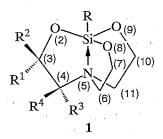
Э. Лукевиц, О. А. Пудова

МОЛЕКУЛЯРНАЯ СТРУКТУРА ГЕТЕРОЦИКЛИЧЕСКИХ ПРОИЗВОДНЫХ ГИПЕРКООРДИНАЦИОННОГО КРЕМНИЯ

В обзоре обобщены и систематизированы результаты литературных данных и собственных исследований молекулярных структур гетероциклических производных гиперкоординационного кремния.

В большинстве исследованных кремнийорганических производных атом кремния тетраэдричен, соединения с координационным числом меньше четырех необычны и изучение их строения началось в начале 80-х годов. С другой стороны, атом кремния способен увеличивать свою координацию до пяти, шести и даже семи, особенно в тех случаях, когда связан с электроноакцепторными заместителями. Соединения кремния с повышенной координацией можно подразделить на нейтральные, образованные за счет внутримолекулярных взаимодействий донорно-акцепторного типа, и анионные или катионные комплексы. Синтез и структурные аспекты различных гипервалентных производных кремния широко изучались [1—12]. Настоящий обзор посвящен структурным исследованиям гетероциклических производных гиперкоординационного кремния.

1. СОЕДИНЕНИЯ ДОНОРНО-АКЦЕПТОРНОГО ТИПА


1.1. Увеличение координации за счет N -Si связи

Наиболее широко в ряду соединений пятикоординационного кремния изучены структуры кремнийорганических производных триэтаноламина (силатраны) и диэтаноламина (силоканы). В большинстве исследований использован метод рентгеноструктурного анализа, особенности строения метил- [13], фенил- [14] и фторсилатранов [15—17] изучены с помощью квантово-химических расчетов и конформационного анализа. Ценную информацию о природе координационной N —Si связи и строении молекул силатранов и силоканов в растворах дают константы спин-спинового взаимодействия $^{29}\mathrm{Si}^{-15}\mathrm{N}$ [18—21]. Спин-спиновое взаимодействие через координационную связь N — Si сложным образом зависит от природы заместителей у атомов азота и кремния. С одной стороны, увеличивается с ростом прочности связи N — Si. На это указывает увеличение $^{1}J_{\text{SiN}}$ в силатранах с более короткой связью N — Si, а также при увеличении полярности растворителя. С другой стороны, данные, полученные для силоканов, показывают, что абсолютное значение ${}^{1}J_{SiN}$ через координационную связь N - Si увеличивается при понижении электроотрицательности заместителей у атома кремния. Используя метод прогнозирования S_N2 реакции замещения, для силатранов получено соотношение между $^{1}J_{\text{SiN}}$ и длиной связи N — Si (r) в растворах.

$$r_{\text{N}} \rightarrow s_{\text{i}} = 2,291 - 0,084 \ (^{1}J_{\text{SiN}})^{0,5}$$

По данным рентгеноструктурного анализа, в системах с силатрановым гетероциклом 1 атом кремния имеет тригонально-бипирамидальное окружение с заместителем R и атомом азота в аксиальных положениях.

Смещение атома кремния из экваториальной плоскости в сторону заместителя R (ΔSi) составляет 0,11...0,12 Å. Атом азота в силатранах пирамидален, а его отклонение ΔN от плоскости, образуемой связанными с ним атомами углерода, так же как и ΔSi , коррелирует с расстоянием N—Si [22]. Для трех 5-членных гетероциклов, составляющих силатрановый остов, характерна конформация конверта, причем кислород, азот, кремний и β -углеродный атом лежат в одной плоскости, а находящийся в α -положении относительно азота атом углерода образует угол конверта. Основные геометрические параметры исследованных соединений 1 приведены в табл. 1, 1а.

В работах, посвященных строению силатранов, наибольшее внимание уделено расстоянию между атомами кремния и азота, поскольку оно позволяет судить о степени их трансаннулярного взаимодействия. В кристаллическом состоянии длина N — Si связей для силатранов в пределах 1,965...2,24 Å, что значительно меньше суммы ван-дер-вальсовых радиусов атомов кремния и азота (3,5 Å). Значительное удлинение N — Si расстояния до 2,455 [13] и 2,324 Å [15] наблюдается для метил- и фторсилатранов в газовой фазе, что согласуется с результатами ab initio и полуэмпирических расчетов [77]. В целом можно отметить уменьшение межатомного расстояния N — Si в силатранах с сильными электроноакцепторными заместителями. Наименьшая величина N - Si связи (1,965 Å) зафиксирована для диметилсилатранильного оксониевого катиона [63], далее следует хлорсилатран (2,020 Å). В молекуле *транс*-бис [(диметилфенил)фосфин]-1силатранилхлорплатины расстояние N - Si увеличено до 2,89 Å, группировка NC3 имеет практически планарную конфигурацию с выходом атома азота лишь на 0,07 Å, а для атома кремния характерно тетраэдрическое окружение. Такая структура, по-видимому, обусловлена сильным положительным индукционным эффектом и большим объемом платинового заместителя у атома кремния. Кроме того, для всех трех колец Si-O-C-N характерна конформация не α - (как в обычных силатранах), а β -конверта.

Проведено исследование влияния на структуру силатранового фрагмента таких факторов, как введение метильных [54, 78—81], оксо [74—76, 82, 83] и карбоксильных групп [71—73], конденсированных по С—С связи бензогрупп [80, 84, 85], удлинение одного из трех гетероциклов на СН2 [34, 86] или SiMe2 группу [87], замена одного [34, 81, 88, 89] или трех атомов кислорода [90] на метиленовые группы, а также металлирование фенильных заместителей в фенилсилатране [56—59].

Для атома кремния в молекуле 3,7,10-триметилсилатрана характерна обычная для силатранов координация тригональной бипирамиды с длиной связи N —Si 2,146 Å. Однако наблюдаются некоторые особенности строения: во-первых, величина Si—O связи (1,594 Å) меньше, чем в силатранах; во-вторых, 5-членные гетероциклы имеют конформацию β -конверта; в-третьих, из-за разупорядоченности молекулы в кристалле присутствуют несколько различных стереоизомеров [79]. Длина координационной связи N —Si в фенил- и 1-(4-толил)-3,7,10-триметилсилатранах 2,167 Å (2,182 Å для второй независимой молекулы) и 2,236 Å, соответственно. Пятичленные гетероциклы молекул этих соединений, как и в 3,7,10-триметилсилатране имеют конформацию β -конверта [54—81].

Наличие карбоксильной группы в (3R,4S)-1-хлорметил-3-метил-4-карбоксисилатране, (3R,4S)-1-хлорпропил-3-метил-4-карбоксисилатране и (3R,4S)-1-винил-3-метил-4-карбоксисилатране не вызывает существенных изменёний в структуре силатранового гетероцикла. В твердом состоянии молекулы (3R,4S)-1-хлорметил- и (3R,4S)-1-хлорпропил-3-метил-4-карбоксисилатранов связаны межмолекулярными водородными связями за счет карбоксильной группы одной молекулы и атома кислорода в экваториальном положении силатранового остова другой молекулы [71—73].

По данным рентгеноструктурного анализа ОН-группа метилфенил(силатранилметил) силанола [31] также образует водородную связь с атомом кислорода силатранового гетероцикла, однако в данном случае за счет внутримолекулярного взаимодействия. Образующийся в результате этого взаимодействия шестичленный цикл имеет конформацию кресла.

В метилсилатран-3-оне [74] (2,134 Å) и фенилсилатран-3-оне (2,126 и 2,111 Å) [75] расстояния N — Si короче, чем в соответствующих силатранах. Замещение атома водорода в n-положении фенильного кольца фенилсилатранона атомом фтора (2,129 Å) [76] или трифторметильной группой (2,106 Å) в m-положении [76] незначительно влияет на N — Si связь. Выход атомов азота и кремния (Δ Si и Δ N) мало отличаются от таковых в метил- и фенилсилатранах. Длина донорно-акцепторной N — Si связи в метилсилатран-3,7-дионе (2,146 Å) [82] только на 0,03 Å короче соответствующей длины в метилсилатране. Длина Si—O связи в 5-членных гетероциклах SiOC(O)CH₂N силатранонов и силатрандиона больше (\sim 1,720 Å), чем в гетероциклах SiOCH₂CH₂N (\sim 1,658 Å) и в силатранах.

В фенилтрибензосилатране 2 [84] расстояние N —Si увеличено (2,344 Å) по сравнению с фенилсилатраном.

 π -Комплексация фенильной группы в фенилсилатране с переходными металлами [(MeO)₃PMn(CO)₂⁺, Cr(CO)₃, W(CO)₃] существенно не влияет на геометрию силатранового гетероцикла, можно лишь отметить весьма незначительное укорочение связи N —Si (2,064...2,108 Å) и удлинение связи Si—C (1,902...1,921 Å) [56, 57, 60].

Замена одного атома кислорода силатранового гетероцикла в метил-, фенил- и п-толилсилатранах на менее электроотрицательную метиленовую группу ведет к ослаблению электроноакцепторного действия кремния и удлинению N — Si связи соответственно до 2,336 Å [88], 2,291 Å [89] и 2,290 Å [81]. Кроме того, для 5-членного гетероцикла метилкарбасилатрана, не содержащего атома кислорода, характерна конформация β -конверта. Изменения в гетероцикле, проведенные с сохранением окружения атома кремния, не вызывают столь существенных изменений расстояния $N \to Si;$ в метокси-2-карбасилатране [34] оно равно 2,22 Å. Еще большее удлинение → Si (2,477)связи Å) отмечено трикарбасилатрана для [N(CH2CH2CH2)3Si]2O, а атом кремния в этом соединении имеет координацию промежуточную между тригональной бипирамидой и тетраэдром [90].

В хлорметил-3-гомосилатране — силатрановом аналоге с одним 6-членным гетероциклом SiOCH₂CH₂CH₂N — 5-членные циклы имеют

	Геог	метрические парам	иетры силатранов 1	$(R^1 = R^2 = R^3$	$= R^4 = H$)			
R	r(N+Si) (Å)	r(Si-R) (Å)	r(Si-O) (Å)	N-Si-R (⁰)	O-Si-O (⁰)	Δ si (Å)	Δn (Å)	Лит
1	2	3	4	5	6	7	8	9
Me Me ^(a)	2,175(4) 2,453(47)	1,870(6) 1,853(15)	1,670(4) 1,656(3)	179,4(2)	118,4(4) 116,5(9)	0,211	0,379	[23 [13
CH ₂	2,149(4)	1,874(5)	1,659(3)	177,7(2)	118,59(20)	0,2		[24
CICH ₂ $IMe_2S^+CH_2$ $IMe_3N^+CH_2$ IPh_3PCH_2	2,120(8) 2,046(2) 2,080(13) 2,098	1,912(11) 1,930(3) 1,915(15) 1,92	1,676 1,667(2) 1,662(11)	176,4(4) 179,1(1) 175,7(6) 178,3	119,1 119,5(1) 119,3(5)	0,163(3) 0,115 0,13	0,385(8) 0,396 0,41	[2: [2: [2:
SSCH ₂	2,100(2)	1,912(2)	1,663(1)	176,7(1)	119,2(1)			[29
\sim	2,111(3)	1,795(4)	1,667(3)	175,0(2)	119,0(2)	0,18	0,41	[30
MePhSi(H)CH ₂ ⁽⁶⁾	2,208(9) 2,240(9)	1,864(10) 1,869(10)	1,638(8) 1,642(7)		118,2(4) 117,9(4)	0,222(3) 0,241(3) 0,218(3)		[3] [3]
MePhSi(OH)CH ₂ PhCOOCH ₂ CH ₂ CHO	2,214(9) 2,122(7) 2,108(6)	1,864(16) 1,954(5) 1,914(8)	1,655(10) 1,661(7) 1,660(5)	174,0(1) 179,4(3)	118,3(5) 119,1(1) 119,1(1)	0,218(3)	0,36	[3:

1	2	3	4	5	6	7	8	9
Et	2,214(8)	1,881(10)	1,658	178,7(1)	117,8	0,229	0,342	[34]
SiMe ₂ CH ₂ CH ₂	2,230(7)	1,874(7)	1.654	178,9(3)	118,0	0.233	0,362	[35,36]
N(CH ₂ CH ₂ O) ₃ SiCH ₂ CH ₂	2,230(5)	1,870(6)	1.650(5)	177,5(2)	117,9(3)	0,24		[37]
HOCH ₂ CHBr	2,123(9)	1,928(7)	1,655(11)	177,6(9)	119,0(9)			[38]
NCH(Me)	2,126(9)	1,94(1)	1,674(8)	178,5(4)	119,0(4)	0,169	0,380	[39]
O NCH(Me)	2,122(2)	1,909(3)	1,665(2)	177,3(1)		0,176	0,386	[40]
HO(CH ₂) ₃	2,173(2)	1,869(2)	1,665(1)	179,4(2)	118,4(1)	0,21(1)	0,372(3)	[41]
HS(CH ₂) ₃	2,177(4)	1,872(4)	1,652(4)	178,6(5)	118,4(5)	0,21	0,37	[42]
C1(CH ₂) ₃	2,181(7)	1.875(8)	1,662	178,2(6)	118,6	0,199	0,368	[43]
NC(CH ₂) ₃	2,164(4)	1,884(5)	1,659(5)	178,9(4)	118,6	1		[44]
NCS(CH ₂) ₃	2,209(4)		6				0.05	[45]
>	2.228(9)	1,94(1)	1,664(8)	176,0(7)	117,9(5)	0,24	0,35	[46]
CI	2,150(3)	1,877(4)	1,664(3)	178,7(2)	118,7(2)		•	[47]
CH-CH ₂	2,118(2)	1,897(3)	1,657(2)	176,1(1)	119,(1)	0,168(8)	0,386(2)	[48]

1	2	3	. 4	5	6	7	8	9
CH-CH ₂ Me N	2,119(2)	1,920(8)	1,644(7)	177,5(4)	119,0(3)	0,170(6)	0,363(6)	[48]
CH ₂ =CH	2,150(6)	1,880(8)	1,664(5)	178,72(25)	118,60(52)	0,20	0,40	[49]
$Ph(\alpha)$	2,193(5)	1,882(6)	1,656(5)	177,90(22)	118,51 (28)	0,204	0,34	[50]
Ph($oldsymbol{eta}$)	2,156(4)	1,908(5)	1,657(5)	177,04(29)	118,64(30)	0,195	0,379	[51, 52] [51, 53]
Ph(γ)	2,132(4)	1,894(5)	1,656(4)	179,0(2)	118,8(2)	0,183	0,39 0,366	[51, 55]
$p-{ m MeC_6H_4}^{(6)}$	2,171(1) 2,167(1)	1,887(1) 1,892(2)	1,556 1,557	178,8(1) 179,1(1)	118,5 118,5	0,204	0,500	[54]
m-NO ₂ C ₆ H ₄	2,116(8)	1,904(9)	1,656(6)	177,4(3)	118,94(35)	0,17	0,39	[55]
(CO) ₃ Cr	2,108(5)	1,907(6)	1,656(5)	176,4(3)	119,2(3)			[56]
(CO) ₃ W	2,102(18)	1,902(7)	1,667(9)	176,6(4)	119,1(5)	0,15		[57]
Ph				•				
Mn(CO) ₃	2,170(3)	1,896(3)	1,653(3)	177,7(2)	118,5(2)			[58]
t-BuOCCH ₂	2,127(6)	1,898(6)		176,9(3)				[59]
Mn(CO) ₃								

