3,33}$ [4H, т, 2-(α' -CH ₂)], $_{3}^{3}$ Ј α' -CH ₂ , α'' -CH ₂ = 5,8; 1,83 (2H, квинт., α'' -CH ₂)			

Здесь и далее указано пространственное расположение протона (см. формулы в тексте), Здесь и далее указано пространственное располоржение группы СНЗ, Частично расщепленный синглет.

увеличение интенсивности сигналов протонов групп NH (при 9,82 м. д.) на 15% и =CH (8,11 м. д.) на 5%, что указывает на пространственную близость мезопротона амидинового фрагмента и метильной группы заместителя NHMe. Аналогично проведено отнесение сигналов метильных групп заместителя NMe2. Насыщение слабопольного сигнала при 3,13 м. д. приводит к значительному (на 30%) увеличению интенсивности сигнала фрагмента CH, однако она почти не меняется в результате насыщения второго сигнала при 3,00 м. д. Отсюда следует, что слабопольный сигнал относится к группе CH3, a-расположенной по отношению к этому протону, а сильнопольный — к b-расположенной группе CH3. К сожалению, не удалось получить дополнительной информации о конфигурации соединения I из спектров ЯМР 13 С (ДМСО-D6) его меченого образца, имеющего фрагмент 15 NHMe, который был специально синтезирован по методике работы [1] с применением 15 NH2. В этом случае гетероконстанта 3 J15N13C оказалась близка к нулю. Параметры этого спектра: 5 NH = 9 ,82 (д. к), 1 J15NH = 9 4,8 1 1 1, 1 1,15NH = 9 4,8 1 1 1, 1 2, 1 3,15NHe = 1 3, 1 3,15NHe = 1 4, 1 5,15NHe = 1 4, 1 5,15NHe = 1 5,15NHe = 1 7,15NHe = 1 8, 1 9,15NHe = 1

Аналогичным образом была определена конфигурация α -метиламино- α -амино- β -цианэтилена (II):

В спектре ЯМР ¹Н соединения II, снятом при 20 °С в ДМСО-D₆, в области слабого поля имеется сигнал протона группы NH в виде квартета при 8,76 $(^{3}J_{\mathrm{NH,Me}}=5$ Гц,) и широкий сигнал протонов группы NH2 при $8{,}13$ м. д. В спектре, снятом при 20 °C в ДМФА-D7, значения бун и бунг близки приведенным выше (8,88 и 8,38 м. д. соответственно), а при -40 °C наблюдается небольшое смещение сигналов в область слабого поля $\delta_{\rm NH} = 9.10, \, \delta_{\rm NH2} = 8.56$ м. д. Достаточно слабопольное положение сигнала группы NH позволяет предположить, что и в этом случае реализуется ВМС между заместителями NHMe и NO2, хотя приведенные данные можно трактовать и как некоторое ослабление этой связи в ендиамине II по сравнению с амидинами І. Кажется вероятным, что больший объем второго α-заместителя в соединении I способствует сближению групп NH и NO₂ и, тем самым, усилению водородной связи. Эксперимент с использованием ЯЭО показал, что облучение сигнала фрагмента NMe (2,86 м. д.) соединения II приводит к увеличению интенсивности сигналов групп NH (на 8%) и NH2 (на 3,5%). В данном случае также не было получено дополнительной информации при анализе спектра ЯМР 13 С (ДМСО-D6) меченого образца, содержащего фрагмент 15 NHMe: $^3J_{15\text{N13C}}=0$ Гц, $\delta_{\text{NH}}=8,76$ (д. к), $\delta_{\text{NMe}}=2,85$ м. д. (д. д), $^1J_{15\text{NH}}=96$ Гц, $^2J_{15\text{NMe}}=1,5$ Гц, $^3J_{\text{NH,Me}}=4,7$ Гц. Однако при рассмотрении структуры ендиамина II возникает проблема, требующая особого рассмотрения. Действительно, в этом случае a priori неясно, почему ВМС возникает за счет группы NHMe, а не NH2. Мы предположили, что наличие метильного заместителя пространственно затрудняет образование межмолекулярных водородных связей с растворителем и наиболее энергетически выгодна ситуация, при которой одна из «активных» группировок принимает участие во внутримолекулярной, а другая в межмолекулярной водородной связи (см. IIA).

