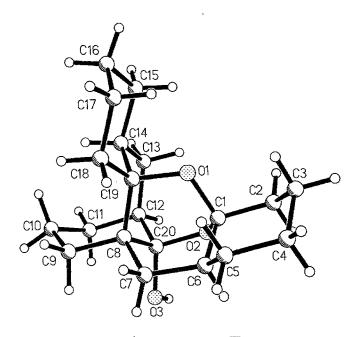
Т. И. Акимова, В. В. Нестеров, М. Ю. Антипин, В. И. Высоцкий

СТРУКТУРА «ДИМЕТИЛЕНТРИЦИКЛОГЕКСАНОНА»

Методом рентгеноструктурного анализа установлена структура продукта конденсации в щелочной среде двух молекул формальдегида с тремя молекулами циклогексанона.

Продукт конденсации в щелочной среде двух молекул формальдегида с тремя молекулами циклогексанона («диметилентрициклогексанон») впервые получил и установил его состав (С20Н30О3) М. Н. Тиличенко [1], который, изучив ИК спектр этого соединения, показал, что вещество не является трикетоном I, как это можно было ожидать исходя из предложенной им схемы дикетонной конденсации [2], поскольку в спектре отсутствует поглощение карбонильных групп, но имеется поглощение группы ОН. На этом основании и по аналогии со свойствами ряда замещенных δ-бицикланонов для соединения была предложена формула II и показано, что при нагревании выше температуры плавления оно дециклизуется в трикетон I, а последний при действии спиртового раствора щелочи количественно превращается в исходное соединение.

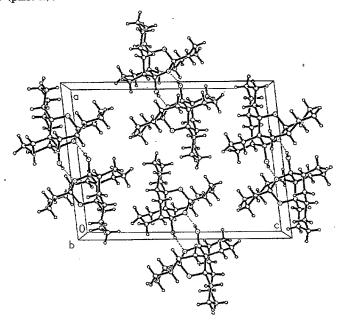
Более позднее исследование [3] позволило на основании анализа спектров $^{13}\mathrm{C}$ ЯМР и изучения реакций промежуточных продуктов превращений «диметилентрициклогексанона» предложить для него структуру 21-гидрокси-2,22-диоксагексацикло [12,6,2,0^{1,16},0^{3,8},0^{3,14},0^{11,22}] докозана (III).


Однако недавно [4] был описан продукт конденсации в щелочной среде циклогексанона с параформом, имеющий совпадающие с соединением III температуру плавления и спектр ¹³С ЯМР, но для которого была предложена структура IV, отличающаяся от структуры III. Мы воспроизвели методику работы [4] и нашли, что полученное по ней вещество не обнаруживает депрессии температуры плавления при совместном плавлении с соединением III, а ИК и ¹³С ЯМР спектры образцов совпадают. Чтобы устранить возникшее противоречие, мы обратились к рентгеноструктурному анализу, с помощью которого однозначно установлено строение соединения III. Общий вид молекулы показан на рис. 1, длины связей, валентные и торсионные углы приведены в табл. 1—3 соответственно.

 ${\rm T}\, a\, {\rm f}\, \pi\, u\, {\rm ц}\, a\, \, 1$ Длины связей (d) в молекуле соединения ${\rm III}$

