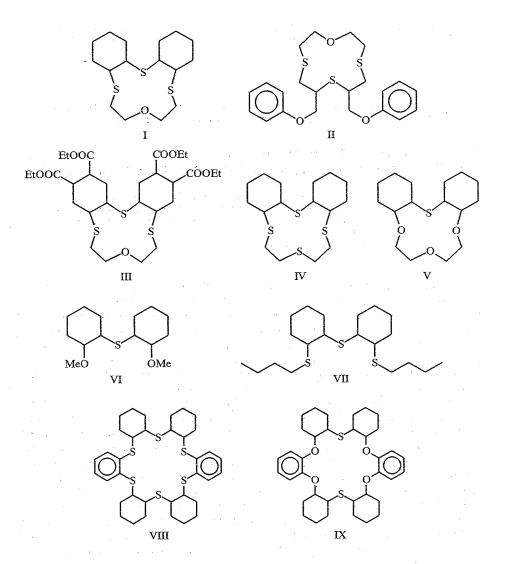
А. Ю. Архипов, А. А. Абрамов, Н. А. Иванова, З. Б. Иофа, О. П. Пронина, Ю. А. Сапожников, А. В. Анисимов

ЭКСТРАКЦИЯ СТРОНЦИЯ (II), СЕРЕБРА (I) И СВИНЦА (II) НЕКОТОРЫМИ ОКСАТИА- И ТИАКРАУНСОЕДИНЕНИЯМИ


Исследована экстрагирующая способность 12- и 18-членных оксатиа- и тиакраунов по отношению к ионам Sr, Ag и Pb из водных растворов в присутствии анионов разной степени жесткости с определением содержания металла радиометрическим методом. Наилучшие результаты по экстракции свинца получены с использованием 18-членных макроциклов.

Среди продуктов деятельности атомных электростанций особое внимание уделяется долгоживущим радиоактивным изотопам, в первую очередь ⁹⁰Sr, выделение которого из отходов ядерных процессов необходимо для обеспечения охраны окружающей среды. До настоящего времени проблема извлечения этого радиоактивного изотопа из водных растворов остается практически нерешенной [1, 2]. Из радиоактивных изотопов тяжелых металлов, накапливающихся в окружающей среде, одним из самых опасных представляется изотоп ²¹⁰Pb. Наиболее перспективным направлением поиска селективных и эффективных экстрагентов для катионов металлов различной степени «жесткости» является использование краун-эфиров и их гетероатомных аналогов, особенно оксатиа- и тиакраунов. Варьирование в них размера макропикла, количества и типа гетероатомов предоставляет возможность создавать экстрагенты, обладающие высокой экстрагирующей способностью и селективностью к катионам металлов, находящихся в различных положениях Периодической системы.

В настоящей работе изучена экстрагирующая способность по отношению к ионам стронция (II), серебра (I) и свинца (II) 12- и 18-членных макроциклических соединений I—V, VIII, IX, содержащих различные количества атомов серы и кислорода в цикле, а также двух подандов VI и VII. При проведении исследования сопоставлялась жидкостная экстракция «жесткого» катиона — стронция (II), «мягкого» серебра (I) и «промежуточного» свинца (III) «мягкими» лигандами, каковыми являются синтезированные оксатиакрауны, с действием «жесткого» экстрагента — дибензо-18-крауна-6, содержащего в макроцикле из гетероатомов только атомы кислорода. В качестве противоионов использовались «мягкий» пикрат-анион и «жесткий» нитрат-ион в составе различных солей. Такое разделение катионов, анионов и лигандов (экстрагентов) на «мягкие» и «жесткие» [3] широко используется в экстракционной химии [4].

Оксатиакраунсоединения I—V представляют собой двенадцатичленные гетеропиклические соединения, имеющие различное количество атомов серы и кислорода в макроцикле, причем общее число гетероатомов равно четырем. Соединения VI и VII являются подандами с различным количеством в их молекулах атомов серы, а соединения VIII и IX представляют собой восемнадцатичленные макропиклы также с различным количеством атомов серы в их молекулах и должны иметь полость, в которую могут входить все исследованные нами катионы. Оксатиакрауны I—V, содержащие в макропикле четыре гетероатома с переменным количеством атомов серы и

^{*} Посвящается профессору Э. Я. Лукевицу в связи с его 60-летием

кислорода, имеют, по-видимому, настолько малый размер отверстия, что в него не может войти даже имеющий наименьший радиус катион стронция (II). Поэтому можно предположить, что для тиакраунсоединений, имеющих в макроцикле четыре гетероатома, со всеми катионами будет наблюдаться образование сэндвичевых структур; поданды VI и VII также могут образовывать соединения состава 1 : 2 со всеми изученными в работе катионами. Образование такого комплекса состава 1 : 2 наблюдалось нами при изучении взаимодействия тиакрауна V с катионом серебра (I) методом сдвига равновесия.