Для получения доводов в пользу предлагаемой трактовки были проведены эксперименты по съемке спектров ЯМР 1Н насыщенных и разбавленных растворов. Для последних следовало ожидать разрыва межмолекулярных и сохранения ВМС. В качестве растворителя для этих экспериментов был выбран ацетонитрил-D3 с добавлением небольшого количества ДМСО- D_6 для повышения растворимости соединения II. Были сняты спектры ЯМР 1 Н для насыщенного и разбавленных (1 : 10; 1 : 100 и 1: 250) растворов. Анализ полученных результатов показывает, что при десятикратном разбавлении сигнал протона группы NH сдвигается в сильное поле на 0,3 м. д. (от 8,48 до 8,22 м. д.), при дальнейшем разбавлении его химический сдвиг практически не меняется (8,18 м. д.). В то же время сигнал группы NH₂ сдвигается от 7,76 до 7,19 (10-кратное разбавление), далее до 7,05 м. д. (100-кратное разбавление) и только 250-кратное разбавление не меняет его положение. Таким образом, для группы NHMe $\Delta\delta$ составляет 0.3, а для $NH_2 - 0.71$ м. д., что свидетельствует в пользу высказанных выше предположений о вероятной структуре IIA, в которой протон группы NH включен во внутримолекулярную, а NH2 — в межмолекулярную водородные связи.

Аналогичная картина наблюдается при разбавлении растворов α,α -ди-амино- β -нитро- β -цианэтилена (III):

$$\begin{array}{c} \text{NC} & \text{NO}_2 \\ \\ \text{H}_2 \text{N} & \text{NH}_2 \end{array}$$

В спектре этого соединения, снятом в ацетонитриле- D_3 с добавлением нескольких капель ДМСО- D_6 , все четыре протона проявляются в виде общего сигнала при 7,60 м. д., который при разбавлении в 10, 100 и 250 раз смещается в сильное поле до 7,22, 7,05 и 7,05 м. д. соответственно, т. е. $\Delta \delta$ составляет 0,55 м. д. Рассмотренные результаты позволяют предположить, что уже упомянутое выше пространственное взаимодействие между а-заместителями в ендиаминах оказывает существенное влияние на силу ВМС между группами NH и NO2. Для проверки этого предположения были изучены спектры α -диметиламино- α -диамино- β -нитро- β -цианэтилена (IV) и α -диметиламинометиленамино- α -диамино- β -нитро- β -цианэтилена (V), в которых α -аминогруппа соседствует с диметиламиногруппой и амидиновым фрагментом.

В спектре соединения IV (ДМСО- D_6) в области слабого поля присутствуют два сильно уширенных сигнала протонов группы NH при 8,22 и 8,63, а также узкий сигнал шести протонов метильных заместителей группы NMe2 при 2,86 м. д. Аналогично для спектра, снятого в ДМФА- D_7 при 20 °C, химические сдвиги протонов группы NH2 составляют 8,40 и 8, 84, а при -40 °C — 8,60 и 9,01 м. д., причем слабопольный сигнал уширен в значительно меньшей степени. Другими словами, ситуация для первичной аминогруппы кардинально отличается от рассмотренной выше для соединений II, III и можно полагать, что увеличение объема второго α -заместителя способствует увеличению энергии ВМС между группами NH и NO2 (протону группы NH, участвующему в ВМС, соответствует слабопольный сигнал).

