В. И. Марков, О. К. Фарат*

5',6',7',8'-ТЕТРАГИДРО-1'*H,*3'*H*-СПИРО-[ЦИКЛОГЕКСАН-1,2'-ХИНАЗОЛИН]-4'-ОН В РЕАКЦИИ МАННИХА

Изучено аминометилирование 5',6',7',8'-тетрагидро-1'*H*,3'*H*-спиро[циклогексан-1,2'-хиназолин]-4'-она по реакции Манниха, которое приводит к гетероциклической системе, содержащей аннелированный азабициклический фрагмент. При гидролизе указанных спиранов образуются производные 3-азабицикло[3.3.1]нонана.

Ключевые слова: 3-азабицикло[3.3.1]нонан, алкалоиды, каркасные амины, производные хиназолин-4(3H)-она, реакция Манниха.

Производные 3-азабицикло[3.3.1]нонанов проявляют разнообразную биологическую активность (анальгетическую, противомикробную), обладают ганглиоблокирующими и гипотензивными свойствами, выступают в роли седативных и жаропонижающих средств [1–2]. Кроме того, исключительный интерес к группе этих соединений обусловлен тем, что алкалоиды ряда аконитина, также содержащие 3-азабициклононановый фрагмент, обладают высокой антиаритмической активностью [2]. Известно, что многие современные антиаритмические препараты, применяемые в медицинской практике, имеют ряд существенных недостатков, главным из которых является высокая токсичность и, следовательно, довольно узкая сфера терапевтического применения. Поэтому разработка методов синтеза новых полициклических производных 3-азабицикло[3.3.1]нонана представляет значительный интерес.

Циклические кетоны являются ключевыми синтонами в синтезе 3-аза-бицикло[3.3.1]нонанов и ряда других биологически активных гетероциклических соединений [2–8]. Синтоном такого рода является 5',6',7',8'-тетрагидро-1'*H*,3'*H*-спиро[циклогексан-1,2'-хиназолин]-4'-он (1). В литературе описан всего один пример взаимодействия соединения 1 с формальдегидом и метиламином, приводящего к образованию продукта 2a с выходом 44% в этаноле [9].

Нами подробно исследовано аминоалкилирование соединения **1** по реакции Манниха с первичными аминами, содержащими различные алифатические и гетероциклические заместители.

$$\begin{array}{c} H \\ N \\ N \\ N \\ N \\ \end{array} \\ \begin{array}{c} A. \ RNH_2 \cdot HCl, \ CH_2O, \ MeOH, \ \Delta \\ \hline b. \ RNH_2, \ AcOH, \ CH_2O, \ KOMH. \ T. \\ \hline -H_2O \\ \end{array} \\ \begin{array}{c} -H_2O \\ \hline \\ \textbf{a} \ R = Me, \ \textbf{b} \ R = Et, \ \textbf{c} \ R = Pr, \ \textbf{d} \ R = \textit{t-Bu}, \ \textbf{e} \ R = CH_2Ph, \ \textbf{f} \ R = CH_2CH_2Ph, \ \textbf{g} \ R = CH(Ph)_2, \\ \textbf{h} \ R = CH_2CH_2Br, \ \textbf{i} \ R = CH_2COOEt, \ \textbf{j} \ R = C_{18}H_{37}, \ \textbf{l} \ R = CH_2CH_2OH, \\ \textbf{m} \ R = CH_2CH_2OH, \ \textbf{n} \ R = CH_2 \\ \end{array} \\ \begin{array}{c} \textbf{o} \ \textbf{,} \ \textbf{o} \ R = CH_2 \\ \end{array} \\ \begin{array}{c} \textbf{o} \ \textbf{,} \ \textbf{p} \ R = 3,4-(MeO)_2C_6H_3CH_2CH_2 \\ \end{array}$$

Аминоалкилирование проводилось в различных спиртах (метиловом, этиловом, изопропиловом и изобутиловом). Максимальный выход получен при использовании метанола в качестве растворителя. В случае использования аминов, содержащих гетероарильные фрагменты (3-аминопиридин, 4-амино-1,2,4-триазол, 3-амино-1-фенилпиразол), в описанных условиях реакция не протекала.