Связь	d, Å	Связь	d, Å
O ₍₁₎ —C ₍₁₎	1,415(2)	C(8)—C(9)	1,543(2)
O(1)—C(19)	1,462(2)	C(8)—C(19)	1,561(2)
$O_{(2)}$ — $C_{(1)}$	1,436(2)	C ₍₉₎ —C ₍₁₀₎	1,524(3)
$O_{(2)}$ — $C_{(20)}$	1,443(2)	$C_{(10)}$ — $C_{(11)}$	1,527(3)
O(3)—C(20)	1,404(2)	$C_{(11)}-C_{(12)}$	1,535(3)
$C_{(1)}$ — $C_{(2)}$	1,511(2)	$C_{(12)}$ — $C_{(13)}$	1,530(3)
$C_{(1)}$ — $C_{(6)}$	1,523(2)	$C_{(12)}-C_{(20)}$	1,530(2)
$C_{(2)}$ — $C_{(3)}$	1,525(3)	C(13)—C(14)	1,522(2)
$C_{(3)}$ — $C_{(4)}$	1,514(4)	C(14)—C(15)	1,529(2)
$C_{(4)}$ — $C_{(5)}$	1,522(4)	C(14)—C(19)	1,543(2)
$C_{(5)}$ — $C_{(6)}$	1,530(2)	C(15)—C(16)	1,516(3)
$C_{(6)}$ — $C_{(7)}$	1,534(3)	C(16)—C(17)	1,513(3)
$C_{(7)}$ — $C_{(8)}$	1,542(2)	C(17)—C(18)	1,530(2)
$C_{(8)}$ — $C_{(20)}$	1,532(2)	C ₍₁₈₎ —C ₍₁₉₎	1,532(2)

 ${\tt Таблица~2}$ Валентные углы (ω) в молекуле соединения III


Угол	ω, град.	Угол	ω, град.
C ₍₁₎ —O ₍₁₎ —C ₍₁₉₎	114,70(10)	$C_{(10)}-C_{(11)}-C_{(12)}$	113,90(2)
$C_{(1)}$ — $C_{(2)}$ — $C_{(20)}$	113,18(11)	$C_{(13)}$ — $C_{(12)}$ — $C_{(20)}$	109,19(13)
$O_{(1)}-C_{(1)}-O_{(2)}$	108,54(11)	$C_{(13)}-C_{(12)}-C_{(11)}$	115,00(2)
$O_{(1)}-C_{(1)}-C_{(2)}$	107,46(12)	$C_{(20)}-C_{(12)}-C_{(11)}$	108,60(2)
$O_{(2)}C_{(1)}C_{(2)}$	107,23(13)	$C_{(14)}$ — $C_{(13)}$ — $C_{(12)}$	114,90(2)
$O_{(1)}-C_{(1)}-C_{(6)}$	110,02(12)	$C_{(13)}-C_{(14)}-C_{(15)}$	112,00(2)
$O_{(2)}-C_{(1)}-C_{(6)}$	110,00(12)	$C_{(13)}-C_{(14)}-C_{(19)}$	113,00(13)
$C_{(2)}$ — $C_{(1)}$ — $C_{(6)}$	113,43(14)	C(15)—C(14)—C(19)	110,15(14)
$C_{(1)}$ — $C_{(2)}$ — $C_{(3)}$	111,00(2)	$C_{(16)}-C_{(15)}-C_{(14)}$	111,40(2)
$C_{(4)}$ — $C_{(3)}$ — $C_{(2)}$	111,30(2)	$C_{(17)}-C_{(16)}-C_{(15)}$	111,30(2)
$C_{(3)}$ — $C_{(4)}$ — $C_{(5)}$	111,50(2)	$C_{(16)}-C_{(17)}-C_{(18)}$	112,30(2)
$C_{(4)}$ — $C_{(5)}$ — $C_{(6)}$	112,00(2)	$C_{(17)}-C_{(18)}-C_{(19)}$	112,00(2)
$C_{(1)}$ — $C_{(6)}$ — $C_{(5)}$	111,01(14)	O(1)—C(19)—C(18)	106,80(12)
$C_{(1)}$ — $C_{(6)}$ — $C_{(7)}$	107,46(13)	$O_{(1)}-C_{(19)}-C_{(14)}$	106,74(12)
$C_{(5)} - C_{(6)} - C_{(7)}$	113,60(2)	$C_{(18)}C_{(19)}C_{(14)}$	108,60(13)
$C_{(6)}$ — $C_{(7)}$ — $C_{(8)}$	109,95(13)	$O_{(1)}-C_{(19)}-C_{(8)}$	106,88(11)
$C_{(20)}$ — $C_{(8)}$ — $C_{(7)}$	107,55(13)	$C_{(18)}-C_{(19)}-C_{(8)}$	114,09(13)
$C_{(20)}$ — $C_{(8)}$ — $C_{(9)}$	108,26(12)	$C_{(14)}$ — $C_{(19)}$ — $C_{(8)}$	113,27(12)
$C_{(7)}$ — $C_{(8)}$ — $C_{(9)}$	110,32(14)	$O_{(3)}-C_{(20)}-O_{(2)}$	108,78(11)
$C_{(20)}-C_{(8)}-C_{(19)}$	106,42(12)	$O_{(3)}$ — $C_{(20)}$ — $C_{(12)}$	112,41(13)
$C_{(7)}$ — $C_{(8)}$ — $C_{(19)}$	108,61(12)	$O_{(2)}C_{(20)}C_{(12)}$	107,18(12)
$C_{(9)}$ — $C_{(8)}$ — $C_{(19)}$	115,35(13)	$O_{(3)}-C_{(20)}-C_{(8)}$	108,17(12)
$C_{(10)}-C_{(9)}-C_{(8)}$	116,50(2)	$O_{(2)}-C_{(20)}-C_{(8)}$	109,22(11)
$C_{(9)}$ — $C_{(10)}$ — $C_{(11)}$	113,40(2)	$C_{(12)}-C_{(20)}-C_{(8)}$	111,02(13)