Как и для соединения III, в спектре енамидина V, снятом в ДМСО-D6, наблюдаются два уширенных сигнала равной интенсивности при 9,05 и 9,32 м. д., что также свидетельствует в пользу существования ВМС. Эксперимент с использованием ЯЭО подтверждает это предположение и позволяет определить взаимную ориентацию группы NH2 и амидинового фрагмента. Так, при облучении сильнопольного сигнала протона группы NH при 9.05 м. д. наблюдалось четкое увеличение интенсивности сигнала протона фрагмента =СН при 8,25 м. д. на 10%, которая изменилась очень незначительно при облучении слабопольного сигнала при 9,32 м. д. Группа NMe2 в спектре соединения IV представлена двумя синглетами при 3,08 и 3,14 м. д. (ДМСО-D6). Облучение слабопольного сигнала приводит к значительному (на 17%) увеличению интенсивности сигнала протона фрагмента =СН (а-ориентация), а сильнопольного — лишь к незначительному ее изменению. Таким образом, для большинства изученных непредельных диаминов выгодной является конфигурация, в которой молекула стабилизирована за счет ВМС между протоном при атоме азота и β-нитрогруппой. Наличие такой связи позволяет однозначно определять конфигурацию исследуемых соединений.

В отличие от рассмотренных выше диаминов определение конфигурации соединений VI и VII, не содержащих в своей структуре протонов, способных к образованию водородных связей, значительно затруднено.

В спектре α -диметиламинометиленамино- α -диметиламино- β -нитро- β цианэтилена VI (ДМСО-D6) присутствует двойной набор сигналов протонов метильных заместителей групп NMe2 — узкие синглеты при 3,14 и 3,24, а сильно уширенные сигналы при 3,11 и 3,17 м. д. (каждый интенсивностью в 3 протонные единицы) и сигнал протона фрагмента =СН при 8,22 м. д. Эксперимент с использованием ЯЭО показывает, что интенсивность последнего в результате облучения синглета при 3,24 возрастает на 21% (группировки СН и NMe2 пространственно сближены) и почти не меняется в результате облучения синглета при 3,14 м. д. Характер спектра сохраняется при съемке в смеси (1 : 2) ДМСО-D6--апетон-D7. однако узкие синглеты протонов метильных заместителей немного расщепляются за счет дальнего спин-спинового взаимодействия этих протонов с протоном группы СН: химический сдвиг NMe-б 3,20, $J_{\text{NMe-}6,\text{CH}} = 0,9$ Гд, химический сдвиг NMe-a 3,32 м. д., $^4J_{\text{NMe-}a}$, CH =0,5 Гц. Синглет протона группы СН также слабо расщеплен. Следовательно, узкие сигналы относятся к протонам группы NMe2 амидинового

Данные спектров ЯМР 13 С (ДМСО-D₆) соединений I—VII (δ , м. д., КССВ, J, Γ п)

1 1		С(β), с	CN, c	$lpha$ -NHCH3, $lpha$ -N(CH3) $_2$	Амидиновый фрагмент		
Соеди- нение	$^{\mathrm{C}}(lpha)$				N(CH ₃) ₂ K. M.	=СН, д. м.	
·							
I	164,0 (д), ${}^3J_{C(\alpha),H} = 6,1$	96,7	116,4	29,4 (k), ${}^{1}J_{C,H} = 126,7$	$34,6, ^{1}\!\!J_{\rm C,H} = 140,0 (\alpha^*)$ и $40,8, ^{1}\!\!J_{\rm C,H} = 141,0 (\delta)$	$157,6, {}^{1}J_{C,H} = 184,0$	
İI	157,0 (c)	92,3	115,0	29,1 (к. д), ${}^{1}J_{C,H} = 141,1$			
m ·	158,5 (c)	92,4	114,8				
IV	158,6 (c)	89,9	116,9	40,3 (K. K), ${}^{1}J_{C,H} = 140,4$			
V	164,8 (д), ${}^3J_{C(\alpha),H} = 6,9$	99,0	115,6		$35,0, {}^{1}J_{\text{C,H}} = 138,7 (a)$ и $41,2, {}^{1}J_{\text{C,H}} = 139,6 (b)$	$158.8, {}^{1}J_{C,H} = 181.6$	
VI	165,2 (м)	91,3	117,3	39,2 (уш. с), 42,1 (уш. с)	35.9 , ${}^{1}_{J_{C,H}} = 140.3$ (a) M 41.6 , ${}^{1}_{J_{C,H}} = 140.4$ (b)	$162,3, {}^{1}J_{C,H} = 183,6$	
VII	172,0 (r), ${}^{3}J_{C(\alpha),H} = 11,5$	103,2	117,0		$35,5, {}^{1}J_{\text{C,H}} = 141,0 \ (a)$ и $41,3, {}^{1}J_{\text{C,H}} = 139,7 \ (b)$	$160,2, {}^{1}J_{C,H} = 185,4$	