Необычным является то обстоятельство, что поданды VI и VII проявляют лишь несколько меньшую экстрагирующую способность по отношению к стронцию (II) и свинцу (II), чем оксатиакраунсоединения I—V (табл. 1 и 2). «Жесткий» стронций (II) хуже эктрагируется оксатиакраунами V—I, чем дибензо-18-крауном-6, и, наоборот, «мягкое» серебро (I) намного лучше экстрагируется «мягкими» оксатиакраунами I—V как с «мягким» пикрат-анионом, так и с «жестким» нитрат-ионом (табл. 1—3). Имеющееся различие в коэффициентах распределения обусловлено конкуренцией при связывании лиганда ионами водорода, лития и натрия.

«Жесткий» стронций (II) лучше извлекается в органическую фазу с «жестким» нитрат-ионом, чем с «мягким» пикрат-анионом. Промежуточный по жесткости свинец (II) ведет себя противоречиво: с «мягким»

Коэффициенты распределения стронция (II) $(C_{Sr(II)} = 10^{-5} \text{ моль/л})$

Экстрагент <i>S</i> в CHCl ₃ [<i>S</i>] = 2,2 · 10 ⁻² моль/л	Состав водной фазы			
	0,01 моль/л LiP i	3 моль/л HNO ₃	5 моль/л LiNO ₃	
1	0,050	0,015	0,02	
2	0,015		_	
3	0,020	_	_	
4	0,005	0,004		
5	0,002	0,0015	0,050	
6	0,040	_	_	
7	0,020	0,015		
$S[S] = 6.0 \cdot 10^{-3} \text{ MOJE/m}$. · · · -	0,015	0,035	
9 $[S] = 1,6 \cdot 10^{-2}$ моль/л	0,040	0,052	0,026	
ДБ-18-краун-6 [S] = $2.0 \cdot 10^{-2}$ моль/л	0,600	_		
ДБ-18-краун-6 $[S] = 0,10$ моль/л	2,1	_		

пикрат-анионом он хуже экстрагируется «жестким» дибензо-18-крауном-6, чем «мягкими» оксатиакраунами I—V.

Коэффициенты распределения свинца (II) при экстракции оксатиакраунами I—V больше, чем у стронция (II), но меньше, чем у серебра (I). Полученные по экстракции свинца (II) результаты (табл. 2) позволяют проследить влияние на этот процесс заместителей на периферии макроцикла и замену в нем серы на кислород. При постепенной замене атомов серы на кислород в двенадцатичленном макроцикле оксатиакраунов (от IV через I и II к V) коэффициент распределения свинца (II) сначала незначительно возрастает, а затем падает, появление заместителей в циклогексановых фрагментах оксатиакраунов I и III мало влияет на экстрагируемость стронция (II) и свинца (II). Наилучшие результаты по экстракции свинца (II) дает использование 18-тичленных макроциклов VIII и IX, что вызвано наибольшим размером полости в них, подходящим для всех исследованных катионов, лучше всего для «мягкого» свинца (II).

Таблица 2 Коэффициенты распределения свинца (II) $(C_{P\,b(II)} \,=\, 10^{-6} \,-\, 10^{-5} \,\,\text{моль/л})$

Экстрагент S_3 в CHCl ₃ [S] = $2.2 \cdot 10^{-3}$ моль/я	Состав водной фазы			
	0,01 моль/л LiP i	3 моль/л HNO ₃	5 моль/л LiNO ₃	
1	5,73	0,26	0,10	
2	4,50	0,24	0,26	
3	6,17	0,40	0,10	
4	3,23	0,1	0,18	
5	1,80	. 0,10	0,14	
6	3,7	0,11	0,29	
7	2.92	0,24	0,20	
$8 [S] = 6.0 \cdot 10^{-3} \text{ моль/л}$	0,080	0,75	0,65	
9 $[S] = 1,6 \cdot 10^{-2}$ моль/л	(0,001 моль/л LiP i)	. 0,80	0,90	
ДБ-18-краун-6 [S] = $2.0 \cdot 10^{-2}$ моль/л	_	0,072	0,18	
ДБ-18-краун-6 $[S] = 0.10$ моль/л	0,410	<u> </u>	_	