Puc. 1. Общий вид молекулы III

Как видно из рис. 1 и табл. 4, в молекуле вещества III тетрагидропирановые циклы находятся в конформации ванны, а циклогексановые имеют конформацию кресла. Геометрические параметры молекулы (длины связей и валентные углы) обычны [5].

В кристалле межмолекулярные водородные связи $O_{(3)}$ — $H_{(30)}$... $O_{(2)}$ (2 – x, –y, 1 – z) $[O_{(3)}$... $O_{(2)}$ 2,823(2), $O_{(3)}$ — $H_{(30)}$ 0,83(2), $H_{(30)}$... $O_{(2)}$ 2,00(2) Å, угол $O_{(3)}$ — $H_{(30)}$... $O_{(2)}$ 167(2)°] объединяют молекулы соединения III в димеры (рис. 2).

Рис. 2. Проекция *ас* кристаллической структуры III. IIIтриховыми линиями показаны межмолекулярные водородные связи $O-H\dots O$

Торсионные углы (т) в соединении III

Угол	Т, град.	Угол	Т, град.
			,
$C_{(19)}-O_{(1)}-C_{(1)}-O_{(2)}$	54,4(1)	$C_{(16)}$ — $C_{(17)}$ — $C_{(18)}$ — $C_{(19)}$	54,0(2)
$C_{(19)}$ — $O_{(1)}$ — $C_{(1)}$ — $C_{(2)}$	170,1(1)	$C_{(1)}$ — $O_{(1)}$ — $C_{(19)}$ — $C_{(18)}$	129,7(1)
$-0_{(1)}-C_{(1)}-$	-66,0(1)	$C_{(1)}-O_{(1)}-C_{(19)}-C_{(14)}$	-114,3(1)
	-63,2(1)	$C_{(1)}$ — $O_{(1)}$ — $C_{(19)}$ — $C_{(8)}$	7,2(2)
-C(1)-	-179,0(1)	-C(18)-	58,4(2)
$C_{(20)}$ — $O_{(2)}$ — $C_{(1)}$ — $C_{(6)}$	57,2(1)	-C(18)-	-56,4(2)
-C(1)—C(2)-	68,1(2)		176,2(2)
$O(z)-C_{(1)}-C_{(2)}-C_{(3)}$	-175,4(1)	-C(14)-	70,1(2)
-C(1)-C(2)-	-53,7(2)	$C_{(15)}-C_{(14)}-C_{(19)}-O_{(1)}$	56,0(2)
	55,1(2)	$C_{(13)}$ — $C_{(14)}$ — $C_{(19)}$ — $C_{(18)}$	-175,1(1)
-C(3)—C(4)-	-56,2(2)	$C_{(15)}-C_{(14)}-C_{(19)}-C_{(18)}$	58,8(2)
-C(s)-	55,0(2)	$C_{(13)}$ — $C_{(14)}$ — $C_{(19)}$ — $C_{(8)}$	-47,3(2)
	-68,2(2)	$C_{(15)}$ — $C_{(14)}$ — $C_{(19)}$ — $C_{(8)}$	-173,4(1)
-C(1)-C(6)-	172,3(1)	$C_{(20)}$ — $C_{(8)}$ — $C_{(19)}$ — $O_{(1)}$	-61,0(1)
-CE)	-52,2(2)	$C_{(7)}$ — $C_{(8)}$ — $C_{(19)}$ — $O_{(1)}$	54,5(1)