Здесь и далее указано пространственное расположение группы СНз.

фрагмента, а уширенные (за счет частичного торможения вращения относительно ординарной связи CN) — к протонам енаминовой NMe_2 -групны. Отметим, что сигналы последней значительно сужены в спектре, снятом при -40 °C (ДМФА-D7), т. е. в этих условиях вращение относительно связи C— NMe_2 практически заторможено. Можно полагать, что стерический фактор является определяющим для конфигурации рассматриваемого соединения и последняя наиболее устойчива при μuc -расположении малой по объему группы CN и большей по объему группы NMe_2 .

Спектр α,α -бисдиметиламинометиленамино- β -нитро- β -пианэтилена VII (ДМСО- D_6) содержит один набор сигналов: два равной интенсивности синглета при 3,10 и 3,19 и синглет при 8,24 м. д. (=CH), причем их относительная интенсивность составляет 3:3:1 соответственно. Применение методики ЯЭО позволило отнести синглеты при 3,10 м. д. к δ -расположенному метильному заместителю, а при 3,19 м. д. — к α -заместителю. При -40 °С (ДМФА- D_7) сигнал протона в группе CH существенно уширяется за счет торможения вращения амидинового фрагмента. Построение молекулярных моделей показывает, что для диамидина VII наиболее благоприятна конформация, при которой протоны фрагментов =CH сближены.

Информация, полученная при рассмотрении спектров циклических ендиаминов — 2-(2-циано-2-нитрометилен) имидазолидина (VIIIa) и 2(2-циано-2-нитрометилен) -1,2,3,4,5,6-гексагидропиримидина (VIIIб), относительно невелика.

VIII a n = 2, 6 n = 3

В спектре соединения VIIIa (ДМСО- D_6) наблюдается узкий синглет при 3,62, соответствующий протонам двух групп CH_2 , и уширенный сигнал при 8,77 м. д., относящийся к протонам групп NH. Аналогичный спектр характерен для диамина VIII6 и отличается наличием двух сигналов при 1,83 (2H, квинтет) и 3,32 (4H, т) протонов пиримидинового цикла и содержит также сигнал при 8,76 м. д. (2H, уш. c, NH-протон).

Для всех исследованных в данной работе нециклических енаминов и ендиаминов были изучены также спектры ЯМР ¹³С (табл. 2). Из анализа величин химических сдвигов следует, что сигнал атома углерода $C(\alpha)$ наблюдается в значительно более слабом поле, чем сигнал атома углерода $(\Delta \delta C_{(\alpha)} C_{(\beta)}) = 60$ м. д.), что обусловлено мезомерным эффектом электронодонорных заместителей в α -положении и электроноакцепторным действием заместителей в β-положении. При переходе от ендиамина III с двумя аминогруппами у атома $C(\alpha)$ к моноамидиновому производному V и далее к диамидину VII наблюдается последовательное смещение сигналов атомов $C(\alpha)$ и $C(\beta)$ в сторону слабого поля: для $C(\alpha)$ $\Delta \delta V$ —III = 6,3, $\Delta \delta VII - V = 7.2$, для $C(\beta)$ $\Delta \delta V - III = 6.6$ и $\Delta \delta$ VII - V = 4.2 м. д. На атоме углерода группы CN также сказывается мезомерный эффект заместителя, однако в существенно меньшей степени: $\Delta \delta V - III = 0.8$ и $\Delta \delta VII - V =$ =1,4 м. д. Сопоставление химических сдвигов атома $C(\alpha)$ исследуемых соединений (табл. 2) показывает, что их величины очень близки в ряду ендиаминов II—III—IV (156,0...158,6 м. д.) и в ряду амидиноендиаминов I-V-VI (164,0...165,2 м. д.), т. е. изменение объема заместителя в аминогруппе не сказывается на химическом сдвиге $C(\alpha)$. Для атома $C(\beta)$ наблюдается иная ситуация: при замене в α-положении заместителя NH₂ на