1	2	3	4	5	6	7	8	9
$\begin{bmatrix} (\text{CO})_2 \\ (\text{MeO})_3 \text{PMn} \end{bmatrix}^+ \text{CIO}_4^-$	2,064(3)	1,921(4)	1,657(3)	179,2(1)	119,5(1)	0,13		[60]
	2,112(5)	1,894(6)	1,656(6)	177,2(2)	119,1	0,144	0,387	[35, 36]
(6)	2,130(9) 2,168(9)	1,892(11) 1,859(11)	1,675 1,661	177,7(4) 178,7(4)	118,9 118,6	0,175 0,197	0,384 0,378	[35, 36]
\sqrt{s}	2,133(9)	1,905(11)	1,666	177,2(4)	119,1	0,162	0,360	[36]
$_{\mathbf{F}^{(\mathbf{a})}}^{\mathbf{F}}$ $_{\mathbf{F}^{(\mathbf{a})}}^{\mathbf{C}\mathbf{l}}$ $_{t\text{-BuO}}^{\mathbf{b}\mathbf{r}_{4}\mathbf{M}\mathbf{e}_{2}\mathbf{O}^{+}\mathbf{-}}$	2,042(1) 2,324 2,022(9) 2,152 2,189(4) 1,965	1,622(1) 2,153(4) 1,658 1,659(4) 1,830	1,645 (2) 1,649 1,648 1,650 (4) 1,642	179,7(1) 179,8(3) 179,4(2)	119,5(2) 119,7 118,9 120	0,117 0,095 0,179 0,201 (2) 0,017	0,390 0,396 0,371(4)	[61] [15] [62] [63] [64] [63]
EtO— CF ₃ COOH	2,050	1,710	1,652		119,5	0,102		[63]
			·					

· •

1	2	3	. 4	5	. 6	7	8	9 .
p-MeC ₆ H ₄ O m-ClC ₆ H ₄ O Ph ₂ P(S)O	2,107(2) 2,079(2) 2,060(3)	1,677(2) 1,690(2) 1,934(1)	1,649(2) 1,656 1,649(3)	174,7(2) 176,5(2) 178,9(2)	119,1 (2) 119,2 118,6(1)	0,154 0,14	0,372 0,40	[65] [66] [67]
(CO) ₃ CO CO CO (CO) ₃	2,010(5)	1,707(4)	1,644(7)	177,2(4)	119,6(4)			[68]
(PhMe ₂ P) ₂ PtCl	2,89(1),	2,292(4)	1,649(9)	176,7	110(5)	0,53	0,07	[69, 70

⁽a) Данные электронной дифракции. (б) Для двух независимых молекул.

Геометрические параметры силатранов 1

R	R^1	R ²	R^3	R ⁴	r(N - Si) (Å)	r(Si-R) (Å)	r(Si-O) (Å)	N-Si-R (⁰)	O-Si-O (⁰)	Δ Si(Å)	Δ N (Å)	Лит.
CICH ₂	Me	Н	Н	СООН	2,136(3)	1,895(4)	1,661(3)	178,7(2)	118,9(2)			[71]
Cl(CH ₂) ₃	Me	Н	Н	СООН	2,244(3)	1,884(4)	1,663(3)	179,6(2)	119,4(2)			[71]
$H_2O \cdot Cl(CH_2)_3$	H	н	Н	СООН	2,176(4)	1,873(5)	1,667(4)	178,5(2)	118,4(2)			[72]
CH ₂ =CH	Me	н	H	соон	2,169(3)	1,878(5)	1,666(3)	178,4(2)	118,5(2)			[73]
Me	-O		\mathbf{H}	H	2,134(1)	1,861(2)		177,4(1)		0,209(1)	0,384(1)	[74]
Ph ^(a)	neat ()	ļ	H	Н	2,126(3) 2,111(3)	1,859(3) 1,886(3)		177,7(2) 177,5(2)		0,198(1) 0,182(1)	0,386(3) 0,388(3)	[75]
p-FC ₆ H ₄	-O		Н	Н	2,129(3)	1,885(3)		176,2(2)		0,196(1)	0,386(2)	[76]
m-CF ₃ C ₆ H ₄	=0	·	Н	н	2,106(3)	1,884(4)		174,6(3)		0,186(1)	0,385(4)	[76]

⁽а) Для двух независимых молекул.

разупорядоченное строение, а 6-членный почти планарен. Расстояние $N \rightarrow Si$ на 0,13 Å длиннее расстояния в хлорметилсилатране, что является следствием стерического эффекта CH₂ группы [86].

В соединении атранового типа 3 с двумя атомами кремния [87] наблюдается значительная угловая разупорядоченность у $\mathrm{Si}_{(1)}$, заместители находятся в координации, промежуточной между тетраэдрической и тригонально-бипирамидальной. Расстояние $\mathrm{Si}_{(1)}...\mathrm{N}$ равное 2,768 Å значительно больше, чем в силатранах.

По данным рентгеноструктурного анализа замена трех экваториальных атомов кислорода атомами азота, т. е. переход от силатранов к 2,8,9-триазасилатранам не приводит к существенным изменениям в структуре атранового гетероцикла. В фенил-2,3,9-триазасилатране [91] и 1-фтор-2,3,9-триметилтриазасилатране [92, 93] атом кремния почти тригонально-бипирамидален, а трансаннулярная N — Si связь равна соответственно 2,132 и 2,034 Å.

Протонирование одного из атомов азота в экваториальном положении азасилатранов оказывает сильное влияние на длину связи $Si-N_{eq}^+$ и величины углов $N_{eq}SiN_{eq}$ [94, 95]. В катионах соединений 4 и 5 связь $Si-N_{eq}^+$ на 10% длиннее двух других $Si-N_{eq}$; угол $N_{eq}SiN_{eq}$ (128,4°), расположенный напротив протонированного азота, значительно больше соседних углов $N_{eq}^+SiN_{eq}$. Следует отметить, что соединение 5 представляет собой смесь протонированного и исходного непротонированного азасилатрана.

Внедренеие тетрафторбензеновой группы по связи Si— N_{eq} 1-пентафторфенил-2,8,9-триметилтриазасилатрана (6) ведет к удлинению $N \rightarrow Si$ связи (2,246 Å), средняя величина связей Si—C и Si— N_{eq} соответственно 1,960 и 1,733 Å [92, 93].

Для ряда циклических производных диэтаноламина 7 исследовано влияние различных заместителей у атомов кремния и азота на межатомные расстояния N—Si (табл. 2). Координационный полиэдр атома кремния этого типа представляет собой искаженную тригональную бипирамиду, основание которой образовано двумя атомами кислорода 1,3-диокса-6-аза-2-силациклооктанового кольца и заместителем R, а вершины — атомом азота и вторым заместителем R.

$$\begin{array}{c|c}
R \\
| \\
O \\
Si \\
R
\end{array}$$

В зависимости от электронной и стерической природы групп R и \mathbb{R}^1 весьма значительно изменяется трансаннулярное взаимодействие между атомами азота и кремния, проявляющееся в широких колебаниях межатомного расстояния $\mathbb{N} \to \mathrm{Si}$ — от 2,004 [100] до 3,19 Å [97]. В ряду 2,2-дифенил-1,3-диокса-6-аза-2-силацикланов эта величина возрастает в последовательности $\mathbb{H} < \mathrm{Me} < \mathrm{Ph} < t$ -Ви (\mathbb{R}^1). Электроноакцепторные циклические эфирные группировки у атома кремния увеличивают положительный заряд на Si и существенно укорачивают расстояние $\mathrm{N} \to \mathrm{Si}$.

Расстояние Si...С(6) в тестовой молекуле 2,2-дифенил-1,3-диокса-2-силациклооктана (3,576 Å) свидетельствует об отсутствии каких-либо внутримолекулярных взаимодействий между кремнием и атомом углерода C(6) [104].

Методом рентгеноструктурного анализа установлено, что атом кремния пятикоординационен в некоторых кремнийорганических производных азотсодержащих гетероциклов 8-14.

Геометрические параметры силоканов 7

R ₂ Si	R ¹	r(N — Si) (Å)	r(Si-O) (Å)	O-Si-O (^o)	Δsi (Å)	Лит.
Dhoëi	н	2,301(6)	1,657(5)	121,8(3)	0,25	[96]
Ph ₂ Si Ph ₂ Si	Me	2,501(0)	1,637(3)	118(1)	0,23	[90]
Ph ₂ Si	t-Bu	3,16(2)	1,64(2)	115(1)	0,49	[97]
Ph ₂ Si	Ph	3,18(2)	1,64(1)	115(1)	0,49	[97]
Me ₂ Si	Ph	3,19(1)	1,63(3)	111(1)		[97]
	1	0,17(1)	1,00(0)	111(1)		[>/1
$\langle \rangle$ \rightarrow CH ₂	3.5					
Si	Me	2,263(6)	1,652(5)	118,9(3)	0,16	[98]
1 31					1	
			, ,			
« »				1		
)= (Me	2,297(6)	1,639(6)	119,4		[99]
€ G						
- -						
-0	н	2,004(3)	1,666(3)	118,9(2)	0,101	[100]
Si	11	2,004(3)	1,000(3)	110,5(2)	0,101	[100]
~0			•			
0						,
$(CF_3)_2C$	Me	2,032(7)	1,636(6)	119,4(3)	0,088	[101]
$(CF_3)_2C_{\sim O}$						
					· · · ·	
Me Me						
/- 0,						
Si Si	Me	2,247(5)	1,649(4)	119,9(2)	0,219	[102]
Me Me						
Br						
— Dr						
(_)					}	
) —(Ma	2.060	1,64(1)	114,7(5)		[103]
MeN Si	Me	2,968	1,04(1)	114,7(3)		[103]
				ŀ		
				1		
Br						
Br						
/=<						
FtN Si						
EtN Si	Me	2,986	1,626(6)	114,8(3)		[103]
	1			1		

В 2-(диметилхлорсилилметилтио) пирролине-1 8 [105] атом кремния имеет разупорядоченное тригонально-бипирамидальное окружение с атомом азота гетероцикла и атомом хлора в аксиальных положениях (< N—Si—Cl = $172,5^{\circ}$). Особенностью этого соединения является сильное укорочение N — Si (1,945 Å) и удлинение Si—Cl (2,423 Å) связи [105].

Аналогичное явление еще более ярко выражено в соединении 9 [106], в результате связь N — Si (1,852 Å) приближается по величине к ковалентной, а очень длинная связь Si—Cl (2,679 Å) свидетельствует об увеличении ионного характера. Расстояния N—Si в 2-{[метил(трифторсилил)амино]метил}пиридине 10 [107] неравноценны; координационная N₁ — Si связь значительно увеличена по сравнению с обычной N₍₂₎—Si. Атом кремния тригонально-бипирамидален, с атомом азота пиридинового цикла и атомом фтора в аксиальных положениях ($N_{(1)}SiF_{ax} = 178,0^{\circ}$), причем связь Si— F_{ax} (1,621 Å) длиннее, чем Si— F_{eq} (1,603 Å).

Координация атома кремния в 2-[дифенил (метилдихлорсилил) метил]пиридине близка к тетраэдрической, тогда как в 2-[бис (триметилсилил) (дихлорсилил) метил]пиридине 11 [108] атом кремния дихлорсилильной группы тригонально-бипирамидален, а связь $N \rightarrow Si$ равна 2,066 Å.

X ₃ Si	r(Si-N ₍₂₎) (Å)	$r(N_{(1)} \longrightarrow Si)$ (Å)	N ₍₁₎ -Si-X (°)	N ₍₁₎ -Si-N ₍₂₎ (°)	Лит.
F ₃ Si	1,732(4)	1,969(4)	178,2(1)	83,9(2)	[110]
Cl ₃ Si	1,737(3)	1,984(2)	179,44(9)	84,3(1)	[111]
Cl ₃ Si ^a	1,746(2)	1,979(2)	179,71(7)	84,23(5)	[112]
MeCl ₂ Si	1,739	2,027(4)			[113]
Me ₂ ClSi	1,770(6)	2,028(7)	176,8(2)	81,8(3)	[113]
Me ₃ Si	1,746(8)	2,689(8)	177,0(4)	70,3(3)	[114]

а Данные нейтронографии.

Расстояние N — Si в циклодисилазане 12 [109] (2,33 Å) с 8-хинолильными заместителями у атомов азота превышает расстояния N — Si в соединениях 8-11.

В соответствии с данными рентгеноструктурного анализа [110, 111] и нейтронографии [112] длина координационной $N_{(2)}$ — Si связи как в трифторсилильном (1,969 Å), так и в трихлорсилильном производном (1,984 Å) 1,2,3,4-тетрагидро-1,10-фенантролина 13 значительно больше, чем Si— $N_{(1)}$ (1,732 и 1,737 Å). Замена на метильную группу одного (2,027 Å) или двух атомов хлора (2,028 Å) приводит к незначительному удлинению расстояния $N_{(2)}$ — Si [113]. В то же время для триметилсилильного производного 1,2,3,4-тетрагидро-1,10-фенантролина связь $N_{(2)}$ — Si удлинена существенно — 2,689 Å. Координацию у атома кремния в этом соединении можно охарактеризовать как сильно разупорядоченную тетраэдрическую, в отличие от соединений с X = F, Cl, где кремний имеет тригонально-бипирамидальное окружение [114] (табл. 3).

Структура соединений 14 с Y = S и O во многом подобна. Атом кремния обеих молекул тригонально-бипирамидален с донорно-акцепторной связью соответственно 1,988 и 1,967 Å. Наблюдалось также удлинение аксиальной Si-F связи (1,632 и 1,624 Å) по сравнению с экваториальными (1,589—1,594 Å) [115].

Расширение координации у атома кремния характерно для фенилсиланов, содержащих одну (соединения 15, 16) [116—120] или две диметиламинометильные группы (соединения 17—18) [121, 122], а также один триметилгидразиновый заместитель (соединения 19, 20) [123] в о-положениях фенильного кольца и для 1-силилнафталинов 21—25 с группой Me₂N [119, 124—129] или Me₂NCH₂ (соединение 26) [124] в положении 8 нафталинового кольца. Как правило, в результате координации образуются пятичленные (1-сила-2-аза- или 1-сила-2,3-диазапентаны) и лишь в случае нафталинового производного 26 — шестичленный гетероцикл.