$-C_{(1)}-C_{(6)}-$	56,6(1)	$C_{(9)}$ — $C_{(8)}$ — $C_{(19)}$ — $O_{(1)}$	178,9(1)
	-62,9(1)		-178,8(1)
-C(1)-	177,0(1)	$C_{(7)}$ — $C_{(8)}$ — $C_{(19)}$ — $C_{(18)}$	-63,3(2)
	52,2(2)	$C_{(9)}$ — $C_{(8)}$ — $C_{(19)}$ — $C_{(18)}$	61,1(2)
-(e) -C	-173,4(2)		56,2(2)
-C(0)-C(1)-	5,5(2)	$C_{(7)}$ — $C_{(8)}$ — $C_{(19)}$ — $C_{(14)}$	171,8(1)
$C_{(5)}-C_{(6)}-C_{(7)}-C_{(8)}$	128,7(2)		-63,8(2)
-C(1)-C(8)-	54,1(2)	$C_{(1)}$ — $O_{(2)}$ — $C_{(20)}$ — $O_{(3)}$	-111,3(1)
$C_{(6)}-C_{(7)}-C_{(8)}-C_{(9)}$	171,9(1)	$C_{(1)}$ — $O_{(2)}$ — $C_{(20)}$ — $C_{(12)}$	126,9(1)
- 1	-60,7(2)		6,6(1)
$C_{(20)}$ — $C_{(8)}$ — $C_{(9)}$ — $C_{(10)}$	-49,2(2)		-176,4(1)
	-166,7(1)	-C(12)-C(20)-	57,6(2)
$C_{(19)}-C_{(8)}-C_{(9)}-C_{(10)}$	(2)8(5)	-C(20)-	-56,9(2)
$C_{(8)}-C_{(9)}-C_{(10)}-C_{(11)}$	41,7(2)	$C_{(11)}$ — $C_{(12)}$ — $C_{(20)}$ — $O_{(2)}$	177,1(1)
$C_{(9)}$ — $C_{(10)}$ — $C_{(11)}$ — $C_{(12)}$	-43,8(3)	$C_{(13)}-C_{(12)}-C_{(20)}-C_{(8)}$	62,3(2)
$C_{(10)}$ — $C_{(11)}$ — $C_{(12)}$ — $C_{(13)}$	-68,1(2)	$C_{(11)}$ — $C_{(12)}$ — $C_{(20)}$ — $C_{(8)}$	-63,7(2)
$C_{(10)}$ — $C_{(11)}$ — $C_{(12)}$ — $C_{(20)}$	54,5(2)	C(7)-C(8)-C(20)-O(3)	55,6(2)
$C_{(20)}-C_{(12)}-C_{(13)}-C_{(14)}$	-51,2(2)	$C_{(9)}-C_{(8)}-C_{(20)}-O_{(3)}$	-63,5(2)
-C(12)-C(13)-	71,1(2)	$C_{(19)}$ — $C_{(8)}$ — $C_{(20)}$ — $O_{(3)}$	171,9(1)
$C_{(12)}$ — $C_{(13)}$ — $C_{(14)}$ — $C_{(15)}$	169,5(1)	C(7)-C(8)-C(20)-O(2)	-62,6(1)
$C_{(12)}$ — $C_{(13)}$ — $C_{(14)}$ — $C_{(19)}$	44,4(2)	C(20)—	178,2(1)
1	174,1(1)	$C_{(19)}$ — $C_{(8)}$ — $C_{(20)}$ — $O_{(2)}$	53,6(1)
- 1	-59,2(2)	$C_{(7)}$ — $C_{(8)}$ — $C_{(20)}$ — $C_{(12)}$	179,4(1)
$C_{(14)}$ — $C_{(15)}$ — $C_{(16)}$ — $C_{(17)}$	55,3(2)		60,2(2)
$C_{(15)}$ — $C_{(16)}$ — $C_{(17)}$ — $C_{(18)}$	-52,4(2)	$C_{(19)}$ — $C_{(8)}$ — $C_{(20)}$ — $C_{(12)}$	-64,3(1)