NHMe и далее на NMe2 его сигнал смещается в сильное поле и $\Delta \delta IV - III = \Delta \delta II - III + \Delta \delta IV - II = -2.5$, а $\Delta \delta V - VI = \Delta \delta VI - II + \Delta \delta I - V = -7.7$ м. д.

Величины химических сдвигов групп NHMe и N=C—NMe₂ практически остаются неизменными в ряду исследуемых ендиаминов. В соединении IV группы NMe₂ представлены одним узким сигналом при 40,3 м. д., а в соединении VI — двумя сильно уширенными сигналами при 39,2 и 42,1 м. д.

Как уже отмечалось выше, многофункциональные «push-pull» енамины I—VIII представляются перспективными исходными для синтеза гетероциклических соединений. В рамках настоящей работы рассмотрен вопрос о том, как структурные изменения в ряду указанных енаминов влияют на их взаимодействие с гидразингидратом. Оказалось, что их нециклические представители II—IV взаимодействуют с N₂H₄ · H₂O по одному направлению, приводящему с высокими выходами к 3,5-диамино-4-нитропиразолу (IX). Очевидно, что достоверная интерпретация этих результатов требует подробного дополнительного исследования, однако наиболее вероятные схемы протекающих процессов могут быть суммированны следующим образом:

NC NO₂
$$N_2H_4 \cdot H_2O$$
 NC NC NO₂ $N_2H_4 \cdot H_2O$ NC NC NO₂ $N_2H_4 \cdot H_2O$ NC NRR¹ NC NO₂ NC

Другими словами, стабилизация интермедиата (A) предпочтительно осуществляется путем отрыва более объемного заместителя, что, в свою очередь, более благоприятно для уменьшения пространственных затруднений. Такого типа явление мы наблюдали ранее при замыкании пятичленного пиррольного цикла в случае синтеза пирроло [1,2-а]индолов [4].

Для енамидинов ситуация сложнее, поскольку известно, что переаминирование амидинового фрагмента протекает с большей скоростью, чем незамещенной или замещенной аминогруппы [5]. С другой стороны, проведенное нами недавно исследование переаминирования рассматриваемых в данной работе енаминов и енамидинов [1] дает основание полагать, что атака по мезоуглеродному атому амидиновой группировки характерна для этой системы и, следовательно, например для соединения VI, процесс можно описать следующей схемой:

VI
$$\frac{N_2H_4 \cdot H_2O}{Me_2N + H_2NH_2}$$
 $\frac{NC}{Me_2N + H_2NH_2}$ $\frac{NH_2}{Me_2N + H_2N + NMe_2}$

После образования промежуточного соединения IV реакция далее протекает по предыдущей схеме и аналогичное образование пиразола IX возможно и для других енамидинов, например I, VII. Понятно, что подобные схемы не могут реализоваться в случае циклических енаминов VIIIa,б. Действительно, при нагревании последних с гидразингидратом образуются соответствующие 3-амино-4-нитро-5-(R-амино) пиразолы (Xa,б), что в известной мере подтверждает высказанные выше соображения:

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на спектрофотометре Perkin-Elmer для суспензий в вазелиновом масле. ЯМР спектры регистрировали на спектрометре Oxford Unity 400, внутренний стандарт ТМС. Масс-спектры получены на спектрометре Varian SSQ-700 с вводом вещества непосредственно в ионный источник. Контроль за чистотой продуктов и ходом реакций осуществляли с помощью ТСХ на пластинках Silufol UV-254.