Геометрические параметры атома кремния для соединений 15 с SiX₃ = SiMeF₂ [116], SiH₂(α -C₁₀H₇) [117] и Si(H)Ph(OSO₂CF₃) [118] различны. В первых двух молекулах полиэдр кремния можно описать как промежуточный между тетраэдром и тригональной бипирамидой с очень длинными расстояниями N \rightarrow Si: 2,356 и 2,44 Å. Для этих двух соединений наблюдается удлинение Si—F_{ax} (1,627 Å) и Si—C_{ax} (Np) (1,92 Å) по сравнению с Si—F_{eq} (1,627 Å) и Si—C_{eq} (1,86 Å). В трифлате атом кремния тригонально-бипирамидален с атомами азота и кислорода в аксиальных положениях. Связь N \rightarrow Si коротка (2,052 Å), однако Si—O связь значительно длиннее (1,951 Å) обычных ковалентных Si—O связей. Поэтому структуру трифлата можно описать как ионную пару между внутримолекулярно координированными силильным катионом и трифлатным анионом, в которой в некоторой степени сохраняется ковалентное взаимодействие.

Заключение о 7-координированном кремнии было сделано на основании рентгеноструктурных данных трис [2-(диметиламинометил) фенил]силана 16 (X = H) [120], в котором три слабых N \rightarrow Si взаимодействия приводят к [3 + 4] тетраэдрическому окружению атома кремния. Однако, точные данные для гидросилана 16 не получены из-за неудовлетворительного качества кристаллов. Главной особенностью фторсилана 16 (X = F) [119] является наличие трех неравных N \rightarrow Si взаимодействий (3,004, 3,307 и 3,489 Å). На основании минимальной величины 3,004 Å можно было бы предположить, что атом кремния не 7-координационен, а лишь пяти, но общая геометрия кремния отличается от тригональной бипирамиды, характерной для пентакоординированного, из-за того, что ближайшая NMe2 группа не находится в *транс*-положении относительно атома фтора. В целом четыре σ -связанных заместителя образуют тетраэдр у атома кремния, а три N \rightarrow Si взаимодействия из-за стерических препятствий слабы и недостаточны для увеличения координационного числа [119].

В центросимметричной молекуле 1,4-бис $\{2,6$ -бис [(диметиламинометил) фенил]силил $\}$ бензола 17 атомы азота двух NMe2 групп координированы с кремнием несимметрично, $N_{(2)}$ Мe2 группа приближена к Si со стороны, противоположной Si— $H_{(2)}$ связи $(N_{(2)}$ —Si— $H_{(2)}$ = $169,4^\circ$), тогда как группа $N_{(1)}$ Мe2 mpanc-расположена по отношению к Si— $C_{(2)}$ связи

 $(N_{(1)}$ —Si— $C_{(2)}=166,8^\circ)$. Кроме того, расстояние $N_{(2)}$ — Si $(3,008\ \text{Å})$ больше, чем $N_{(1)}$ — Si $(2,681\ \text{Å})$, а атомы кремния в соединении 17 остаются тетраэдрическими с координацией [4+2] [121].

Введение к кремнию второго 2,6-бис (диметиламинометил) фенильного заместителя (соединение 18) ведет к [4 + 4] координации кремния. Расстояние $N_{(1)}$ — Si, *транс*-расположенное к связи Si—H, равно 3,117 Å, а угол $N_{(1)}$ —Si—H составляет 177,5°, тогда как связь $N_{(2)}$ — Si (*транс* к связи Si—C) короче (2,895 Å) и угол $N_{(2)}$ —Si—C меньше (168,5°). Все указанные длины связей и углы соединения 18 превышают аналогичные величины соединения 17 [122].

В соединении 19 с (2-триметилгидразино) фенильным и 2-диметиламинометильным заместителями атом кремния пятикоординационен, причем дополнительная координация возникает за счет терминального атома азота гидразиновой группы (2,564 Å). Расстояния N — Si в ди [(2-триметилгидразино) фенил]диэтоксисилане 20 составляет 2,689 и 2,772 Å [123].

Для соединений 21 расстояние N — Si и координационный полиэдр определяются заместителями X у атома кремния. Структуры двух независимых молекул 8-диметиламино-1-трифторсилилнафталина 21 (X = F) подобны. В обоих случаях нафталиновое кольцо, атомы кремния и азота лежат почти в одной плоскости. Геометрия атома кремния — тригонально-бипирамидальная, средняя величина координационной N — Si связи относительно велика (2,303 Å) [125], однако меньше, чем в молекуле 8-диметиламино-1-фенилсилилнафталина 21 (SiX3 = SiH2Ph) (2,584 Å) [124]. Еще более длинное расстояние N — Si характерно для молекулы 8-диметиламино-1-[метилбис (метилдифенилсилил) силил]нафталина 21 (SiX3 = SiMe (SiMePh2) 2) [129], из-за слабого взаимодействия оно составляет 3,159 Å.

По данным рентгеноструктурного анализа два атома кремния в соединении 22 [129] имеют геометрию промежуточную между тетраэдрической и тригонально-бипирамидальной, что подтверждается длинными расстояниями $N \rightarrow Si~(2,906~u~2,857~Å)$ и углами $N \rightarrow Si \rightarrow C~(173,49~u~175,50°)$. Следует упомянуть, что аксиальные положения в данном случае занимают атом азота и атом углерода центрального 1,3-дисила-2-оксациклопентенового гетероцикла, вытесняя электроотрицательный атом кислорода в экваториальное положение.

Для соединений 23 [SiXX¹ = SiH₂, SiHF, Si(C \equiv CH)₂] атомы азота двух 8-диметиламинонафтильных групп направлены в сторону кремния, создавая формально шестикоординационное [4 + 2]-окружение у атома кремния. Структура молекул дигидро- и гидрофторсиланов подобна. Особенностью дигидросилана является неэквивалентность двух Si—H связей (1,44 и 1,54 Å) и двух расстояний N — Si (2,610 и 2,800 Å), причем более короткая N — Si связь расположена со стороны противоположной атому углерода C_{Ar} , а более длинная — противоположна атому водорода. Расстояния N — Si в гидрофторсилане почти одинаковы (2,680 и 2,646 Å) [127]. Оба атома азота диэтинилди [1-(8-диметиламино) нафтил]силана 23 [SiXX¹ = Si(C \equiv CH)₂] находятся в *транс*-положении относительно этинильных групп. В то же время в дигидросилане один азот *транс*-расположен к одной Si—H связи и *цис* — к другой, а второй азот находится в *цис*-положении относительно обоих атомов водорода. Расстояния N — Si в диэтинильном производном 23 составляет 2,836 и 2,789 Å [128].

В молекуле трис [1-(8-диметиламино) нафтил]силана 24 [118] в дополнение к четырем σ -связям атом кремния образует три очень слабые донорно-акцепторные N — Si со средней длиной 2,895 Å, причем ни одна из NMe2 групп не приближается к кремнию со стороны, противоположной Si—H связи.

Для сравнения эффективности N — Si взаимодействия 1-(8-диметиламино) нафтильной и 2-диметиламинометилфенильной группы изучено строение [1-(8-диметиламино) нафтил][2-(диметиламинометил) фенил]дифторсилана 25. Расстояние N — Si для 8-диметиламинонафтильного заместителя больше (2,770 Å), чем для 2-диметиламинометилфенильного (2,594 Å). В молекуле [1-(8-диметиламинометил) нафтил]метилфенилсилана 26 [124] в результате донорно-акцепторного N — Si взаимодействия образуется 6-членный гетероцикл с расстоянием N — Si 2,66 Å, величина которого больше, чем в [1-(8-диметиламино) нафтил]фенилсилане 21 (SiX $_3$ = SiH $_2$ Ph).

Главной особенностью силанола 27 [130] являются чрезвычайно короткие связи 5-координационного атома кремния. Хотя аксиальная Si—N связь длиннее, чем экваториальная на 0,19 Å, она значительно короче, чем N — Si связи других пентакоординационных производных кремния.

В силиловых эфирах ацетоксима — метилхлор (2-пропилиминокси) силане [131], тетра (2-пропилиминокси) силане [132], фенилтри (2-пропилиминокси) силане [133] координация у атома кремния существенно отличается от

Таблица 4

Геометрические	параметры	бипирилиновых	комплексов	32
I comethnacerne	параметры	онинридиновых	ROMINIORCODE	-

х	x ¹	x ²	x ³	N → Si (Å)	Si-X (Å)	Si-X ¹ (Å)	Si-X ² (Å)	Si-X ³ (Å)	X-Si-X ³ (°)	N-Si-N (⁰)	Лит.
				.*							
F	F	F	F	1,982(4) 1,972(4)	1,654(3)	1,629(3)	1,632(3)	1,659(3)	170,5(2)	79,7(2)	[140]
Cl	Cl	Cl	CHCl ₂	1,959(3) 1,967(3)	2,207(2)	2,184(2)	2,180(2)	1,983(5)	179,1 (2)	80,7(1)	[141]
C 1	Cl	Çl :	CCl ₃	1,966(6)	2,184(4)	2,165(3)		2,067(12)	177,6(3)	80,4(4)	[141]
Cl	Cl	Cl	CCl ₂ SiCl ₃ .	1,955(4) 1,967(4)	2,237(2)	2,155(2)	2,172(2)	2,071 (5)	173,3(2)	81,7(2)	[141]
Cl	Cl	OSiCl ₃	C1	1,969(6) 1,967(6)	2,175(10)	2,153(3)	1,685(5)	2,180(9)	171,6(1)	80,9(3)	[142]
SiCl ₂ Me	Cl	Cl	Me	2,029(12) 2,007(11)	2,367(5)	2,392(10)	2,274(8)	1,888(12)	170,7	79,9	[143]

от тетраэдрической; атомы кислорода сближены так, что угол O—Si—O 98°. Фрагменты Si—O—N=С имеют плоскую mpanc-конфигурацию, расстояния между атомами кремния и азота оксимных групп (2,50-2,53 Å) меньше суммы ван-дер-ваальсовых радиусов, но существенно больше, чем в силатранах.

Известен ряд соединений с шестикоординационным атомом кремния, в которых координация увеличена также за счет $N \to Si$ взаимодействия. Два бидентатных лиганда соединения 28 [134] почти перпендикулярны друг другу и находятся в *цис*-положении, поэтому атом кремния является хиральным центром. Связи $Si \to O$ образуют угол $168,7^\circ$, а угол NSiN почти прямой $(85,3^\circ)$. Длина связей $N \to Si$ значительно увеличена по сравнению с обычной ковалентной, однако сравнима с величиной в пента- и гексакоординационных комплексах. Для соединений 28 и 29 [135] с одинаковым окружением у атома кремния длины связей $N \to Si$ и $Si \to O$ очень близки по величине. Кремний в соединениях $28 \to 31$ [134—137], а также во фталоцианиновом полимере (PcSiO)_п [138, 139] октаэдричен.

Дополнительная координация в производных 2,2'-бипиридина 32 (табл. 4) и 1,10-фенантролина 33 [144] возникает за счет координационных $N \rightarrow Si$ связей двух атомов азота. Расстояние $N \rightarrow Si$ в соединениях 32 изменяется от 1,955 до 2,029 Å.

$$\begin{array}{c} CF_3 \\ CF_4 \\ CF_4 \\ CF_5 \\ CF$$

1.2. Увеличение координации за счет Р - Si связи

В диметилсилильном производном 34 с двумя дифосфаметанидными лигандами атом кремния имеет искаженную октаэдрическую геометрию с двумя метильными и двумя Me_2P группами образующими экваториальную плоскость и находящимися в *цис*-положении. Длина $Si-P_{ax}$ связей (2,306 и 2,300 Å) лишь незначительно больше, чем в тетраэдрических производных. Экваториальные Si-P связи на 26,6% длиннее, чем аксиальные. Четырехчленные хелатные гетероциклы, образованные в результате координации, плоские, атомы углерода, входящие в их состав, также имеют плоскую координацию [145].

1.3. Увеличение координации за счет О - Si связи

По данным рентгеноструктурного анализа атом кремния пятикоординационен в таких соединениях, как ароилоксиметилфторсиланы, N-силилметиллактамы, N-трифторсилилметилацетамиды, N-силилметилтриметиламидофосфаты, причем дополнительная координация возникает за счет $O \rightarrow Si$ взаимодействия донорно-акцепторного типа. В ароилоксиметилтрифторсиланах 35 (табл. 5) расстояние $O \rightarrow Si$ в зависимости от заместителя R изменяется в пределах 1,94—2,08 Å, что меньше суммы ван-дер-ваальсовых радиусов (3,6 Å). Замена одного атома фтора на метильную группу приводит к существенному удлинению $O \rightarrow Si$ связи и в метил (бензоилоксиметил) дифторсилане это расстояние равно 2,216 Å. В молекулах исследованных

Геометрические параметры ароилоксиметилфторсиланов 35

R	R ¹	r(O—Si) (Å)	r(Si-F _{ax}) (Å)	r(Si- F_{eq}) (Å)	r(Si-C) (Å)	O-Si-F _{ax} (°)	Лит.
		2 206(0)	1 (10/=)				54 443
H	F	2,006(8)	1,610(7)	1,578(9)	1,855(13)	176,0	[146]
H	Me	2,216(3)	1,629(2)	1,588(3)	1,848(4)	171,0(1)	[147]
4-F	F	2,029(2)	1,606(2)	1,583(2)	1,869(3)		[148]
4-Cl	F	2,08(2)	1,56(2)	1,60(2)	1,84(3)		[148]
4-Br	F	1,94(2)	1,61(2)	1,68(2)	1,81(2)	176,5(4)	[148, 149]
2-C1	·F	2,040(9)	1,620(9)	1,578(9)	1,810(13)		[150]

соединений атом кремния имеет слегка искаженную тригонально-бипирамидальную координацию. В аксиальных вершинах находятся атомы кислорода и фтора. Двугранный угол между средней плоскостью 5-членного гетероцикла и плоскостью бензольного кольца в (2-хлорбензоилоксиметил) трифторсилане из-за отталкивания атома хлора в o-положении и кислорода увеличен до 17.5° , в то время как для 4-галогенпроизводных 5-членный цикл и бензольное кольцо практически копланарны.

$$R^{3}$$
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{5}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{3