Коэффициенты	распреде	еления	серебра	(I)
(C _{Ag(I}	$= 10^{-5}$	моль/.	п)	-

Экстрагент S в СНСl3	Состав водной фазы			
	0,01 моль/л LiP i	3 моль/л HNO ₃	5 моль/л LiNO ₃	5 моль/л NaNO3
$5 [S] = 1,0 \cdot 10^{-2}$ моль/л	. 140	110	74	38
8 [S] = $6.0 \cdot 10^{-3}$ моль/л	·	67	31	
9 $[S] = 3,6 \cdot 10^{-3}$ моль/л		27	46	23,5
ДБ-18-краун-6 [S] = $5.0 \cdot 10^{-3}$ моль/л	0,11	0,034	0,18	0,028

На основе полученных нами коэффициентов распределения при экстракции стронция, серебра и свинца дибензо-18-крауном-6 из раствора пикрата лития были вычислены логарифмы концентрационных констант экстракции соединений SrLiPi2, AgLiPi, PbLiPi2: 5,20, 3,30 и 6,60 соответственно, которые мало отличаются от таковых, имеющихся в литературе [5].

В заключение можно отметить, что полученные в настоящей работе некоторые данные по экстракции катионов мсталлов разной степени жесткости оксатиакраунами дают основание утверждать, что концепция Пирсона о «мягких» и «жестких» катионах, анионах и нейтральных лигандах позволяет на качественном уровне предсказывать экстракцию металлов макроциклическими соединениями.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Оксатиакрауны I, III—V, VIII, IX и поданды VI и VII были получены взаимодействием ди-(2-хлорциклогексил) сульфидов с соответствующими тиолами, гликолями и спиртами, оксатиакраун II — реакцией 1,5-дифенокси-2,4-дихлорметил-3-тиапентана с β , β' -димеркаптодиэтиловым эфиром [6]. Полученные макроциклические соединения использовали в виде хлороформенных растворов, коэффициенты распределения металлов определялись при помощи радионуклидов: стронция-90 в равновесии с иттрием-90, серебра-110m и свинца-210.

Экстракция катионов Sr(II), Ag(I) и Pb(II) проводили при 20 ± 5 °C в экстракционных пробирках в течение 30 мин при интенсивном перемешивании. По достижении равновесия из водных и органических фаз отбирали равные объемы растворов и радиометрически определялось содержание того или иного катиона. Коэффициенты распределния металлов D вычисляли делением молярной концентрации катиона металла в органической фазе на таковую в водной фазе.

Радиоактивность стронция-90 по черенковскому излучению дочернего иттрия-90 измерялась на жидкостно-сцинтилляционном счетчике Марк III (Тгасог Ешгора, Нидерланды). Измерения проводились со стандартам стронция-90 в равновесии с иттрием-90 по достижении радиоактивного равновесия.

Радиоактивность свинца-210 измеряли на той же установке с помощью раствора Брея с тритиевым стандартом фирмы «Амершам»; максимальные энергии и форма спектра β -частиц свинца-210 и трития весьма схожи. Радиоактивность дочернего висмута 210 и внучатого полония - 210 регистрировали в другом энергетическом канале. Для получения достоверных результатов проводили повторные измерения свинца-210 через пять и десять дней, причем эти измерения показали пренебрежимо малый вклад активности дочерних изотопов в определяемую радиоактивность свинца-210 в тритиевом канале.

Радиоактивность серебра-110m (жесткое γ -излучение) измеряли на стандартном γ -сцинтилляционном счетчике (Россия), детектор излучения в котором представляет собой большой кристалл йодистого натрия, активированного таллием, с колодцем для помещения препаратов. Эффективность регистрации γ -излучения серебра-110m не зависела от состава водных и органических фаз, что было проверено специальными опытами.

Работа выполнена при финансовой поддержке ГК РФ по высшему образованию, Научно-технической пограммы «Тонкий органический синтез» и Конкурсного центра фундаментального естествознания при Санкт-Петербургском государственном университете.

СПИСОК ЛИТЕРАТУРЫ

- Horwitz E. R., Chiarizia R., Deitz M.. L. // Solvent Extraction Ion Chromatography. 1992. Vol. 10. — P. 313.
- 2. Pin C., Bassin C.// Anal. Chim. Acta. 1992. Vol. 269. P. 249.
- 3. Pearson R. G. // J. Amer. Chem. Soc. 1963. Vol. 85. P. 3533.
- 4. Фегтле Ф., Вебер Э. // Химия комплексов «гость—хозяин». М.: Мир, 1988.
- 5. Takeda Y., Nishida M. // Bull. Chem. Soc. Japan. 1989. Vol. 62. P. 1468.
- 6. Архипов А. Ю., Чертков В. А., Самошин В. В., Анисимов А. В. // ХГС. 1996. № 4. С. 564.

Московский государственный университет им. М. В. Ломоносова, Москва 119899 Поступило в редакцию 03.10.96