Строение продуктов аминоалкилирования доказано ЯМР ¹Н спектроскопией и элементным анализом (табл. 1 и 2). В спектрах ЯМР ¹Н соединений **2а–р** наблюдается сигнал протона NН в области слабого поля (8.13–8.15 м. д.), что не противоречит предложенной структуре.

Для более надёжного доказательства строения полученных продуктов был проведён кислотный гидролиз производных **2a**,**c**,**e**,**j**. Так, амин **2a** при кипячении в 50% серной кислоте превращается в соединение **3**. При нагревании аминов **2a**,**c**,**e**,**j** с 10% раствором соляной кислоты происходит образование карбоксамидов **4a**–**d**.

2a
$$\frac{1. \text{ H}_2\text{SO}_4, \text{ H}_2\text{O}, \Delta}{2. \text{ NaOH, H}_2\text{O}}$$

2a, c,e,j $\frac{1. \text{ HCl}, \text{ H}_2\text{O}, \Delta}{2. \text{ NH}_3, \text{ H}_2\text{O}}$

4a R = Me, b R = Pr, c R = CH₂Ph, d R = C₆H₁₁

Строение полученных соединений **4a**–**d** доказано спектральными методами (ИК, ЯМР 1 Н) и подтверждено результатами элементного анализа (табл. 1 и 2). В ИК спектрах продуктов полосы поглощения карбонильной и карбоксамидной групп находятся в области 1703–1710 и 1648–1663 см $^{-1}$ соответственно. В спектрах ЯМР 1 Н присутствуют два протона карбоксамидной группы при 7.85 м. д.

Производные **4a-d** были также получены с хорошими выходами встречным синтезом из карбоксамида **5**.

$$\begin{array}{c}
OH \\
\hline
OH \\
\hline
OH \\
NH_2
\end{array}$$

$$\begin{array}{c}
CH_2O, RNH_2 \\
\hline
NH_2
\end{array}$$

$$\begin{array}{c}
4a-d \\
\hline
OH \\
\hline
OH \\
NH_2
\end{array}$$

В работе [9] на единственном примере было показано, что аминометилирование соединения 1 диметиламином протекает по атому азота в положении 1'. Нами было установлено, что аналогичное взаимодействие приводит к продуктам замещения **6a–f** по атому углерода C-8'.

$$\mathbf{a} \ \mathbf{R} = \mathbf{Me}, \ \mathbf{b} \ \mathbf{R} = \mathbf{Et}, \ \mathbf{c} \ \mathbf{R} = \mathbf{CH}_2\mathbf{Ph}, \ \mathbf{d} \ \mathbf{R}_2\mathbf{N} = \mathbf{N}$$

 $T\ a\ б\ \pi\ u\ ц\ a\ \ 1$ Физико-химические характеристики синтезированных соединений