Исследовано влияние различных структурных изменений на длину О — Si связи в соединениях 36 (табл. 6). При переходе от хлор- к бром-, трифлати йодпроизводному N-[диметил(\mathbb{R}^3) силилметил] пиперид-2-она 36 [X = $=(CH_2)_4$] длина координационной О — Si связи уменьшается от 1,954 до 1,747 Å. Анализ Si— \mathbb{R}^3 связей показал удлинение Si—Cl связи на $\sim 0,27$ Å по сравнению с обычной ковалентной связью, Si—Br на 0,95 Å, Si—O на 1,12 Å и Si—I на 1,27 Å, причем Si—I связь (3,734 Å) лишь незначительно меньше, чем сумма ван-дер-ваальсовых радиусов (4,08 Å). Полученные данные подтверждают увеличение ионного характера связи Si— \mathbb{R}^3 в ряду Cl < Br <OSO₂CF₃ < I. Координация у атома кремния в N-(диметилгалогеносилилметил) пиперид-2-онах 36 также различна. В противоположность 1-(диметилхлорсилилметил) пиперид-2-ону, в котором кремний тригонально-бипирамидален, в бром- и йодпроизводных атом кремния имеет сильно

Геометрические	параметры	N-силилметиллактамов	36

						1 0	
X	R	R ¹	R ²	r(O-Si) (Å)	r(Si-R ³) Å	O-Si-R ³	Лит.
						,	
(CH ₂) ₃	Me	Me	F	2,395(8)	1,652(7)		[151]
(CH ₂) ₃	Me	Me	OPh	2,367	1,711		[152]
(CH ₂) ₃	Me	Me	OCOPh	2,228	1,711		[152]
CH ₂ CHPhCH ₂	Me	Me -	C1	2,050(2)	2,284(1)	172,2(1)	[153]
CMe ₂ OCHMe	Me	Me	C1	2,450(2)	2,154(2)	170,3(1)	[153]
(CH ₂) ₄	Me	Me	C1	1,954(1)	2,307(2)	171,16(5)	[154]
(CH ₂) ₄	Me	Me	Br	1,800(4)	3,122(2)	162,6(3)	[155]
(CH ₂) ₄	Me	Me	I	1,749(2)	3,734(1)	161,90(7)	[15,157]
(CH ₂) ₄	Me	Me	OSO ₂ CF ₃	1,753	2,785		[152]
(CH ₂) ₄	Cl	Cl	Ci	1.852(4)	2,207(2)	175,3(1)	[158]
(CH ₂) ₂ OCHEt	Me	Me	Cl	2,021	2,282(1)	170,7(1)	[159]
-o-Me ₂ COC ₆ H ₄ -	Me	Me	Ci	1,988(2)	2,312(1)	172,0(1)	[151,
				2,200 (2)	-,	- (-) (-)	153]
(CH ₂) ₅	Me	Me	CI	1,950(1)	2,315(1)	171,7(7)	[151, 160]
(CH ₂) ₅	Me	· Me	OC ₆ F ₅	2,078	1,787		[152]
(CH ₂) ₅	Me	Cl	Cl	1,907(2)	2,256(1)	173,3(1)	[158]
(CH ₂) ₅	Cl	C1	Cl	1,865(2)	2,213(1)	175,3(1)	[158]
(CH ₂) ₅	Cl	Cl	OMe	1,885(2)	2,236(1)	173,8(1)	[158]
(CH ₂) ₅	Me	1-C ₁₀ H ₈	Cl	1,933(2)	2,327(1)	171,0(1)	[161]
Me ₂ Cl							
o → ŝi							
	Me	Me	C1	2,050(1)	2,271(1)	170,5(1)	[162]
C—N							
ĊH ₂ ĊH ₂							
Me,OSO,CF,		,					
\ 2							
O - Si							4. 4-6
Ľ—N	Me	Me	OSO ₂ CF ₃	1,843(2)	2,241 (2)	170,3(1)	[162]
CH ₂ CH ₂							

разупорядоченную тригонально-бипирамидальную координацию. Пятичленный гетероцикл в соединениях 36 представляет собой конверт; в хлор- и йодпроизводном атом кремния выходит из плоскости остальных четырех атомов соответственно на 0,15 и 0,058 Å, а в N-(диметилобромсилилметил) пиперид-2-оне угол конверта образует карбонильный атом углерода, отклоняющийся на 0,20 Å.

Замещение одной или двух метильных групп у атома кремния в N-(диметилхлорсилилметил) пергидроазепин-2-оне на хлор сопровождается уменьшением расстояния О — Si на 0.043 и 0.085 Å и Si— $\mathrm{Cl}_{\mathrm{ax}}$ связи на 0.059 и 0.102 Å. Общее влияние величины азотсодержащего гетероцикла выражается в удлинении О — Si связи в соединениях с пятичленными кольцами, например, в N-[диметил(R^3) силилметил] пирролид-2-онах и особенно в 2.2.5-триметил-N-(диметилхлорсилилметил) оксазолидин-4-оне по сравнению с N-силилметилпиперид-2-онами и N-силилметилпергидроазепин-2-онами.

Пятичленные гетероциклы силилметилацетамидов 37 почти планарны. Наименьшая длина О — Si связи (1,879 Å) для соединений этого типа найдена в N-метил-N-трифторсилилметилацетамиде. Замещение одного атома фтора на метильную группу и переход к N-метил-N-трифторсилилметилтрифторацетамиду сопровождается увеличением расстояния О — Si соответственно до 1,985 Å и 1,943 Å (табл. 7).

R	R ¹	R ²	R ³	R ⁴	r(O - Si) (Å)	r(Si-R ²) (Å)	O-Si-R ³ (°)	Лит.
								54.603
\mathbf{F}	F	F	Me	Me.	1,879(1)	1,635(1)	.177,4(1)	[163]
\mathbf{F}	F	F	Me	CF ₃	1,943(2)	1,620(2)	172,2(1)	[163]
Me	F	F	Me	Me	1,985(4)	1,651(4)	172,6(5)	[164]
Me	Me	C1	СОМе	Ме	2,077(6) 2,027(6)	2,229(4) 2,259(4)	170,0(2) 171,6(2)	[165]
Me	Me	Cl	CH ₂ SiMe ₂ Cl	Me	1,918	2,348		[166]

Атом кремния в молекуле N,N,N',N'-тетраэтил-N''-*тетра*-бутил-N''-[(диметилхлорсилил)]метил] триамидофосфата **38** [167] тригонально-бипирамидален с короткой $O \rightarrow Si$ (1,840 Å) и длинной Si—Cl (2,438 Å) связями. Следует также сказать, что расстояние P=O (1,528 Å) только незначительно (0,05 Å) короче, чем ординарная P—O связь в соединениях с 4-координационным атомом фосфора.

В противоположность ранее рассмотренным ароилоксиметилтрифторсиланам 35, N-силилметиллактамам 36, N-силилметилацетамидам 37, амидофосфату 38 и (2-метилсульфинилэтил)трифторсилану 39 [168], в которых расстояния О — Si лежат в интервале 1,840—2,450 Å, О — Si взаимодействие в 3-(трифторсилил)-2-цианоэтилпропионате 40 [163] слабо и для двух независимых молекул расстояния О — Si составляют 2,729 и 2,668 Å.

В силилметильных производных гидразина 41 (R = CF₃, 4-MeOC₆H₄) [169—171] О — Si координация ведет к образованию 6-членного хелатного гетероцикла. Как и в соединениях 36—38 с хлорсилильными заместителями характерной особенностью гидразидов 41 является удлинение Si—Cl (2,432 и 2,624 Å) и уменьшение О — Si (1,879 и 1,788 Å) связи. Распределение электронной плотности в трифторметильном производном 41 (R = CF₃) было исследовано с помощью прецизионного рентгеноструктурного анализа при 163 К [171].

Расстояние О — Si в 2,2,4,4-тетраметил-6-фенил-3-бензоил-2,4-дисила-1,3,5-оксадиазине 42 [172, 173] меньше суммы ван-дер-ваальсовых радиусов, но значительно превосходит (2,613 Å) соответствующие значения в соединениях 35—39 и 41. О О — Si взаимодействии свидетельствует и разупорядочение углов у атома кремния от тетраэдрического к тригонально-бипирамидальному (угол OSiO = 161°).

Атом кислорода эфирной группы фенил [2-(метоксиметил) фенил]силилтрифлата 43 [174] весьма эффективно взаимодействует с кремнием, в результате чего последний становится тригонально-бицирамидальным с двумя атомами азота в аксиальных позициях (угол О—Si—O = 174,6°).

Расстояние О — Si (2,033 Å) достаточно коротко, а Si—OSO₂CF₃ (1,857 Å) значительно длиннее, чем обычные ковалентные Si—O связи. В целом структура трифлата 43 и фенил [2-(диметиламинометил) фенил]силилтрифлата 15 [SiX₃ = Si(H) Ph(OSO₂CF₃)] [118] во многом подобны.

В структурном аналоге силоканов — 2,2-дифенил-1,3,6-триокса-2-силациклооктане 44 8-членный гетероцикл имеет искаженную конформацию короны. Атомы $O_{(1)}$, $O_{(3)}$, $C_{(5)}$ и $C_{(7)}$ расположены в одной плоскости, из которой все остальные отклоняются в одну сторону. Конформация короны стабилизируется очень слабым дополнительным O — Si взаимодействием $(2,976\ \text{Å})\ [175,\ 176\]$.

В нейтральных комплексах **45** [177] и **46** [178] атом кремния шестикоординационен с октаэдрической геометрией. Дополнительная координация в соединении **45** возникает в результате О — Si взаимодействия кремния с двумя атомами кислорода трополоновых колец, плоскости которых расположены почти перпендикулярно друг к другу (двугранный угол равен 81,1°). Две фенильные группы находятся в *цис*-положении. Длина Si—О связей лежит в интервале 1,793—1,923 Å. Координационное число равное 6 в комплексе **46** достигается благодаря взаимодействию кремния с атомами кислорода двух молекул тетрагидрофурана. Расстояния Si—О неравноценны, причем связи Si—Отгф длиннее (1,9307 Å), чем связи Si—О пирокатехиновых фрагментов (1,7234 Å).

По данным электронографии [179, 180] и рентгеноструктурного анализа [179], слабое взаимодействие наблюдается в силиловых эфирах муравьиной [180] и уксусной кислот [179]. В этих соединениях расстояние О —Si соответственно 2,865 и 2,795 Å, что существенно больше, чем в рассмотренных ранее кремнийорганических производных. Атом кремния выходит из плоскости тяжелых атомов, он повернут на 21° от планарной цис-конформации в формиате и на 10° — в ацетате. В кристаллическом состоянии при 150 К скелет молекулы силилацетата почти планарен. Следует отметить, что внутримолекулярное расстояние О — Si $(2,832\ \text{Å})$ больше, чем межмолекулярный О — Si контакт $(2,721\ \text{Å})$.

Геометрические параметры диоксатиасилоцинов 47

R	R ¹	R ²	R ³	r(S—Si) (Å)	r(Si-O) (Å)	S-Si-R (°)	Лит.
Me ^a	Ме	Me	Me	3,2800(13) 3,2917(14)	1,639(2) 1,639(2)	166,78(14) 164,07(14)	[181]
Me	Me	Me	<i>t</i> -Bu	3,074(1)	1,644(2)		[181]
-CH ₂ CI	H ₂ CH ₂ CH ₂ -	<i>t</i> -Bu	t-Bu	2,977(4)	1,638(7)	179,7(4)	[181]
Ph	Me	<i>t</i> -Bu	<i>t</i> -Bu	3,061(2)	1,639(5)	169,8(3)	[182]
Ph	Ph	Me	Me	3,630(2)	1,634(4)	125,3(2)	[182]
Ph	Ph	<i>t</i> -Bu	<i>t</i> -Bu	2,996(2)	1,637(4)	173,4(2)	[182]
Ph	CH2=CH	Me	<i>t</i> -Bu	3,0737(14)	1,640(3)	166,50(14)	[182]
R**	OCH ₂ CF ₃	t-Bu	<i>t</i> -Bu	3,04(1) 3,11(1)	1,63(2) 1,61(2)	•	[183]

а Для двух независимых молекул.

$$R'' = t-Bu$$

$$Si-O^{-}$$

$$O$$

$$OCH_{2}CF$$

1.4. Увеличение координации за счет S → Si связи

По данным рентгеноструктурного анализа в соединениях 47 (табл. 8) с 1,3-диокса-6-тиа-2-силоциновыми гетероциклами атом серы координирован с кремнием, причем расстояние S — Si меняется от 2,977 до 3,630 Å. В производных с длиной S — Si связи 3,00—3,11 Å 8-членный гетероцикл принимает конформацию ванны (син-конформация). В циклическом силане 47 с R = \mathbb{R}^1 = $\mathbb{P}h$, \mathbb{R}^2 = \mathbb{R}^3 = Me со слабым S — Si взаимодействием гетероцикл находится в конформации кресла (анти).

$$R = \begin{bmatrix} R^2 \\ R \end{bmatrix}$$

$$R = \begin{bmatrix} R^3 \\ R \end{bmatrix}$$

$$R = \begin{bmatrix} R^2 \\ R \end{bmatrix}$$

$$R = \begin{bmatrix} R^3 \\ R \end{bmatrix}$$

$$R = \begin{bmatrix} R^3$$

Дополнительная координация кремния в N,N-диэтилдитиокарбаминометилтрифторсилане 48 [184] возникает в результате S — Si взаимодействия. Атом кремния тригонально-бипирамидален с атомами серы и фтора в аксиальных положениях (угол S—Si— $F=177.8^{\circ}$). Связь S — Si в соединении 48 (2,697 Å) примерно на 25% длиннее, чем в соединениях тетраэдрического кремния, но короче, чем в 1,3-диокса-6-тиа-2-силоцинах 47.

Геометрические параметры анионов в силикатах 49

R	M ⁺	Сольват	x	r(Si-R) (Å)	r(Si-O) (Å)	O ₍₁₎ -Si-O ₍₃₎ O ₍₂₎ -Si-O ₍₄₎ (°)	O ₍₁₎ -Si-O ₍₄₎ , O ₍₂₎ -Si-O ₍₃₎ , (°)	O(1)-Si-O(2) O(2)-Si=O(4), (°)	Отклонение от ТБП к КП, %	Лит.
			, , , , , , , , , , , , , , , , , , , 							
Me	0,5H ₃ N ⁺ (CH ₂) ₆ N ⁺ H ₃		Н	1,876(3)	1,741(2)	161,7(1) 136,1(1)	86,5(1) 83,7(1)	88,3(1) 87,9(1)	25,7	[186]
Ph	0,5H ₃ N ⁺ (CH ₂) ₆ N ⁺ H ₃		Н	1,883(3)	1,726(2)	159,2(1) 143,6(1)	85,4(1) 85,1(1)	88,2(1) 88,5(1)	72	[187]
HOCH₂CH₂O	Na ⁺	0,25MeCN	Н	1,669(2)	1,735(2)	173,76(10) 128,13(10)	87,73(9) 88,40(9)	89,89(9) 88,61(9)	27	[188]
HOCH ₂ CH ₂ O	K ⁺		H					·		[189]
i-Pr	K ⁺ (18-краун-6)		Ме	1,667(3)	1,701(3)	171,7(2) 130,8(2)	86,9(1) 89,4(1)	88,4(1) 88,5(1)	29,4	[190]
t-Bu	К + (18-краун-6)	·	Me						24,1	[191]
MeO	BuN ⁺ H ₃	MeOH	Me						71,2	[191]
EtO	BuN ⁺ H ₃		Me	-					38,9	[191]
$\mathbf{F}^{\mathbf{a}}$	Me ₄ N ⁺	CH ₂ Cl ₂	Me	1,642(8)	1,705(12)	163,7(5) 146,4(5)	87,5(4) 88,5(4)	87,5(5) 88,5(4)	69,1 52,3	[192]

а Для двух независимых молекул.

