С. А. Ямашкин, Н. Я. Кучеренко, М. А. Юровская

2,3-ДИМЕТИЛ-7-МЕТОКСИ-6-АМИНОИНДОЛ В СИНТЕЗЕ ЛИНЕЙНЫХ ПИРРОЛОХИНОЛИНОВ

Изучена возможность использования 2,3-диметил-7-метокси-6-аминоиндола для получения пирролохинолинов. Установлено, что метоксигруппа в положении 7 активирует замыкание пиридинового кольца с образованием линейно сочлененных пирролохинолинов в реакции Комба, в условиях реакции Вильсмейера и термической циклизации аминокротоната, а также высокотемпературной циклизации аминометиленмалоната.

Известно, что использование 6-аминоиндолов с двумя свободными *орто*-положениями по отношению к аминогруппе в реакциях образования пирролохинолинов приводит к смеси линейного и углового изомеров (кислотные условия) [1] либо только к угловому изомеру (термическая циклизация) [2].

С целью получения линейных пирролохинолинов мы изучили реакцию 2,3-диметил-7-метокси-6-аминоиндола (I) с дикетонами, ацетоуксусным и малоновым эфиром. Установлено, что конденсация аминоиндола I с ацетилацетоном и дибензоилметаном протекает легче, чем в случае 6-аминоиндолов без метоксильной группы в бензольном кольце, что, видимо, объясняется большей нуклеофильностью используемого амина.

Ha $R = R^1 = Me$; $\delta R = R^1 = Ph$; B R = Me, $R^1 = OEt$

Так же легко из соединения I образуется аминокротонат IIв и аминометиленмалонат IIг.

$$I \xrightarrow{\text{EtOCH}=C(\text{COOEt})_2} \xrightarrow{\text{EtO}_2\text{C}} \xrightarrow{\text{CO}_2\text{Et}} \xrightarrow{\text{Me}} \xrightarrow{\text{NH}} \xrightarrow{\text{NH}} \xrightarrow{\text{NH}}$$

Следовало ожидать, что наличие метоксигруппы в мета-положении к месту циклизации будет дезактивировать образование соответствующих пирролохинолинов. Известно, что метоксильная группа в орто-положении к енаминной группе блокирует или полностью исключает образование хинолиновой системы в условиях кислотной циклизации в случае соответствующих анилинов [3]. Вопреки этому енаминокетоны IIа,б в трифторуксусной кислоте очень гладко превращаются в соответствующие линейные пирролохинолины IIIа,б.

Епамины

Соеди- нение	<i>Т</i> пл, °С	R _f (система)	УФ спектр		Спектр ПМР, б, м. д.	Брутто- формула	_Найдено, %_ Вычислено, %		Выход,
			$\lambda_{ m max}$	lg €			С	Н	,,
IIa	175176	0,24 (A)	230 315	4,37 4,08	1,76 (3H, c, CH ₃ C=); 2,01 (3H, c, CH ₃ CO); 2,09 (3H, c, 3-CH ₃); 2,25 (3H, c, 2-CH ₃); 3,90 (3H, c, OCH ₃); 5,17 (1H, c, H вин.); 6,58 (1H, д, <i>J</i> = 11 Гц, 5-H); 6,66 (1H, д, <i>J</i> = 11 Гц, 4-H); 10,78 (1H, c, 1-H); 12,24 (1H, c, NH имин.)	$C_{16}H_{20}N_2O_2$	70,23 70,56	7.59 7,40	69
Пб	225227	0,59 (A)	220 278 350	4,42 3,86 4,02	2,31 (3H, c, 3-CH ₃); 2,40 (3H, c, 2-CH ₃); 3,80 (3H, с, OCH ₃); 6,10 (1H, с, H вин.); 6,14 (1H, д, <i>J</i> =11 Fu, 5-H); 6,29 (1H, д, <i>J</i> =11 Fu, 4-H); 7,62 (10H, м, 2C ₆ H ₅); 10,73 (1H, с, 1-H)	C ₂₆ H ₂₄ N ₂ O ₂	78.60 78,76	5,93 6,10	38
Пв	145146	0,62 (A)	230 295	4,32 4,11	1,21 (3H, м, $J = 7$ Гц, CH ₂ CH ₃); 1,71 (3H, c, CH ₃ C=); 2,15 (3H, c, 3-CH ₃); 2,26 (3H, c, 2-CH ₃); 3,91 (3H, c, OCH ₃); 4,09 (2H, к, $J = 7$ Гц, CH ₂ CH ₃); 4,61 (1H, c, H вин.); 6,54 (1H, д, $J = 11$ Гц, 5-H); 6,63 (1H, д, $J = 11$ Гц, 4-H); 10,10 (1H, c, 1-H); 10,80 (1H, c, NH имин.)	C ₁₇ H ₂₂ N ₂ O ₃	67.79 67,53	7,10 7,33	46
IIr	180181	0,33 (A)	225 270 345	4,11 3,92 3,76	1,27 (6H, м, 2CH ₂ CH ₃); 2,35 (3H, с, 3-CH ₃); 2,39 (3H, с, 2-CH ₃); 3,92 (3H, с, OCH ₃); 4,20 (4H, м, <u>CH₂CH₃</u>); 6,60 (1H, д, <i>J</i> = 11 Гц, 5-H); 6,77 (1H, д, <i>J</i> = 11 Гц, 4-H); 8,35 (1H, д, <i>J</i> = 16 Гц, Н вин.); 10,90 (1H, с, 1-H); 11,10 (1H, д, <i>J</i> = 16 Гц, Н вин.)	C ₁₉ H ₂₄ N ₂ O ₅	63,22 63,32	6,80 6,71	32