Физико-химические характеристики синтезированных соединении							
Соеди- нение	Брутто-формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход*, %	
	G ** ** 0	CC	Н	N	160 160	.	
2 b	$C_{17}H_{27}N_3O$	70.63 70.55	9.48 9.40	14.59 14.52	160–162	67	
2 c	$C_{18}H_{29}N_3O$	71.33 71.25	9.70 9.63	13.90 13.85	135–136	70	
2d	$C_{19}H_{31}N_3O$	71.93 71.88	9.91 9.84	13.33 13.24	115–118	36	
2 e	$C_{22}H_{29}N_3O$	75.25 75.18	8.37 8.32	12.03 11.95	163–164	87	
2f	$C_{23}H_{31}N_3O$	75.65 75.58	8.60 8.55	11.58 11.50	172–173	55	
2 g	$C_{28}H_{33}N_3O$	78.69 78.65	7.82 7.78	9.91 9.83	187–188	31	
2h	C ₁₇ H ₂₆ BrN ₃ O	55.53 55.44	7.76 7.21 7.12	11.57 11.41	125–128	50	
2i	$C_{19}H_{29}N_3O_3$	65.72 65.68	8.45 8.41	12.15 12.09	175–179	30	
2j	$C_{21}H_{33}N_3O$	73.51 73.43	9.74 9.68	12.27 12.23	172–174	74	
2k	$C_{33}H_{59}N_3O$	77.23 77.14	11.67 11.57	8.23 8.18	78–80	46	
21	$C_{17}H_{27}N_3O_2$	66.93 66.85	9.01 8.91	13.85 13.76	137–140	33	
2m	$C_{18}H_{29}N_3O_2$	67.74 67.68	9.21 9.15	13.20 13.15	125–128	47	
2n	$C_{20}H_{31}N_3O_2$	69.64 69.53	9.15 9.04	12.23 12.16	143–147	35	
20	$C_{20}H_{27}N_3O_2$	70.27 70.35	7.84 7.97	12.25 12.31	172–175	38	
2p	$C_{25}H_{35}N_3O_3$	70.65 70.56	8.33 8.29	9.82 9.87	142–145	74	
4a	$C_{10}H_{16}N_2O_2$	61.31 61.20	8.27 8.22	14.35 14.27	210–211	57	
4b	$C_{12}H_{20}N_2O_2$	64.20 64.26	8.90 8.99	12.41 12.49	210–215	51	
4c	$C_{16}H_{20}N_2O_2$	71.02 70.56	7.53 7.40	10.36 10.29	158–160	68	
4d	$C_{15}H_{24}N_2O_2$	68.25 68.15	<u>9.19</u> 9.15	10.67 10.60	143–145	53	
6a	$C_{16}H_{27}N_3O$	69.19 69.28	<u>9.74</u> 9.81	15.10 15.15	162–165	72	
6b	$C_{18}H_{31}N_3O$	70.85 70.78	10.32 10.23	13.81 13.76	147–150	64	
6c	$C_{28}H_{35}N_3O$	78.37 78.28	8.32 8.21	<u>9.85</u> 9.78	105–108	47	
6d	$C_{19}H_{31}N_3O$	71.95 71.88	9.90 9.84	13.30 13.24	220–224	70	
6e	$C_{18}H_{29}N_3O_2$	67.75 67.68	9.21 9.15	13.10 13.15	260–263	35	
6f	C ₂₃ H ₃₁ N ₃ O	75.60 75.58	8.63 8.55	11.60 11.50	163–165	37	

^{*} Приведены выходы соединений 2b-р и 4a-d по методу А.