Для силилового эфира монотиоацетата MeC(S)OSiH₃ внутримолекулярное S → Si расстояние в газообразном (3,143 Å) и твердом (3,185 Å) также меньше суммы ван-дер-ваальсовых радиусов кремния и серы [185].

2. СОЕДИНЕНИЯ ИОННОГО ТИПА

Из соединений с пяти и шестикоординационным атомом кремния наиболее широко изучено строение солей бис(1,2-этилендиолато)-, бис(1,2-тетраметилэтилендиолато)- 49 (табл. 9), бис(1,2-тетраметилэтилендиолато)- 50 (табл. 10), бис(1,2-фенилендиолато)- 51 (табл. 11) и бис(2,3-нафталиндиолато)- λ^3 Si-силикатов 52 (табл. 12). Кроме того исследована структура бис(1,2-фенилендиолато)- λ^3 Si'-дисиликата 53 [214], монооксалато- λ^3 Si-силиката 54 [195], а также цвиттерионного силиката 55 [195], в котором диолатный лиганд образован гидроксамовой кислотой.

В ряду силикатов 49—52 координационный центр — полиэдр атома кремния изменяется от почти тригонально-бипирамидального до квадратно-пирамидального. Многочисленные факторы (структура заместителя R, природа противоиона, образование сольватов и т. д.) определяют отклонение геометрии кремния от тригонально-бипирамидальной до квадратно-пирамидальной. В анионе бис (этилендиолато) λ Si-силиката 49 (X = H, M⁺ = 0,5 H₃N⁺(CH₂)₆N⁺H₃) замещение метильной группы у кремния на фенильную сопровождается смещением координации в сторону квадратной пирамиды от 25,7% до 72%. Атом кремния в производных пинакона 49 (X = Me, M⁺ = μ -ВиN⁺H₃) с R = MeO и EtO имеет координацию соответственно искаженной квадратной пирамиды и тригональной бипирамиды. Для цвиттерионных 2-(диметиламмонио) фенилсиликатов 50 отклонение от тригонально-бипирамидального к квадратно-пирамидальному в зависимости от заместителей X уменьшается в ряду H > Me > Ph.

Геометрические параметры анионов в силикатах 50

R ⁺	Сольват	x .	r(Si-R) (Å)	r(Si-O) (Å)	O(1).Si-O(3), O(2)SiO(4), (°)	O ₍₁₎ -Si-O ₍₄₎ , O ₍₂₎ -Si-O ₍₃₎ , (°)	O ₍₁₎₋ Si-O ₍₂₎ , O ₍₃₎ -Si-O ₍₄), (°)	Отклонение от ТБП к КП, %	Лит.
+						·	,		
HMe ₂ N		Н	1,8741(14)	1,7365(12)	165,14(5) 137,77(5)	87,66(6) 84,27(6)	89,09(6) 88,36(6)	51,7	[193]
^+_2N		Me	1,889(2)	1,7310(12)	168,95(5)	88,70(5)	89,29(5)	38,4	[193]
→			1,005(2)	2,1 623 (22)	133,62(5)	85,08(5)	88,32(5)		
HMe ₂ N		Ph	1,882(2)	1,7246(12)	173,28(5) 127,15(6)	89,17(6) 86,94(6)	88,98(6) 89,03(6)	20,6	[193]
					at a				
CH ₂ N ⁺ Me ₂ H	H ₂ O	СН2СООН	1,888(4)	1,731(2)	175,07(11) 127,45(12)	89,58(10) 87,65(11)	89,12(10) 89,43(10)	18,7	[194]
CH ₂ N ⁺ MeH ₂		Me	1,889(2)	1,7342(14)	176,98(5)			5,4	[195]
CH ₂ N ⁺ Et ₃	MeCN	Ph	1,882(2)	1,7348(14)	172,40(7)			16.0	[195]
OCH ₂ CH ₂ N ⁺ Me ₂ H	DMF	Ph	1,652(3)	1,741(3)	174,96(11) 124,52(11)	87,82(11) 89,19(11)	89,02(11) 89,32(11)	13,9	[196]
H ₂ CN NCH ₂	8H ₂ O	Ме	1,884(6)	1,725(4)	176,1 (2) 124,3 (2)	90,1 (2) 87,9 (2)	88,9(2) 90,0(2)	11,5	[197]
H									
CH ₂ N ⁺ Me ₂ H		X ₂ C=Ph(H)C	1,884(8)	1,725(5)	176,60(23) 124,37(0.27)	89,46(22) 88,56(25)	89,49(25) 89,34(22)		[198]

Весьма необычное строене имеет спиросиликат 56. В отличие от производных пинакона 49 соединение 56 нейтрально, а один из атомов кислорода спироциклической системы связан с атомом водорода, который не удалось отщепить действием триэтиламина. Силикат 56 характеризуется тремя короткими Si—O связями (1,61—1,66 Å) и одной очень длинной (2,74 Å).

В тетраэтиламмониевых солях [RSi(O₂C₆H₄)₂] [Et₄N] доля тригонально-бипирамидальной структуры уменьшается в ряду заместителей Np > F \approx Bu > t-Bu. Существенное влияние на координацию заместителей у атома кремния оказывает строение аммониевого катиона. Катионы типа $R^1_3N^+$ H и $C_5H_5N^+$ H образуют водородные связи с атомами кислорода спироциклической системы и приводят к координации у атома кремния более близкой к квадратной пирамиде, чем у аналогичных соединений с тетраалкиламмониевыми катионами $R^1_4N_4^+$.

Детальный анализ цвиттерионных λ^3 Si-органоспиросиликатов 51 подтверждает, что структура этого класса соединений определяется наличием меж- и внутримолекулярных водородных связей. Это становится особенно ясным при сравнении пирролидиноэтилбис(тетрабром-1,2-фенилендиолато)- λ^5 Si-силиката 51 (R,M⁺ = CH₂CH₂N⁺H(CH₂)4, X = Br) и его моногидрата. В противоположность немного искаженной квадратно-пирамидальной геометрии кремния для двух независимых молекул гидрата, координационный полиэдр безводного соединения — искаженная бипирамида.

Исследовано влияние более сложной конденсированной системы на строение спироциклических анионных силикатов 52. В mpem-бутилсиликате 52 (R = t-Bu, $M^+ = Et4N$) отклонение от тригонально-бипирамидальной координации к квадратно-пирамидальной (80,3%) менее выражено, чем в аналогичном mpem-бутилбис(1,2-фенилендиолато)- λ^5 Si-силикате 51 (91,4%).

1,8-Дигидроксинафталин и 2-гидрокси-3-метилбензойная кислота образуют анионные спиросиликаты 57 [215] и 58 [198] с шестичленными гетероциклами, в которых атом кремния имеет искаженную в сторону квадратной пирамиды тригонально-бипирамидальную координацию.

В отличие от соединений 49—54 в силильных анионах соединений 59 (табл. 13) 60 [219] и 61 [220] гетероцикл содержит лишь один атом кислорода. Кремний в производных 59 и 60 тригонально-бипирамидален с

Геометрические параметры анионов в силикатах 51

R	M ⁺	Сольват	х	r(Si-R) (Å)	r(Si-O) (Å)	O ₍₁₎ -Si-Q ₍₃₎ , O ₍₂₎ -Si-Q ₍₄₎ , (°)	O ₍₁₎ -Si-Q ₍₄₎ , O ₍₂₎ -Si-Q ₍₃₎ , (o)	O ₍₁₎ SiO ₍₂₎ , O ₍₃₎ SiO ₍₄₎ , (⁰)	Отклонение от ТВП к КП, %	Лит.
1	2	3	4	. 5	6	7	8	9	10	11
3u	Et ₄ N ⁺		Н	2,01(3)	1,754(9)	159,4(8) 139,0(8)	84,7(5)	88,1 (5)	63,8	[199]
-Bu	Et ₄ N ⁺		Н	1,888(6)	1,755(4)	151,0(2) 146,7(2)	83,3(2) 84,7(2)	87,8(2)	91,4	[199]
$C_6H_{11}^a$	Me ₂ N ⁺ H ₂		Н	1,861(7)	1,751(4)	153,1(2) 144,3(2)	84,6(2) 83,7(2)	87,6(2) 87,8(2)	90,1 76,7	[190]
Ph ·	Me ₄ N ⁺		н	1,888(1)	1,747(9)	167,7(4) 127,9(4)	87,1(4)	87,6(4)	29,5	[200]
' h	Et ₃ N ⁺ H		H	1,871(3)	1,745(2)	161,1(1) 138,6(1)	84,56(9) 85,7(1)	87,95(9) 89,5(1)	59,4	[201]
Ph -	Et ₄ N ⁺		Cl	1,854(4)	1,754(4)	152,9(2) 147,3(2)	84,8(2) 84,6(2)	87,8(2) 87,6(2)	90	[187]
h	Et ₃ N ⁺ H ₇		2,4- <i>t</i> -Bu 3,5-H	1,868(8)	1,763(5)	167,9(2) 127,8(3)	86,9(2) 86,7(2)	88,9(2) 86,9(2)	29,0	[201]
o-ClC ₆ H ₄ ⁶	C ₅ H ₅ N ⁺ H		Н	1,888(8)	1,745(5)	168,4(3) 130,5(3)	84,5(2) 89,4(3)	87,5(2) 89,0(3)	33,2	[202]
C ₆ H ₄ -	2[Et ₃ N ⁺ H]	.1	н		1,748	162,0				[203]
-Np	$C_5H_5N^+H$:	Н	1,875(6)	1,755(4)	160,0(2) 137,8(2)	86,5(2) 83,3(2)	87,8(2) 88,4(2)	58,7	[202]
-Np	Et ₄ N ⁺		Н	1,909(10)	1,740(6)	168,3(3) 129,1(3)	85,6(3) 86,7(3)	88,9(3) 88,9(3)	30,8	[199]
⊋a	Et ₄ N ⁺		Н	1,603(4)	1,721(5)	166,2(3) 143,1(3)	86,1(2) 89,3(2)	89,4(2) 89,3(2)	68,7 52,8	[204]

1	2	3	4	5	6	7	8	9	10	11
F +	К ⁺ 18-краун-6		Н	1,600(8)	1,730(9)	171,2(5) 133,1(5)	.:		36,1	[205]
	Ле ₂ Н _	0,5MeCN	н	1,878(2)	1,740(2)	160,65(8) 144,68(8)	86,76(8) 83,54(8)	89,04(8) 89,02(8)	69,1	[206]
CH ₂ N	N ⁺ Me ₂ H ^a		H .	1,891(2)	1,742(2)	176,60(6) 119,09(7)	88,91 (6) 89,41 (6)	89,60(6) 89,48(6)		[207]
CH ₂ NH		MeCN	Br	1,888(6)	1,742(3)	176,0(2) 121,3(2)	88,8(2) 89,7(2)	88,7(1) 88,9(2)	7	[208]
$\mathrm{CH_2CH_2}^{-1}$	+ NH		Br	1,880(9)	1,740(9)	171,4(5) 122,2(5)	85,0(5) 87,9(4)	88,8(4) 90,4(4)	34,9	[207, 209]
CH ₂ CH ₂ N	(a)	H ₂ O	Br	1,87(3)	1,75(2)	154(1) 150(1)	84,9(9) 85,0(9)	88,0(9) 88,6(9)	96,3 86,2	[207, 209]

а Для двух независимых молекул. 6 Смесь с *n*-производным.

Геометрические параметры анионов в силикатах 52

R	. M ⁺	Сольват	r(Si-R) (Å)	r(Si-O) (Å)	O ₍₁₎ -Si-Q ₍₃₎ O ₍₂₎ -Si-Q ₍₄₎ O ₍₉₎	O ₍₁₎ -Si-Q ₍₄₎ O ₍₂₎ -Si-Q ₍₃₎ (0)	O ₍₁₎ -Si-O ₍₂₎ O ₍₃₎ -Si-O ₍₄₎ (0)	Отклонение от ТВП к КП, %	Лит.
<i>t</i> -Bu	Et ₄ N ⁺		1,871(7)	1,755(5)	153,3(2) 143,0(3)	84,3(2) 83,8(2)	87,2(2) 87,3(2)	80,3	[201]
Ph	C ₅ H ₅ N ⁺ H		1,871(3)	1,744(2)	152,1(1) 150,9(1)	83,9(1) 85,5(1)	88,2(1) 88,5(1)	97,6	[202]
СН	2NH	MeCN	1,906(5)	1,739(3)	172,8(2) 128,4(2)	86,9(1) 88,5(2)	88,6(2) 89,8(2)	20,5	[210]
CH₂C	H ₂ NH	MeCN	1,879(3)	1,745(2)	153,6(1) 150,1(1)	85,9(1) 84,0(1)	88,6(1) 88,1(1)	89,6	[211, 212]
CH_2	, the O	Me ₂ CO	1,888(4)	1,739(3)	176,9(1) 119,2(1)	88,7(1) 89,3(1)	90,1(1) 89,0(1)		[213]
CH ₂	NH O	MeNO ₂	1,875(8)		173,2(3) 129,6(3)	87,6(3) 87,8(3)	90,2(3) 89,2(3)	25,3	[213]

аксиальными атомами кислорода, а в цианосиликате 61 вершины тригональной бипирамиды заняты атомом кислорода и углеродом цианогруппы. Следует отметить, что средняя длина Si—O связей в силильных анионах 59, 61 больше, чем в соединениях 49—54.

Кроме производных диолов с пятикоординационным атомом кремния изучена структура спироциклических силикатов 62-63, в которых кремний шестикоординационен.

Рентгеноструктурный анализ показал, что анионы в соединениях 62 [221], 63 [222] и 64 [223, 224] октаэдричны. Донорные N — Si связи в производных 62 (2,157 Å) и 63 (2,173 Å) отличаются незначительно, кроме того установлено, что в силикате 63 только одна диметиламинометильная группа координирована с атомом кремния, тогда как другая не вступает во

Геометрическ	ие	параметры	анионов	В	CIL.	тикатах	59
A 7-7-7							

The state they are a second to the control of the

R	M ⁺	r(Si-R) (Å)	r(Si-O) (Å)	O-Si=O(O)	Лит.
Ph ^(a)	Me ₄ N ⁺	1,944(9)	1,819(9) 1,810(9)	171.1(4)	[216]
C ₆ H ₁₁	Et ₄ N ⁺	1,889(6)	1,855(4) 1,823(4)	170,5(2)	[190]
Ph ₃ Si	Et ₄ N ⁺	2,403(3)	1,831(5) 1,838(5)	171,8(2)	[217]
F ^(a)	(Me ₂ N) ₃ S ⁺	1,631(3)	1,789(4) 1,784(4)	176,4(2)	[218]

⁽а) Средние значения для двух независимых молекул.