Координаты ($\times 10^4$) и изотропные эквивалентные (для H — изотропные) тепловые параметры атомов в соединении III

Атом	х	у	z	U
0	7044(1)	2066(1)	4961(1)	30(1)
O ₍₁₎	7044(1)	895(1)	4877(1)	31(1)
O ₍₂₎	8686(1)	1957(2)	5636(1)	41(1)
O(3)	10119(1)	2116(2)	4538(1)	30(1)
C ₍₁₎	7911(1)	1		44(1)
C ₍₂₎	7559(1)	1401(3)	3759(1)	1
C ₍₃₎	6796(2)	2697(3)	3329(1)	58(1)
C ₍₄₎	7251 (2)	4577 (4)	3296(1)	75(1)
C ₍₅₎	7592(2)	5305(3)	4082(1)	59(1)
C ₍₆₎	8349(1)	4026(2)	4535(1)	38(1)
C (7)	8615(1)	4601 (2)	5360(1)	40(1)
C ₍₈₎	8450(1)	3001 (2)	5889(1)	31(1)
C ₍₉₎	8863(1)	3477(3)	6709(1)	49(1)
$C_{(10)}$	8981 (2)	1913(3)	7268(1)	59(1)
$C_{(11)}$	9436(2)	212(3)	6945(1)	57(1)
$C_{(12)}$	8970(1)	-249(2)	6139(1)	39(1)
C ₍₁₃₎	7831(1)	-842(2)	6068(1)	43(1)
C ₍₁₄₎	7058(1)	658(2)	6184(1)	37(1)
C(15)	5936(1)	61 (3)	5964(1)	48(1)
C(16)	5171(1)	1497(3)	6158(1)	58(1)
C ₍₁₇₎	5391(1)	3291(3)	5799(1)	52(1)
C ₍₁₈₎	6524(1)	3878(3)	5977(1)	42(1)
C ₍₁₉₎	7285(1)	2421 (2)	5768(1)	29(1)
$C_{(20)}$	9081(1)	1401(2)	5636(1)	31(1)
H(30)	10451 (15)	1029(26)	5547(10)	46(5)
$H_{(21)}$	7271 (15)	155(29)	3822(11)	57(6)
H ₍₂₂₎	8155(15)	1336(24)	3496(10)	45(5)
H(31)	6578(16)	2187(27)	2819(13)	64(6)
H(32)	6171(17)	2798(27)	3587(11)	57(6)
H(41)	6756(19)	5470(33)	3036(13)	80(7)
H(42)	7868(19)	4490(31)	3009(14)	77 (7)
H ₍₅₁₎	7880(18)	6488(32)	4075(12)	73(7)
H(52)	6960(17)	5446(27)	4367(12)	58(6)
H ₍₆₁₎	8982(14)	3946(22)	4288(9)	37(4)
H ₍₇₁₎	8195(16)	5671 (27)	5490(11)	58(6)
H ₍₇₂₎	9322(15)	5003(26)	5461 (10)	48(5)
H ₍₉₁₎	8443(16)	4462(29)	6882(12)	64(6)
H ₍₉₂₎	9559(16)	4003(27)	6670(11)	60(6)
H ₍₁₀₁₎	9461 (17)	2262(28)	7709(13)	65(6)
H ₍₁₀₂₎	8306(16)	1603(25)	7473(10)	51 (5)
H(111)	9358(17)	-813(31)	7286(13)	70(7)
H(112)	10165(18)	375 (29)	6941 (12)	63(6)
H ₍₁₂₎	9347(13)	-1256(24)	5957(9)	41 (5)
H ₍₁₃₁₎	7742(16)	-1856(28)	6417(11)	59(6)
H ₍₁₃₂₎	7635(15)	-1422(26)	5540(12)	56(5)
H ₍₁₄₎	7077(14)	1009(24)	6700(11)	46(5)
H ₍₁₅₁₎	5831(16)	-1146(29)	6196(11)	60(6)
H ₍₁₅₂₎	5858(14)	-253(27)	5424(12)	54(5)
H(161)	4481 (17)	1079(27)	5981(11)	60(6)
H(162)	5227(17)	1613(29)	6708(13)	69(6)