Спектры ЯМР ¹Н синтезированных соединений

Соеди-	Химические сдвиги, δ , м. д. (J , Γ ц)				
2b	0.95 (3H, т, <i>J</i> = 6.8, CH ₃); 1.21–3.21 (23H, м, 11CH ₂ , 8'-CH); 8.15 (1H, с, NH)				
2c	0.93 (3H, т, <i>J</i> = 6.8, CH ₃); 1.05–3.23 (25H, м, 12CH ₂ , 8'-CH); 8.14 (1H, с, NH)				
2d	0.91 (9H, c, 3CH ₃); 1.05–3.22 (21H, м, 10CH ₂ , 8'-CH); 8.15 (1H, с, NH)				
2e	1.05–3.65 (23H, м, 11CH ₂ , 8'-CH); 7.33–7.51 (5H, м, H Ph); 8.15 (1H, с, NH)				
2f	1.00–3.25 (25H, м, 12CH ₂ , 8'-CH); 7.11–7.46 (5H, м, H Ph); 8.15 (1H, с, NH)				
2g	1.00–3.25 (22H, м, 10CH ₂ , 2CH); 7.52–7.83 (10H, м, H Ph); 8.13 (1H, с, NH)				
2h	1.00–3.51 (25H, м, 12CH ₂ , 8'-CH); 8.15 (1H, c, NH)				
2i	0.94 (3H, т, J = 7.0, CH ₂ CH ₃); 1.22–3.25 (23H, м, 11CH ₂ , 8'-CH); 4.23 (2H, к, J = 7.0, CH ₂ CH ₃); 8.15 (1H, c, NH)				
2j	1.20–3.18 (32H, м, 15CH ₂ , 2CH); 8.15 (1H, с, NH)				
2k	0.95–3.21 (58H, м, CH ₃ , 27CH ₂ , 8'-CH); 8.14 (1H, с, NH)				
21	1.10–3.25 (25H, м, 12CH ₂ , 8'-CH); 4.72 (1H, c, OH); 8.15 (1H, c, NH)				
2m	1.07–3.15 (27H, м, 13CH ₂ , 8'-CH); 4.81 (1H, с, OH); 8.15 (1H, с, NH)				
2n	1.10–3.19 (27H, м, 13CH ₂ , 8'-CH); 3.73 (2H, м, ОСНС <u>Н</u> ₂); 4.03 (1H, т, <i>J</i> = 7.1, ОС <u>Н</u> СН ₂); 8.15 (1H, с, NH)				
20	1.10– 3.19 (23H, м, 11CH ₂ , 8'-CH); 6.06 (1H, д, J = 6.7 , H-3"); 6.25 (1H, т, J = 7.0 , H-4"); 7.32 (1H, д, J = 7.1 , H-5"); 8.14 (1H, с, NH)				
2p	1.10–3.24 (25H, м, 12CH ₂ , 8'-CH); 3.73 (6H, с, 2OCH ₃); 6.52–6.61 (3H, м, H Ar); 8.15 (1H, с, NH)				
4a*	1.50–2.60 (11H, м, 5CH ₂ , 5-CH); 2.27 (3H, с, CH ₃); 7.85 (2H, с, NH ₂)				
4b*	0.95 (3H, c, CH ₃); 1.21–2.58 (15H, м, 7CH ₂ , 5-CH); 7.85 (2H, c, NH ₂)				
4c*	1.50–2.60 (13H, м, 6CH ₂ , 5-CH); 7.21–7.63 (5H, м, H Ph); 7.85 (2H, с, NH ₂)				
4d*	1.20–2.74 (22H, м, 10CH ₂ , 2CH); 7.85 (2H, с, NH ₂)				
6a	0.95–2.60 (19H, м, 9CH ₂ , 8-CH); 2.27 (6H, с, 2CH ₃); 6.70 (1H, с, NH); 7.73 (1H, с, NH)				
6 b	1.00 (6H, c, 2CH ₃); 1.22–2.65 (23H, м, 11CH ₂ , 8-CH); 6.70 (1H, c, NH); 7.72 (1H, c, NH)				
6c	1.20–2.65 (23H, м, 11CH ₂ , 8-CH); 6.71 (1H, с, NH); 7.06–7.14 (10H, м, H Ph); 7.73 (1H, с, NH)				
6d	1.00–2.60 (29H, м, 14CH ₂ , 8-CH); 6.70 (1H, с, NH); 7.73 (1H, с, NH)				
6e	1.00–2.60 (27H, м, 13CH ₂ , 8-CH); 6.70 (1H, с, NH); 7.72 (1H, с, NH)				
6f	1.00–2.48 (25H, м, 12CH ₂ , 8-CH); 6.70 (1H, с, NH); 6.54–6.94 (4H, м, H Ar); 7.73 (1H, с, NH)				

^{*} ИК спектры соединений **4** (v, см⁻¹): **a** 1703, 1663; **b** 1705, 1648; **c** 1710, 1654; **d** 1710, 1650.

Структуры соединений 6a-f подтверждены ЯМР 1 Н спектроскопией и элементным анализом (табл. 1 и 2). В спектрах ЯМР 1 Н наблюдаются сигналы двух протонов NH группы в слабом поле, что исключает возможность протекания данной реакции по атому азота.

Таким образом, описанные в работе примеры демонстрируют эффективность стратегии использования реакции Манниха для направленного синтеза потенциально биологически активных производных 3-азабицикло[3.3.1]-нонана и аналогов природных соединений. Также показано, что взаимодействие 5',6',7',8'-тетрагидро-1'*H*,3'H-спиро[циклогексан-1,2'-хиназолин]-4'-она со вторичными аминами в условиях реакции Манниха протекает по атому углерода, а не азота, как было указано ранее.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на спектрометре Bruker ALPHA FT-IR в режиме ATR в таблетках KBr. Спектры ЯМР 1 Н зарегистрированы на приборе Varian VXR 200 (200 МГц) в ДМСО- d_{6} , внутренний стандарт ТМС. Индивидуальность полученных соединений была установлена методом ТСХ на пластинах Merck 60 F254 (CHCl₃—EtOAc, 10:1).

Спиропроизводное **1** получено из циклогексанона и мочевины с азеотропной отгонкой воды в толуоле [10–11]. Соединение **2a** синтезировано по методике [9] в метаноле с выходом 60%, карбоксамид **5** получен кислотным гидролизом спирана **1** [12].