внутримолекулярное взаимодействие. Связь N — Si в цвиттерионном силикате 64 короче (2,085 Å), а атом водорода аммониевой группы образует сильную водородную связь с атомом кислорода спиросиликатного фрагмента [r(NH...O) = 1,62 Å].

Каждый из трех циклических лигандов у кремния в соединении 65 непланарен, максимальное отклонение от плоскости составляет 0,037 Å) Геометрия аниона почти октаэдрическая, отклонения от идеальной D3 симметрии вызваны сильными электронными эффектами в кристаллической решетке, поэтому все углы O—Si—O отличаются от идеальных углов 90 и 180° в октаэдре. Напряжения в циклах сказываются на величинах углов ОСС (113°), которые значительно меньше 120° [225, 226]. В соединении 65 Si—O связи нервноценны (1,765—1,813 Å), они незначительно отличаются от величин, характерных для производных пятикоординационного кремния анионного типа.

$$\begin{bmatrix} \begin{pmatrix} & & & \\$$

Атом кремния в 1,2-диметоксиэтановом сольвате 66 [178] окружен шестью кислородными атомами трех пирокатехиновых групп и имеет октаэдрическую координацию. Каждый из катионов лития также находится в центре октаэдра, образованного тремя атомами кислорода октаэдра SiO₆ и тремя атомами кислорода диметоксиэтана. Расстояния Si—O (1,7723—1,7930 Å) находятся в области, характерной для силиката 65.

Рентгеноструктурный анализ бис [2-(диметиламинометил) фенил]силилтрифлата 67 [118] и комплекса бис [8-(диметиламино) нафтил]силана с йодом 68 [227] однозначно подтверждает ионную структуру этих

соединений. В отличие от ранее рассмотренного [2-(диметиламинометил) фенил [фенилсилилтрифлата 15 [SiX₃ = Si(H)Ph(OSO₂CF₃)] [118] со связью Si—O равной 1,951 Å, в соединении 67 взаимодействие между атомами кремния и кислорода отсутствует, а минимальное расстояние Si—O составляет 4,165 Å, что больше суммы ван-дер-ваальсовых радиусов. Координация у атома кремния — тригональная бипирамида с атомами азота двух диметиламинометильных групп в вершинах и расстояними N—Si 2,052 и 2,072 Å. Эти связи короче, чем в нейтральных производных пятикоординационного кремния, содержащих 2-(диметиламинометил) фенильные заместители.

В соединении 68 самое короткое расстояние Si—I (5,036 Å) значительно превосходит сумму ван-дер-ваальсовых радиусов, кроме того ионы образуют в кристалле чередующиеся слои. Это указывает на отсутствие ковалентных взаимодействий между кремнием и йодом. Кремний тригонально-пирамидален, три σ -связанных атома лежат в экваториальной плоскости, а два атома азота в аксиальных положениях. Расстояния N — Si (2,08 и 2,06 Å) очень близки по величине расстояниям в соединении 67.

В бистрифлате 1,1,3,3-тетракис [1-(2-оксопирролидинил) метил] дисилоксана 69 [228] наименьшие межионные Si—Otf контакты (3,91 и 4,28 Å) найдены только для одного атома кремния силоксанового фрагмента, для второго они превышают 4,5 Å. Дисилоксановый фрагмент нелинеен (угол Si—O—Si = $145,3^{\circ}$), а атомы кремния имеют тригонально-бипирамидальное окружение с кислородами карбонильных групп в вершинах бипирамиды.

Диметилхлор- и диметилдихлорсилан в реакции с N-метилимидазолом образуют ионные соединения 70 и 71 [229] с пятикоординационным кремнием. Расстояния от кремния до атомов азота в аксиальных положениях в катионе 70 равны (2,034 и 2,005 Å), а в катионе 71 экваториальная Si—N связь (1,817 Å) меньше аксиальных (1,983 и 2,023 Å).

Строение соединений 72 [230], 73 [231] и комплекса тетрайодсилана с диметилформамидом [(Me_2NCHO)6Si]I4 [232] с 6-координационным октаэдрическим кремнием изучено методом рентгеноструктурного анализа. В катионе 72 N — Si связи *транс*-расположенные относительно OH-лигандов (2,005 Å) длиннее, чем *цис*-связи (1,953 Å). Угол O—Si—O приближается к тетраэдрическому, зато углы N—Si—N двух 2,2′-бипиридиновых лигандов из-за стерических особенностей малы ($80,4^\circ$).

Длина Si—O связей в катионе с диметилформамидными лигандами (1,754—1,772 Å) и хелатном комплексе 73 (1,752—1,779 Å) одинакова.

Анализируя результаты структурных исследований соединений гипервалентного кремния, следует отметить, что дополнительная координация с атомами азота, кислорода и серы, как правило, приводит к производным с 5-членными гетероциклами (силатраны, 1-(2-диметиламинометил)фенилсиланы, 1-(8-диметиламинонафталил)силаны, ароилоксиметилтрифторсиланы, N-силилметиллактамы, N-силилметилацетамиды, спироциклические 1,2-этилендиолато-, 1,2-фенилендиолато- и 3,4-нафталиндиолатосиликаты). Значительно реже наблюдается образование 4- и 6-членных гетероциклов.

Данные по молекулярной структуре соединений кремния с повышенной координацией весьма полезны при изучении различных вопросов реакционной способности (строение переходных комплексов, механизмы реакций). Они необходимы также для анализа результатов ЯМР-спектроскопических исследований и проведения корреляций между геометрическими характеристиками молекул в кристаллическом состоянии и параметрами спектров ЯМР. Особенности строения кремнийорганических соединений могут дать ценную информацию при изучении их биологической активности.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Лукевиц Э. Я.*, *Пудова О. А.*, *Стуркович Р. Я.* // Молекулярная структура кремнийорганических соединений. Рига: Зинатне, 1988. С. 192.
- Lukevics E., Pudova O., Sturkovich R. // Molecular Structure of Organosilicon Compounds. Chichester: Ellis Horwood, 1989. — P. 262.
- Sheldrick W. S. // Ed. Patai S., Rappoport Z. The Chemistry of Organic Silicon Compounds. Part 1. — Chichester: John Wiley & Sons, 1989. — P. 227.
- Shklover V. E., Struchkov Yu. T., Voronkov M. G. // Main Group Metal Chem. 1988.
 Vol. 11. P. 109.
- 5. Шкловер В. Е., Стручков Ю. Т., Воронков М. Г. // Успехи химии. 1989. Т. 58. С. 353.
- 6. Hencsei P., Párkányi L. // Period. Polytech. Chem. Eng. 1990. Vol. 34. P. 293.
- Hencsei P., Bihátsi L., Kovács I., Wagner O. // Period. Polytech. Chem. Eng. 1991. Vol. 35. — P. 115.
- 8. Hencsei P., Bihátsi L., Kovács I., Wagner O. // Magy. Kem. Foly. 1991. Vol. 97. P. 403.
- 9. Hencsei P., Kovács I., Bihátsi L. // Kem. Közl. 1992. Vol. 74. P. 33.
- 10. Hencsei P. // Struct. Chem. 1991. Vol. 2. P. 21.
- 11. Greenberg A., Wu G. // Struct. Chem. 1990. Vol. 1. P. 79.
- 12. Csonka G. I., Hencsei P. // J. Comput. Chem. 1996. Vol. 17. P. 767.
- 13. Shen Q., Hilderbrandt R. L. // J. Mol. Struct. 1980. Vol. 64. P. 257.
- 14. Hencsei P., Csonka G. I. // Acta Chim. Acad. Sci. Hung. 1981. Vol. 106. P. 285.
- 15. Forgács G., Kolonits M., Hargittai I. // Struct. Chem. 1990. Vol. 1. P. 245.
- 16. Csonka G. I., Hencsei P. // J. Comput. Chem. 1994. Vol. 15. P. 385.
- 17. Csonka G. I., Hencsei P. // J. Organomet. Chem. 1993. Vol. 446. P. 99.
- 18. Купче Э. Л., Лукевиц Э. // ХГС. 1989. № 5. С. 701.
- Kupče Ē., Liepiņš E., Lapsiņa A., Zelchan G., Lukevics E. // J. Organomet. Chem. 1983. —
 Vol. 251. P. 15.
- Kupče E., Liepiņš E., Lapsiņa A., Urtāne I., Zelčans G., Lukevics E. // J. Organomet. Chem. 1985. — Vol. 279. — P. 343.
- 21. Kupče E., Lukevics E. // J. Organomet. Chem. 1988. Vol. 358. P. 67.
- Párkányi L., Hencsei P., Bihátsi L., Müller T. // J. Organomet. Chem. 1984. Vol. 269. —
 P. 1.
- 23. Párkányi L., Bihátsi L., Hencsei P. // Cryst. Struct. Commun. 1978. Vol. 7. P. 435.
- 24. Zaitseva G. S., Karlov S. S., Churakov A. V., Avtomonov E. V., Lorberth J., Hartel D. // J. Organomet. Chem. — 1996. — Vol. 523. — P. 221.
- Кемме А. А., Блейделис Я. Я., Дьяков В. М., Воронков М. Г. // Ж. структ. хим. 1975. Т. 16. — С. 914.
- 26. Шкловер В. Е., Стручков Ю. Т., Сорокин М. С., Воронков М. Г. // ДАН. 1984. Т. 274. — С. 615.
- 27. Демидов М. П., Шкловер В. Е., Фролов Ю. Л., Лукина Ю. А., Дьяков В. М., Стручков Ю. Т., Воронков М. Г. // Ж. структ. хим. — 1985. — Т. 26, № 4. — С. 103.
- 28. Демидов М. П., Шкловер В. Е., Стручков Ю. Т., Дьяков В. М., Лукина Ю. А., Фролов Ю. Л., Воронков М. Г. // Ж. структ. хим. 1991. Т. 32, № 1. С. 177.
- 29. Овчинников Ю. Э., Стручков Ю. Т., Чернов Н. Ф., Трофимова О. М., Воронков М. Г. // ДАН. 1993. Т. 328. С. 330.
- 30. Воронков М. Г., Чернов Н. Ф., Трофимова О. М., Овчинников Ю. Э., Стручков Ю. Т., Гаврилова Г. А. // Изв. АН. Сер. хим. 1993. № 4. С. 758.
- 31. Gevorgyan V., Borisova L., Vjater A., Popelis J., Belyakov S., Lukevics E. // J. Organomet. Chem. 1994. Vol. 482. P. 73.
- 32. Зельбст Э. А., Шкловер В. Е., Стручков Ю. Т., Кашаев А. А., Демидов М. П., Губанова Л. И., Воронков М. Г. // ДАН. 1981. Т. 260. С. 107.
- 33. Nasim M., Petrosyan V. S., Zaitseva G. S., Lorberth J., Wocadlo S., Massa W. // J. Organomet. Chem. 1992. Vol. 441. P. 27.
- 34. *Кемме А. А.* // Рентгеноструктурные исследования сил- и герматранов. Автореф. дис. ... канд. хим. наук. Рига, 1977. 24 с.
- 35. *Блейделис Я. Я.* Молекулярная и кристаллическая структура фурана и его производных. В кн.: Успехи химии фурана. Рига: Зинатне, 1978, гл. 1, с. 7.
- Пудова О. А. Синтез и свойства фурановых и тиофеновых производных элементов IVБ группы. Автореф. дис. ... канд. хим. наук. — Рига, 1980. — 22 с.
- 37. Овчинников Ю. Э., Ковязина Т. Г., Шкловер В. Е., Стручков Ю. Т., Копылов В. М., Воронков М. Г. // ДАН. 1987. Т. 297. С. 108.
- 38. Nasim M., Livantsova L. I., Krut ko D. P., Zaitseva G. S., Lorberth J., Otto M. // J. Organomet. Chem. 1991. Vol. 402. P. 313.
- 39. Овчинников Ю. Э., Шкловер В. Е., Стручков Ю. Т., Копылов В. М., Ковязина Т. Г., Воронков М. Г. // Ж. структ. хим. 1986. Т. 27, № 2. С. 133.
- 40. Шкловер В. Е., Овчинников Ю. Э., Стручков Ю. Т., Копылов В. М., Ковязина Т. Γ ., Воронков М. Γ . // ДАН. 1985. Т. 284. С. 131.