IIIa R = Me, $\delta R = Ph$

Данные эксперимента указывают на своеобразное распределение электронной плотности в индольной структуре. Аналогично енаминокетонам в пирролохинолин IIIв легко превращается и аминокротонат IIв в условиях реакции Вильсмейера.

Как было отмечено выше, термическая циклизация аминокротонатов и аминометиленмалонатов в случае двух свободных *орто*-положений в ароматическом кольце протекает с образованием соответствующих пирролохинолинов только с угловым сочленением колец [2]. Интересно было выяснить, возможно ли образование линейной пирролохинолиновой системы в условиях, когда ангулярная циклизация невозможна из-за наличия заместителя в положении 7 6-аминоиндола. Мы показали, что при кипячении аминокротоната Пв в дифениле легко и с хорошим выходом образуется линейный пирролохинолин ПГг.

Аналогично аминокротонат IIr в кипящем даутерме циклизуется в пирролохинолин IIIд.

Спектральные и другие характеристики полученных соединений согласуются с литературными данными и приведены в табл. 1 и 2.

Таким образом, циклизация енаминокетонов IIа, б в кислой среде и аминокротоната IIв в условиях реакции Вильсмейера независимо от наличия в бензольном кольце метоксильной группы протекает легко с образованием

Пирролохинолины

Соеди- нение	Тпл, °С	R _f (система)	УФ спектр		Спектр ПМР, δ , м. д.	Брутго- формула	<u>Найдено, %</u> Вычислено, %		Выход,
			$\lambda_{ m max}$	lg €		фортули	С	Н	
IIIa	198199	0,40 (Б)	212 235 264 340	4,20 4,37 4,34 3,84	2,36 (3H, c, 3-CH ₃); 2,60 (3H, c, 2-CH ₃); 2,61 (3H, c, 5-CH ₃); 2,68 (3H, c, 7-CH ₃); 4,02 (3H, c, OCH ₃); 6,83 (1H, c, 6-H); 7,05 (1H, c, 4-H); 11,08 (1H, c, 1-H)	$C_{16}H_{18}N_2O$	75,71 75,56	6,92 7,13	60
Шб	194195	0,70 (A)	215 250 295 360	4,34 4,44 4,33 3,97	2,41 (3H, c, 3-CH ₃); 2,80 (3H, c, 2-CH ₃); 3,88 (3H, c, OCH ₃); 6,80 (1H, c, 6-H); 7,85 (11H, м, 4-H и 5-, 7-C ₆ H ₅); 11,30 (1H, c, 1-H)	C ₂₆ H ₂₂ N ₂ O	82,30 82,51	5,63 5,86	40
Шв	188189	0,50 (A)	205 240 285	4,05 4,23 4,41	1,40 (3H, м, <i>J</i> = 7 Гп, CH ₂ CH ₃); 2,40 (3H, с, 3-CH ₃); 2,69 (3H, с, 2-CH ₃); 2,95 (3H, с, 7-CH ₃); 4,02 (3H, с, OCH ₃); 4,39 (2H, к, <i>J</i> = 7 Гп, CH ₂ CH ₃); 7,00 (1H, с, 4-H); 8,68 (1H, с, 5-H); 11,39 (1H, с, 1-H)	$C_{18}H_{20}N_2O_3$	69,50 69,21	6,21 6,45	39
IIIr	>300	0,75 (B)	208 230 260 340	4,18 4,41 4,39 3,97	2,34 (3H, c, 7-CH ₃); 2,40 (3H, c, 3-CH ₃); 2,51 (3H, c, 2-CH ₃); 4,02 (3H, c, OCH ₃); 5,91 (1H, c, 6-H); 7,18 (1H, c, 4-H); 9,32 (1H, c, OH); 11,20 (1H, c, 1-H)	$C_{15}H_{16}N_2O_2$	70,45 70,29	6.02 6,29	47
Шд	241242	0,32 (Б)	210 222 233 250 339	4,26 4,25 4,38 4,45 4,65	1,31 (3H, т, <i>J</i> = 7 Fu, CH ₂ CH ₃); 2,39 (3H, с, 3-CH ₃); 2,56 (3H, с, 2-CH ₃); 4,02 (3H, с, OCH ₃); 4,30 (2H, к, <i>J</i> = 7 Fu, CH ₂ CH ₃); 7,28 (1H, с, 4-H); 7,40 (1H, с, 7-H); 8,50 (1H, с, OH); 11,49 (1H, с, 1-H)	C ₁₇ H ₁₈ N ₂ O ₄	64,65 64,96	6,00 5,77	57