H ₍₁₇₁₎	4978(17)	4333(31)	5944(12)	69(6)
H ₍₁₇₂₎	5230(15)	3156(26)	5263(12)	57(6)
H ₍₁₈₁₎	6630(14)	5069(28)	5716(11)	51 (5)
H ₍₁₈₂₎	6651 (15)	4127(26)	6522(12)	55(6)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рентгеноструктурное исследование соединения III. Бесцветные кристаллы соединения III (C₂₀H₃₀O₃) моноклинные, при 25 °C: a=12,936 (6), b=7,400(4), c=17,807(9) Å, $\beta=95,96$ (4)°, V = 1696(2) Å³, $d_{\text{ВЫЧ}} = 1,247 \text{ г/см}^3$, Z = 4, пространственная группа $P2(1)/\pi$. Параметры элементарной ячейки и интенсивности 3471 отражения измерены на автоматическом четырехкружном дифрактометре Siemens Р3/Рс λ МОК α , графитовый монохроматор, $\theta/2\theta$ -сканирование, $heta_{
m max}$ = 27°). Структура расшифрована прямым методом и уточнена полноматричным МНК в анизотропном приближении для неводородных атомов. Атомы водорода локализованы объективно в разностном Фурье-синтезе и уточнены в изотролном приближении. Окончательные значения факторов расходимости $R^1 = 0.043$ по 2436 независимым отражениям. Все расчеты проведены по программам SHELXTL PLUS и SHELXL-93. Координаты и изотропные (для неводородных атомов — эквивалентные) температурные параметры атомов приведены в табл. 4.

Рентгеноструктурное исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований (проекты *№ 97-03-33783 u 96-15-97367).*

СПИСОК ЛИТЕРАТУРЫ

- 1. Тиличенко М. Н. // Научный ежегодник Саратов. ун-та. 1954. С. 500.
- 2. Тиличенко М. Н. // ЖОрХ. 1966. Т. 2. С. 1615. 3. Акимова Т. И., Косенко С. В., Тиличенко М. Н. // ЖОрХ. 1991. Т. 27. С. 2553.
- 4. Φ едотова О. В., Капитонова Е. В., Решетов П. В., Цимбаленко Д. А. // ХГС. 1997. № 7. — C. 887.
- 5. Allen F. H., Kennard O., Watson D. C., Brammer L., Orpen A. G., Taylor R. // J. Chem. Soc. Perkin Trans. II. — 1987. — N 12. — P. 51.

Дальневосточный государственный университет, Владивосток 690600, Россия e-mail: vlad@chem.dvgu.ru

Поступило в редакцию 02.07.98

Институт элементоорганических соединений им. А. Н. Несмеянова РАН, Москва 117813, Россия