3,5-Диамино-4-нитропиразол (IX). К суспензии 12,8 ммоль соединения I—VII в 20 мл метанола при интенсивном перемешивании добавляют 3,2 мл (64,1 ммоль) гидразингидрата и полученную смесь кипятят в течение 45 мин. Реакционную массу выдерживают 2 ч при комнатной температуре и затем охлаждают до 5 °C, при этом выпадает ярко-красный кристаллический осадок продукта IX. Выход 85...95%. $T_{\rm BI}$ 261 °C (метанол). М ^{+ 143}. ИК спектр: 3330, 3210, 3125 (NH, NH₂), 1658, 1455, 980 см ⁻¹. Найдено, %: C 25,21; H 3,58; N 49,12. C₃H₅N₂O₂. Вычислено, %: C 25,17; H 3,49; N 48,95.

3-Амино-5-аминоэтиламино-4-нитропиразол (Ха). К суспензии 13,0 ммоль соединения VIIIа в 20 мл метанола при интенсивном перемешивании добавляют 3,2 мл (64,1 ммоль) гидразингидрата и полученную смесь кипятят 30 мин. Реакционную массу выдерживают 2 ч при комнатной температуре и охлаждают до 5 °С, после чего получают 1,9 г красного кристаллического осадка продукта Ха. Выход 79%. $T_{\rm LII}$ 172 °С (изопропанол). M^+ 186. ИК спектр: 3350...3100 (NH, NH₂), 1665, 1410, 970 см⁻¹. Найдено, %: C 32,37; H 5,22; N 44,98. C₅H₁₀N₆O₂. Вычислено, %: C 32,25; H 5,37; N 45,16.

3-Амино-5-аминопропиламино-4-нитропиразол (Хб). К суспензии 11,9 ммоль соединения VIII6 в 20 мл метанола при интенсивном перемешивании добавляют 3,2 мл (64,1 ммоль) гидразингидрата и кипятят 30 мин. Реакционную массу выдерживают далее 2 ч при комнатной температуре и охлаждают до 5 °C, получают 1,7 г красного кристаллического осадока продукта Хб. Выход 71%. $T_{\Pi \Pi}$ 148 °C (изопропанол). M^{+} 200. ИК спектр: 3320...3150 (NH, NH₂), 1648, 1476, 1004 см⁻¹. Найдено, %: C 35,86; H 6,08; N 41,84. C₆H₁₂N₆O₂. Вычислено, %: C 36,00; H 6,00; N 42,00.

СПИСОК ЛИТЕРАТУРЫ

- 1. Макаров В. А., Седов А. Л., Анисимова О. С., Граник В. Г. // ХГС. 1996. № 6. —
- 2. Makarov V. A., Solov'eva N. P., Anisimova O. S., Granik V. G. // 211th National American Chemical Society Meeting. — 1996. — ORGN78.
- 3. Clark J., Gelling I., Southon I. W., Morton M. S. // J. Chem. Soc. 1970. N 3. P. 498.
- 4. Рябова С. Ю., Трофимкин Ю. И., Алексеева Л. М., Кербникова И. Ф., Шварц Г. Я., Граник В. Г. // Хим.-фарм. журн. — 1995. — \mathbb{N}^9 9. — С. 22. 5. Граник В. Г., Дозорова Е. Н., Марченко Н. Б., Буданова Л. И., Кузовкин В. А., Глуш-
- ков Р. Г. // Хим.-фарм. журн. 1987. № 10. С. 1249.

Центр по химии лекарственных средств (ЦХЛС-ВНИХФИ), Москва 119815

Поступило в редакцию 10.07.96