пирролохинолинов с линейным сочленением колец. Термическая циклизация аминокротоната IIв и аминометиленмалоната IIг является удобным методом получения пирролохинолинов с функциональными группами в пиридиновом кольце.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ITMP получены на приборе Bruker AC-200P в ДМСО- D_6 относительно ТМС. УФ спектры измерены на приборе Specord в этаноле. Контроль за ходом реакций и чистотой полученных соединений осуществляли с помощью ТСХ на пластинах Silufol UV-254 в системах бензол—этилацетат, 10:1 (A), 1:1 (Б), этилацетат—метанол, 2:1 (В). Спектральные и другие характеристики полученных соединений приведены в табл. 1, 2.

- **4-(2,3-Диметил-7-метоксииндолил-6) аминопентен-3-он-2 (Па).** Получают из 2,3-диметил-7-метокси-6-аминоиндола и ацетилацетона, как описано в работе [4], очищают перекристаллизацией из петролейного эфира.
- 1,3-Дифенил-3-(2,3-диметил-7-метоксииндолил-6) аминопропен-2-он-1 (Пб). Получают из 2,3-диметил-7-метокси-6-аминоиндола и дибензоилметана по методике [4]. Очищают препаративной ТСХ на Al₂O₃ (нейтральной по Брокману), элюируя хлороформом.

Этиловый эфир β -[(2,3-диметил-7-метоксииндолил-6)амино]кротоновой кислоты (Пв). Раствор эквимолекулярных количеств 2,3-диметил-7-метокси-6-аминоиндола и ацетоуксусного эфира кипятят в абсолютном бензоле в присутствии следов ледяной уксусной кислоты в течение 6 ч с насадкой Дина—Старка. По окончании реакции бензол отгоняют. Кротонат очищают перекристаллизацией из смеси бензол—петролейный эфир.

Диэтиловый эфир N-[(2,3-диметил-7-метоксииндолил-6) амино] метиленмалоновой кислоты (Пг). Раствор эквимолекулярных количеств 2,3-диметил-7-метокси-6-аминоиндола и этоксиметиленмалоновой кислоты в спирте кипятят 1,5...2 ч, раствор немного упаривают, охлаждают, выпавший осадок отфильтровывают.

- 2,3,5,7-Тетраметил-9-метоксипирроло[3,2-g]хинолин (Ша). Получают кипячением енаминокетона Па в двадцатикратном избытке трифторуксусной кислоты в течение 30 мин. Охлажденный раствор выливают в разбавленный водный раствор аммиака со льдом, выпавший осадок отфильтровывают, очищают перекристаллизацией из петролейного эфира.
- 2,3-Диметил-5,7-дифенил-9-метоксипирроло[3,2-g]хинолин (Шб). Получают аналогично из енаминокетона Шб.
- 2,3,7-Триметил-9-метокси-6-этоксикарбонилпирроло[3,2-g]хинолин (ППг). Получают кипячением в хлороформе аминокротоната Пв с пятикратным избытком реактива Вильсмейера в течение 4 ч. После отгонки хлороформа твердый остаток обрабатывают водным аммиаком, осадок отфильтровывают, очищают перекристаллизацией из смеси бензол—петролейный эфир.
- 2,3-Диметил-5-гидрокси-9-метокси-6-этоксикарбонилпирроло[3,2-g]хинолин (IIIд). В кипящий даутерм (10-кратный избыток) добавляют аминометиленмалонат IIг, далее ведут реакцию так же, как в случае получения пирролохинолина IIIг. Очищают перекристаллизацией из смеси бензол—петролейный эфир.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кост А. Н., Ямашкин С. А., Юдин Л. Г. // ХГС. 1977. № 6. С. 770.
- 2. Ямашкин С. А., Юдин Л. Г., Кост А. Н. /ХГС. 1983. № 4. С. 493.
- 3. Bradscher C. K. // Chem. Rev. 1946. Vol. 38. P. 447.
- 4. Ямашкин С. А., Кучеренко Н. Я., Юровская М. А. // ХГС. 1995. № 11. С. 1499.

Мордовский государственный педагогический институт им. М. Е. Евсевьева, Саранск 430007

Поступило в редакцию 01.11.96

Московский государственный университет им. М. В. Ломоносова, Москва 119899