- Hencsei P., Párkányi L., Fülöp V., Baryshok V. P., Voronkov M. G., Kuznetsova G. A.// J. Organomet. Chem. — 1988. — Vol. 346. — P. 315.
- 42. Hencsei P., Kovács I., Fülöp V. // J. Organomet. Chem. 1989. Vol. 377. P. 19.
- 43. Кемме А. А., Блейделис Я. Я., Дьяков В. М., Воронков М. Г. // Изв. АН СССР. Сер. хим. 1976. № 10. С. 2400.
- 44. Wang S., Hu N. // Sci. Sin. B. 1983. Vol. 26. P. 1233.
- 45. Wu Y., Lu K., Wu G. // Second China Japan USA Symposium on Organometallic and Inorganic Chemistry, Shanghai, China. 1982. P. 203.
- 46. Гуркова С. Н., Гусев А. И., Алексеев Н. В., Игнатенко М. А. // Ж. структ. хим. 1988. Т. 29, № 2. С. 203.
- 47. Гуркова С. Н., Гусев А. И., Алексеев Н. В., Игнатенко М. А. // Металлоорг. хим. 1988. Т. 1. С. 1251.
- 48. Lukevics E., Dirnens V., Pokrovska N., Popelis J., Kemme A. // Main Group Metal Chem. 1995. Vol. 18. C. 337.
- 49. Wang S., Hu J. // Kexue Tongbao. 1981. Vol. 26. P. 1084.
- 50. Turley J. W., Boer F. P. // J. Amer. Chem. Soc. 1968. Vol. 90. P. 4026.
- 51. Párkányi L. // Kem. Közl. 1976. Vol. 46. P. 467.
- 52. Párkányi L., Simon K., Nagy J. // Acta Crystallogr. 1974. Vol. 30B. P. 2328.
- 53. Párkányi L., Nagy J., Simon K. // J. Organomet. Chem. 1975. Vol. 101. P. 11.
- 54. Párkányi L., Hencsei P., Bihátsi L., Kovács I., Szöllosy A. // Polyhedron. 1985. Vol. 4. P. 243.
- 55. Turley J. W., Boer F. P. // J. Amer. Chem. Soc. 1969. Vol. 91. P. 4129.
- Chung T.-M., Lee Y.-A., Chung Y.K., Jung I. N. // Organometallics. 1990. Vol. 9. P. 1976.
- Lee J.-S., Chung Y. K., Whang D., Kim K. // J. Organomet. Chem. 1993. Vol. 446. P. 49.
- Lee Y.-A., Chung Y. K., Kim Y., Jeong J. H., Chung G., Lee D. // Organometallics. 1991. Vol. 10. — P. 3707.
- 59. Lee Y.-A., Chung Y. K., Kim Y., Jeong J. H. // Organometallics. 1990. Vol. 9. P. 2851.
- 60. Oh A.-S., Chung Y. K., Kim S. // Organometallics. 1992. Vol. 11. P. 1394.
- Párkányi L., Hencsei P., Bihátsi L., Müller T. // J. Organomet. Chem. 1984. Vol. 269. P. 1.
- 62. Кемме А. А., Блейделис Я. Я., Пестунович В. А., Барышок В. П., Воронков М. Г. // ДАН. — 1978. — Т. 243. — С. 688.
- Garant R. J., Daniels L. M., Das S. K., Janakiraman M. N., Jacobson R. A., Verkade J. G. // J. Amer. Chem. Soc. — 1991. — Vol. 113. — P. 5728.
- 64. Мачарашвили А. А., Шкловер В. Е., Стручков Ю. Т., Барышок В. П., Воронков М. Г. // ДАН. — 1987. — Т. 297. — С. 1123.
- Kovacs I., Hencsei P., Parkanyi L. // Period. Polytech. Chem. Eng. 1987. Vol. 31. P. 155.
- 66. Parkanyi L., Hencsei P., Bihatsi L. // J. Organomet. Chem. 1982. Vol. 232. P. 315.
- 67. Uh D. S., Do Y., Lee J. H., Suh I. H. // Main Group Metal Chem. 1993. Vol. 16. C. 131.
- 68. Kim M. W., Uh D. S., Kim S., Do Y. // Inorg. Chem. 1993. Vol. 32. P. 5883.
- Eaborn C., Odell K. J., Pidcock A., Scollary G. R. // J. Chem. Soc. Chem. Commun. 1976. N 9. — P. 317.
- 70. Scollary G. R. // Aust. J. Chem. 1977. Vol. 30. P. 1007.
- Lu Z.-R., Zhuo R.-X., Shen L.-R., Zhang X.-D., Shen L.-F. // J. Organomet. Chem. 1995. Vol. 489. — P. C38.
- 72. Lu Z.-R., Zhuo R.-X., Shen L.-R., Luo B.-S. // Main Group Metal Chem. 1994. Vol. 17. P 377
- Zhuo R.-X., Lu Z.-R., Liao J., Shen L.-F. // J. Organomet. Chem. 1993. Vol. 446. P. 107.
- Fülöp V., Kálmán A., Hencsei P., Csonka G., Kovacs I. // Acta Crystallogr., C. 1988. Vol. 44. — P. 720.
- Párkányi L., Hencsei P., Csonka G., Kovács I. // J. Organomet. Chem. 1987. Vol. 329. —
 P. 305.
- 76. Párkányi L., Hencsei P., Popowski E. // J. Organomet. Chem. 1980. Vol. 197. P. 275.
- Gordon M. S., Carroll M. T., Jensen J. H., Davis L. P., Burggraf L. W., Guidry R. M. // Organometallics. — 1991. — Vol. 10. — P. 2657.
- 78. Воронков М. Г., Демидов М. П., Шкловер В. Е., Барьшок В. П., Дьяков В. М., Фролов Ю. И. // Ж. структ. хим. 1980. Т. 21, № 2. С. 100.
- 79. Демидов М. П., Александров Г. Г., Стручков Ю. Т., Барышок В. П., Дьяков В. М., Фролов Ю. И., Воронков М. Г. // Коорд. хим. — 1981. — Т. 7. — С. 1262.
- 80. Chen B., Wu G., Luo Y. // Jiegou Huaxue. 1987. Vol. 6. P. 58.
- Párkányi L., Fülöp V., Hencsei P., Kovács I. // J. Organomet. Chem. 1991. Vol. 418. P. 173.
- 82. Кемме А. А., Блейделис Я. Я., Лапсиня А. Ф., Флейшер М. Б., Зелчан Г. И., Лукевиц Э. Я. // Изв. АН ЛатвССР. Сер. хим. 1985. № 2. С. 242.

- 83. Dai J., Zhang J., Wu Y. // Jiegou Huaxue. 1983. Vol. 2. P. 107.
- 84. Boer F. P., Turley J. W., Flynn J. J. // J. Amer. Chem. Soc. 1968. Vol. 90. P. 5102.
- 85. Chen B., Wu G., Luo Y. // Jiegou Huaxue. 1987. Vol. 6. P. 165.
- Kemme A., Bleidelis J., Solomennikova I., Zelchan G., Lukevics E. // J. Chem. Soc. Chem. Commun. — 1976. — N 24. — P. 1041.
- Grobe J., Henkel G., Krebs B., Voulgarakis N. // Z. Naturforsch. B. 1984. Bd 39B. —
 S. 341.
- 88. Boer F. P., Turley J. W. // J. Amer. Chem. Soc. 1969. Vol. 91. P. 4134.
- 89. Hencsei P., Kovács I., Párkányi L. // J. Organomet. Chem. 1985. Vol. 293. P. 185.
- 90. Jurkschat K., Tzschach A., Meunier-Piret J., von Meerssche M. // J. Organomet. Chem. 1986. Vol. 317. P. 145.
- 91. Macharashvili A. A., Shklover V. E., Struchkov Yu. T., Lapsina A., Zelčans G., Lukevics E. // J. Organomet. Chem. 1988. Vol. 349. P. 23.
- 92. Wan Y., Verkade J. G. // Organometallics. 1994. Vol. 13. P. 4164.
- 93. Wan Y., Verkade J. G. // J. Amer. Chem. Soc. 1995. Vol. 117. P. 141.
- 94. Woning J., Verkade J. G. // Organometallics. 1991. Vol. 10. P. 2259.
- Woning J., Daniels L. M., Verkade J. G. // J. Amer. Chem. Soc. 1990. Vol. 112. P. 4601.
- 96. Daly J. J., Sanz F. // J. Chem. Soc. Dalton Trans. 1974. N 19. P. 2051.
- 97. Kemme A., Bleidelis J., Urtane I., Zelchan G., Lukevics E. // J. Organomet. Chem. 1980. Vol. 202. P. 115.
- 98. Дьяченко О. А., Атовмян Л. О., Алдошин С. М., Комаленкова Н. Г., Попов А. Г., Антипова В. В., Чернышев Е. А. // Изв. АН СССР. Сер. хим. 1975. № 5. С. 1081.
- 99. Дьяченко О. А., Атовмян Л. О., Алдошин С. М., Краснова Т. Л., Степанов В. В., Чернышев Е. А., Попов А. Г., Антипова В. В. // Изв. АН СССР. Сер. хим. 1974. № 11. С. 2648
- 100. Schomburg D. // Z. anorg. allg. Chem. 1982. Bd 493. S. 53.
- 101. Кемме А. А., Блейделис Я. Я., Уртане И. П., Зелчан Г. И., Лукевиц Э. Я. // Ж. структ. хим. 1984. Т. 25, № 1. С. 165.
- 102. Кемме А. А., Блейделис Я. Я., Уртане И. П., Зелчан Г. И., Лукевиц Э. Я. // Изв. АН ЛатвССР. Сер. хим. 1982. № 4. С. 486.
- Corey J. Y., Rath N. P., John C. S., Corey E. R. // J. Organomet. Chem. 1990. Vol. 399. —
 P. 221.
- 104. Чукланова Е. Б., Гусев А. И., Алексеев Н. В., Киреева Л. Н., Дьяков В. М. // Металлоорг. хим. — 1991. — Т. 4. — С. 1344.
- 105. Мачарашвили А. А., Овчинников Ю. Э., Стручков Ю. Т., Сергеев В. Н., Пестунович С. В., Бауков Ю. И. // Изв. АН. Сер. хим. 1993. № 1. С. 189.
- 106. Kummer D., Abdel Halim S. H., Kuhs W., Mattern G. // J. Organomet. Chem. 1993. Vol. 446. P. 51.
- 107. Klebe G., Nix M., Hensen K. // Chem. Ber. 1984. Bd 117. S. 797.
- 108. Van der Ancker T., Jolly B. S., Lappert M. F., Raston C. L., Skelton B. W. // J. Chem. Soc. Chem. Commun. 1990. N 15. P. 1006.
- 109. Junk P. C., Patalinghug W. C., Sue R. E., Raston C. L., Skelton B. W., White A. H. // J. Chem. Soc. Chem. Commun. 1991. N 14. P. 930.
- 110. Klebe G., Hensen K., Fuess H. // Chem. Ber. 1983. Bd 116. S. 3125.
- 111. Klebe G., Bats J. W., Hensen K. // Z. Naturforsch. B. 1983. Bd 38B. S. 825.
- 112. Klebe G., Bats J. W., Fuess H. // J. Amer. Chem. Soc. 1984. Vol. 106. P. 5202.
- 113. Klebe G., Bats J. W., Hensen K. // J. Chem. Soc. Dalton Trans. 1985. N 1. P. 1.
- 114. Klebe G. // J. Organomet. Chem. 1985. Vol. 293. P. 147.
- 115. Ovchinnikov Yu. E., Struchkov Yu. T., Chernov N. F., Trofimova O. M., Voronkov M. G. // J. Organomet. Chem. 1993. Vol. 461. P. 27.
- 116. Klebe G. // J. Organomet. Chem. 1987. Vol. 332. P. 35.
- 117. Boyer J., Brelière C., Carré F., Corriu R. J. P., Kpoton A., Poirier M., Royo G., Young J. C. // J. Chem. Soc. Dalton Trans. 1989. N 1. P. 43.
- Belzner J., Schär D., Kneisel B. O., Herbst-Irmer R. // Organometallics. 1995. Vol. 14. P. 1840.
- 119. Brelière C., Carré F., Corriu R. J. P., Royo G., Wong Chi Man M., Lapasset J. // Organometallics. 1994. Vol. 13. P. 307.
- 120. Brelière C., Carré F., Corriu R. J. P., Royo G. // Organometallics. 1988. Vol. 7. P. 1006.
- 121. Carré F., Chuit C., Corriu R. J. P., Mendi A., Reye C. // Organometallics. 1995. Vol. 14. P. 2754.
- 122. Carré F., Chuit C., Corriu R. J. P., Mendi A., Reye C. // Angew. Chem. Int. Ed. Engl. 1994. Vol. 33. P. 1097.
- 123. Belzner J., Schär D. // Ed. N. Auner, J. Weis. Organosilicon Chemistry II. Weinheim New-York Basel Cambridge Tokyo: VCH, 1996. P. 459.

- 124. Brelière C., Carré F., Corriu R. J. P., Poirier M., Royo G. // Organometallics. 1986. Vol. 5. P. 388.
- 125. Carré F., Corriu R. J. P., Kpoton A., Poirier M., Royo G., Young J. C., Belin C. // J. Organomet. Chem. 1994. Vol. 470. P. 43.
- 126. Corriu R. J. P. // J. Organomet. Chem. 1990. Vol. 400. P. 81.
- 127. Breliere C., Carré F., Corriu R. J. P., Poirier M., Royo G., Zweeker J. // Organometallics. 1989. Vol. 8. P. 1831.
- Boyer-Elma K., Carré F., Corriu R. J. P., Douglas W. E. // J. Chem. Soc. Chem. Commun. 1995. — N 6. — P. 725.
- 129. Tamao K., Tarao Y., Nakagawa Y., Nagata K., Ito Y. // Organometallics. 1993. Vol. 12. P. 1113.
- Karsch H. H., Bienlein F., Sladek A., Henkel M., Burger K. // J. Amer. Chem. Soc. 1995. Vol. 117. — P. 5160.
- Гуркова С. Н., Гусев А. И., Алексеев Н. В., Федотов Н. С., Рясин Г. В., Полякова М. В., Соколов В. В. // Ж. структ. хим. — 1979. — Т. 20. — С. 160.
- 132. Гуркова С. Н., Гусев А. И., Алексеев Н. В., Рясин Г. В., Федотов Н. С. // Ж. структ. хим. 1983. Т. 24, № 1. С. 160.
- 133. Гуркова С. Н., Гусев А. И., Алексеев Н. В., Лось М. Г., Заводник В. Е., Бельский В. К., Рясин Г. В., Федотов Н. С. // Ж. структ. хим. 1979. Т. 20. С. 1059.
- 134. Klebe G., Duc Tran Qui // Acta Crystallogr. C. 1984. Vol. 40C. P. 478.
- Мозжухин А. О., Антипин М. Ю., Стручков Ю. Т., Гостевский Б. А., Калихман И. Д., Пестунович В. А., Воронков М. Г. // Металлоорг. хим. 1992. Т. 5. С. 658.
- 136. Kane K. M., Lemke F. R., Petersen J. L. // Inorg. Chem. 1995. Vol. 34. P. 4085.
- Money J. R., Choy C. K., Knox K., Kanney M. // J. Amer. Chem. Soc. 1975. Vol. 97. P. 3033.
- Dirk C. W., Inabe T., Schock K. F., Marks T. J. // J. Amer. Chem. Soc. 1983. Vol. 105. P. 1539.
- 139. Kroenke W. J., Sutton L. E., Joyner R. D., Kenney M. E. // Inorg. Chem. 1963. Vol. 2. P. 1064.
- 140. Adley D., Bird P. H., Fraser A. R., Onyszchuk M. // Inorg. Chem. 1972. Vol. 11. P. 1402.
- 141. Kummer D., Chaudhry S. C., Debaerdemacker T., Thewalt U. // Chem. Ber. 1990. Bd 123. — S. 145.
- 142. Kummer D., Chaudhry S. C., Thewalt U., Debaerdemacker T. // Z. anorg. allg. Chem. 1987. Bd 553. S. 147.
- 143. Sawitzki G., von Schnering H. G. // Chem. Ber. 1976. Bd 109. S. 3728.
- 144. Farnham W. B., Whitney J. F. // J. Amer. Chem. Soc. 1984. Vol. 106. P. 3992.
- 145. Karsch H. H., Deubelly B., Keller U., Bienlein F., Richter R., Bissinger P., Heckel M., Müller G. // Chem. Ber. 1996. Bd 129. S. 759.
- 146. Кашаев А. А., Зельбст Э. А., Демидов М. П., Рождественская И. В. // Кристаллография. 1985. Т. 30. С. 1186.
- 147. Воронков М. Г., Зельбст Э. А., Фундаментский В. С., Кашаев А. А., Губанова Л. И., Чипанина Н. Н., Фролов Ю. Л. // ДАН. 1987. Т. 292. С. 859.
- 148. Зельбст Э. А., Шкловер В. Е., Стручков Ю. Т., Фролов Ю. Л., Кашаев А. А., Губанова Л. И., Дьяков В. М., Воронков М. Г. // Ж. структ. хим. 1981. Т. 22, № 3. С. 82.
- 149. Воронков М. Г., Кашаев А. А., Зельбст Э. А., Фролов Ю. Л., Дьяков В. М., Губанова Л. И. // ДАН. 1979. Т. 247. С. 1147.
- 150. Зельбст Э. А., Шкловер В. Е., Стручков Ю. Т., Кашаев А. А., Губанова Л. И., Дья-ков В. М., Фролов Ю. Л., Воронков М. Г. // ДАН. 1981. Т. 259. С. 1369.
- 151. Macharashvili A. A., Shklover V. E., Struchkov Yu. T., Oleneva G. I., Kramarova E. P., Shipov A. G., Baukov Yu. I. // J. Chem. Soc. Chem. Commun. 1988. N 10. P. 683
- 152. Артамкина О. Б., Крамарова Е. П., Шипов А. Г., Бауков Ю. И., Мачарашвили А. А., Овчинников Ю. Э., Стручков Ю. Т. // ЖОХ. 1993. Т. 63. С. 2289.
- 153. Артамкина О. Б., Крамарова Е. П., Шипов А. Г., Бауков Ю. И., Мачарашвили А. А., Овчинников Ю. Э., Стручков Ю. Т. // ЖОХ. 1994. Т. 64. С. 263.
- 154. Мачарашвили А. А., Бауков Ю. И., Крамарова Е. П., Оленева Г. И., Пестунович В. А., Стручков Ю. Т., Шкловер В. Е. // Ж. структ. хим. 1987. Т. 28, № 5. С. 114.
- 155. Мачарашвили А. А., Бауков Ю. И., Крамарова Е. П., Оленева Г. И., Пестунович В. А., Стручков Ю. Т., Шкловер В. Е. // Ж. структ. хим. 1987. Т. 28, № 4. С. 107.
- 156. Macharashvili A. A., Shklover V. E., Struchkov Yu. T., Baukov Yu. I., Kramarova E. P., Oleneva G. I. // J. Organomet. Chem. 1987. Vol. 327. P. 167.
- 157. Крамарова Е. П., Оленева Г. И., Шипов А. Г., Мачарашвили А. А., Шкловер В. Е., Стручков Ю. Т., Бауков Ю. И. // Изв. АН СССР. Сер. хим. 1986. № 9. С. 2156.
- 158. Стручков Ю. Т., Овчинников Ю. Э., Шипов А. Г., Бауков Ю. И. // Изв. АН. Сер. хим. 1995. № 9. С. 1774.

- 159. Орлова Н. А., Шипов А. Г., Бауков Ю. И., Мозжухин А. О., Антипин М. Ю., Стручков Ю. Т. // Ж. структ. хим. 1992. Т. 5. С. 666.
- 160. Мачарашвили А. А., Шкловер В. Е., Стручков Ю. Т., Пестунович В. А., Бауков Ю. И., Крамарова Е. П., Оленева Г. И. // Ж. структ. хим. — 1988. — Т. 29, № 5. — С. 121.
- Мозжухин А. О., Антипин М. Ю., Стручков Ю. Т., Шипов А. Г., Крамарова Е. П., Бауков Ю. И. // Металлоорг. хим. — 1992. — Т. 5. — С. 917.
- 162. Мозжухин А. О., Антипин М. Ю., Стручков Ю. Т., Шипов А. Г., Крамарова Е. П., Бауков Ю. И. // Металлоорг. хим. 1992. Т. 5. С. 906.
- 163. Овчинников Ю. Э., Мозжухин А. О., Антипин М. Ю., Стручков Ю. Т., Барышок В. П., Лазарева Н. Ф., Воронков М. Г. // Ж. структ. хим. 1993. Т. 34, № 6. С. 66.
- 164. Зельбст Э. А., Овчинников Ю. Э., Кашаев А. А., Лазарева Н. Ф., Барышок В. П., Стручков Ю. Т., Воронков М. Г. // ДАН. 1992. Т. 327. С. 336.
- 165. Мачарашвили А. А., Шкловер В. Е., Стручков Ю. Т., Воронков М. Г., Гостевский Б. А., Калихман И. Д., Банникова О. Б., Пестунович В. А. // Металлоорг. хим. 1988. Т. 1.- С. 1131.
- 166. Onan K. D., McPhail A. T., Yoder C. H., Hillyard R. W. // J. Chem. Soc. Chem. Commun. 1978. — N 5. — P. 209.
- Албанов А. Л., Кудяков Н. М., Пестунович В. А., Воронков М. Г., Мачарашвили А. А., Шкловер В. Е., Стручков Ю. Т. // Металлоорг. хим. — 1991. — Т. 4. — С. 1228.
- 168. Зельбст Э. А., Фундаментский В. С., Кашаев А. А., Сорокин М. С., Фролов Ю. Л., Воронков М. Г. // ДАН. 1986. Т. 287. С. 342.
- 169. Macharashvili A. A., Shklover V. E., Struchkov Yu. T., Voronkov M. G., Gostevsky B. A., Kalikhman I. D., Bannikova O. B., Pestunovich V. A. // J. Organomet. Chem. 1988. Vol. 340. P. 23.
- 170. Macharashvili A. A., Shklover V. E., Struchkov Yu. T., Gostevsky B. A., Kalikhman I. D., Bannikova O. B., Voronkov M. G., Pestunovich V. A. // J. Organomet. Chem. 1988. Vol. 356. P. 23.
- 171. Антипин М. Ю., Мачарашвили А. А., Стручков Ю. Т., Шкловер В. Е. // Металлоорг. хим. 1990. Т. 3. С. 998.
- 172. Boer F. P., Remoortere F. P. // J. Amer. Chem. Soc. 1969. Vol. 91. P. 2377.
- 173. Boer F. P., Remoortere F. P. // J. Amer. Chem. Soc. 1970. Vol. 92. P. 801.
- 174. Mix A., Berlekamp U. H., Stammler H.-G., Neumann B., Jutzi P. // J. Organomet. Chem. 1996. Vol. 521. P. 177.
- 175. Гусев А. И., Чукланова Е. Б., Дьяков В. М., Жданов А. С., Кирева Л. Н., Кирьянова А. Н. // ДАН. 1986. Т. 291. С. 608.
- 176. Чукланова Е. Б., Гусев А. И. // Ж. структ. хим. 1987. Т. 28, № 6. С. 147.
- 177. Kira M., Zhang L. C., Kabuto C., Sakurai H. // Chem. Lett. 1995. N 8. P. 659.
- 178. Hahn F. E., Keck M., Paymond K. N. // Inorg. Chem. 1995. Vol. 34. P. 1402.
- 179. Barrow M. J., Cradock S., Ebsworth E. A. V., Rankin D. W. H. // J. Chem. Soc. Dalton Trans. 1981. N 9. P. 1988.
- 180. Bett W., Cradock S., Rankin D. W. H. // J. Mol. Struct. 1980. Vol. 66. P. 159.
- Prakasha T. K., Srinivasan S., Chandrasekaran A., Day R. O., Holmes R. R. // J. Amer. Chem. Soc. — 1995. — Vol. 117. — P. 10003.
- 182. Timosheva N. V., Prakasha T. K., Chandrasekaran A., Day R. O., Holmes R. R. // Inorg. Chem. 1996. Vol. 35. P. 3614.
- Day R. O., Prakasha T. K., Holmes R. R., Eckert H. // Organometallics. 1994. Vol. 13. P. 1285.
- 184. Овчинников Ю. Э., Сорокин М. С., Стручков Ю. Т., Воронков М. Г. // ДАН. 1993. Т. 330. С. 337.
- 185. Barrow M. J., Ebsworth E. A. V., Huntley C. M., Rankin D. W. H. // J. Chem. Soc. Dalton Trans. — 1982. — N 6. — P. 1131.
- 186. Schomburg D. // Z. Naturforsch. B. 1982. Bd 37B. S. 195.
- 187. Holmes R. R., Day R. O., Harland J. J., Sau A. C., Holmes J. M. // Organometallics. 1984. — Vol. 3. — P. 341.
- 188. Geinsford C. J., Kemmitt T., Milestone N. B. // Acta Crystallogr. C. 1995. Vol. 41C. P. 8.
- Laine R. M., Blohowiak K. Y., Robinson T. R., Hoppe M. L., Nardi P., Kampf J., Uhm J. // Nature. — 1991. — Vol. 353. — P. 642.
- 190. Kumara Swamy K. C., Chandrasekhar V., Harland J. J., Holmes J. M., Day R. O., Holnes R. R. // J. Amer. Chem. Soc. 1990. Vol. 112. P. 2341.
- 191. Holmes R. R., Day R. O., Payne J. S. // Phosphorus, Sulfur, and Silicon and Rel. Elem. 1989. Vol. 42. P. 1.
- 192. Schomburg D. // Z. Naturforsch. B. 1983. Bd 38B. S.938.
- 193. Tacke R., Lopez-Mras A., Jones P. G. // Organometallics. 1994. Vol. 13. P. 1617.
- 194. Mühleisen M., Tacke R. // Chem. Ber. 1994. Bd 127. S. 1615.
- 195. Tacke R., Dannappel O., Muhleisen M. // Ed. N. Auner, J. Weis. Organosilicon Chemistry II. —

- Weinheim New-York Basel Cambridge Tokyo: VCH, 1996. P. 427.
- 196. Tacke R., Mühleisen M. // Inorg. Chem. 1994. Vol. 38. P. 4191.
- 197. Mühleisen M., Tacke R. // Organometallics. 1994. Vol. 13. P. 3740.
- 198. Erchak N., Ancens G., Kemme A., Lukevics E. // XI int. Symp. on Organosilicon Chem. Montpellier, France, 1996. — P. PA60.
- 199. Holmes R. R., Day R. O., Chandrasekhar V., Harland J. J., Holmes J. M. // Inorg. Chem. 1985. Vol. 24. P. 2016.
- 200. Boer F. P., Flynn J. J., Turley J. W. // J. Amer. Chem. Soc. 1968. Vol. 90. P. 6973.
- 201. Holmes R. R., Day R. O., Chandrasekhar V., Holmes J. M. // Inorg. Chem. 1985. Vol. 24. P. 2009.
- Holmes R. R., Day R. O., Harland J. J., Holmes J. M. // Organometallics. 1984. Vol. 3. P. 347.
- 203. Loy D. A., Small J. H., Shea K. J. // Organometallics. 1993. Vol. 12. P. 1484.
- 204. Harland J. J., Day R. O., Vollano J. F., Sau A. C., Holmes R. R. // J. Amer. Chem. Soc. 1981. Vol. 103. P. 5269.
- Dettlaff-Weglikowska U., Hawkins E., von Schnering H. G. // Z. Naturforsch.B. 1991. Bd 46. — S. 609.
- 206. Tacke R., Wiesenberger F., Lopes-Mras A., Sperlich J., Mattern G. // Z. Naturforsch. B. 1992. Bd 47. S. 1370.
- Tacke R., Lopes-Mras A., Sperlich J., Strohmann C., Kuhs W. F., Mattern G. // Chem. Ber. 1993. Bd 126. S. 851.
- 208. Tacke R., Sperlich J., Strohmann C., Frank B., Mattern G. // Z. Kristallogr. 1992. Bd 199. — S. 91.
- Tacke R., Becht J., Lopes-Mras A., Sperlich J. // J. Organomet. Chem. 1993. Vol. 446. —
 P. 1.
- 210. Tacke R., Sperlich J., Strohmann C., Mattern G. // Chem. Ber. 1991. Bd 124. S. 1491.
- Strohmann C., Tacke R., Mattern G., Kuhs W. F. // J. Organomet. Chem. 1991. Vol. 403. — P. 63.
- Tacke R. // 40 Jahre Fonds der Chemischen Industrie 1950—1990. Frankfurt am Main: Fonds der Chem. Ind., 1990. — S. 51.
- 213. Tacke R., Mühleisen M., Lopes-Mras A., Sheldrick W. S. // Z. anorg. allg. Chem. 1995. Bd 621. S. 779.
- 214. Tacke R., Mühleisen M., Jones P. G. // Angew. Chem. Int. Ed. Engl. 1994. Vol. 33. P. 1186.
- Swamy K. C. K., Sreelatha C., Day R. O., Holmes J., Holmes R. R. // Inorg. Chem. 1991. Vol. 30. — P. 3126.
- Stevenson W. H. III, Wilson S., Martin J. C., Farnham W. B. // J. Amer. Chem. Soc. 1985. — Vol. 107. — P. 6340.
- 217. Kira M., Sato K., Kabuto C., Sakurai H. // J. Amer. Chem. Soc. 1989. Vol. 111. P. 3747.
- 218. Farnham W. B., Harlow R. L. // J. Amer. Chem. Soc. 1981. Vol. 103. P. 4608.
- 219. Kawashima T., Okazaki R. // Synlett. 1996. N 7. P. 600.
- 220. Dixon D. A., Hertler W. R., Chase D. B., Farnham W. B., Davidson F. // Inorg. Chem. 1988. Vol. 27. P. 4012.
- 221. Carré F., Cerveau G., Chuit C., Corriu R. J. P., Reye C. // Angew. Chem. Int. Ed. Engl. 1989. Vol. 28. P. 489.
- 222. Carré F., Chuit C., Corriu R. J. P., Fanta A., Mehdi A., Reye C. // Organometallics. 1995. Vol. 14. P. 194.
- 223. Carré F., Chuit C., Corriu R. J. P., Mehdi A., Reye C. // J. Organomet. Chem. 1993. Vol. 446. P. C6.
- 224. Chuit C., Corriu R. J. P., Mehdi A., Reye C. // Chem. Eur. J. 1996. Vol. 2. P. 342.
- 225. Flynn J. J., Boer F. P. // J. Amer. Chem. Soc. 1969. Vol. 91. P. 5756.
- 226. Liebau F. // Bull. Soc. fr. Mineral Crustallogr. 1971. T. 94. P. 239.
- 227. Breliere C., Carre F., Corriu R. J. P., Wong Chi Man M. // J. Chem. Soc. Chem. Commun. 1994. N 20. P. 2333.
- 228. Крамарова Е. П., Смирнова Л. С., Артамкина О. Б., Шипов А. Г., Бауков Ю. И., Овчинников Ю. Э., Мозжухин А. О., Стручков Ю. Т. // ЖОХ. 1993. Т. 63. С. 2275.
- Hensen K., Zengerly T., Müller T., Pickel P. // Z. anorg. allg. Chem. 1988. Bd 558. —
 S. 21.
- 230. Sawitzky G., von Schnering H. G., Kummer D., Seshadri T. // Chem.Ber. 1978. Bd 111. S. 3705.
- 231. Thewalt U., Link U. // Z. Naturforsch. B. 1991. Bd 46. S. 293.
- 232. Deppisch B., Gladrow B., Kummer D. // Z. anorg. allg. Chem. 1984. Bd 519. S. 42.