5',6',7',8'-Тетрагидро-4a',8'-(2-этил-2-азапропано)-3'H-спиро[циклогексан-1,2'-хиназолин]-4'-он (2b). А. К раствору $0.815\ \Gamma$ ($0.01\ моль$) $EtNH_2\cdot HCl$ в $10\ мл$ МеОН добавляют $2.200\ \Gamma$ ($0.01\ моль$) соединения $1\ u$ $1.6\ мл$ 36% раствора формалина, кипятят на водяной бане $40\ мин$. Растворитель отгоняют при пониженном давлении, остаток растворяют в воде, фильтруют и обрабатывают 10% раствором NH_3 . Выпавший осадок соединения 2b отфильтровывают, промывают водой и перекристаллизовывают из смеси H_2O —MeOH. Выход $1.940\ \Gamma$ (67%).

Соединения 2c–f,h–k,n–p получают аналогично, в случае соединения 2g используют гидробромид амина. Соединения 2l,m получают из соответствующего свободного амина с добавлением эквивалентного количества раствора HCl, после окончания процесса реакционную смесь нейтрализуют, экстрагируют CH_2Cl_2 (3 × 10 мл), объединённые вытяжки промывают водой, сушат над $MgSO_4$ и отгоняют растворитель. Полученное масло растирают в гексане.

Б. Смесь 0.65 г (0.01 моль) 70% водного $EtNH_2$ и 3 мл ледяной AcOH охлаждают в ледяной бане, после чего при температуре 5 °C последовательно прибавляют 1.6 мл (0.02 моль) 36% раствора формалина и 2.20 г (0.01 моль) соединения 1, выдерживают 1 сут при 20 °C. Реакционную смесь нейтрализуют 10% водным раствором KOH на холоду. Выпавшее масло соединения 2b, которое быстро кристаллизуется, перекристаллизовывают из смеси $H_2O-MeOH$. Выход 1.73 г (60%).

Аналогично получают соединения **2c**,**f**,**i**,**j**,**n**–**p**, выходы составляют: **2c** 59%, **2f** 51%, **2i** 33%, **2j** 63%, **2n** 41%, **2o** 58%, **2p** 72%.

3-Метил-3-азабицикло[3.3.1]нонан-9-он (3). В 15 мл 50% водного раствора H_2SO_4 растворяют 2.75 г (0.01 моль) соединения **2а** и кипятят при слабом кипении в течение 5 ч. Охлаждённый раствор фильтруют, экстрагируют Et_2O (1 × 10 мл), водный слой подщелачивают 40% водным раствором NaOH до рН 8–9 и экстрагируют $CHCl_3$ (3 × 10 мл). Полученный экстракт промывают насыщенным раствором NaCl, водой и сушат над $CaCl_2$. После отгонки растворителя получают продукт **3** в виде светложёлтого масла, которое перегоняют в вакууме при т. кип. 85 °C (2 мм рт. ст.). Спектр ЯМР 1 H, δ , м. д.: 1.21–2.33 (10H, м, 5CH₂); 2.25 (3H, с, NCH₃); 2.68–2.80 (2H, м, 2CH). Найдено, %: C 70.49; H 9.83; N 9.10. C_9H_{15} NO. Вычислено, %: C 70.55; H 9.87; N 9.14.

Взаимодействием соединения **3** с 2,4-динитрофенилгидразином получают соответствующий гидразон. Выход 0.69 г (45%), т. пл. 178–180 °C (т. пл. 178 °C [13]).

3-Метил-9-оксо-3-азабицикло[3.3.1]нонан-1-карбоксамид (4а). А. В 10 мл 10% водного раствора HCl растворяют 2.75 г (0.01 моль) соединения **2а**. Раствор помещают в колбу Вюрца и нагревают до прекращения азеотропной отгонки циклогексанона. Охлаждённый водный раствор обрабатывают раствором NH₃ и экстрагируют CH₂Cl₂ (3×10 мл), экстракт промывают водой и сушат над MgSO₄. После отгонки растворителя к полученному маслу соединения **4а** добавляют лёгкий петролейный эфир и доводят до кипения при интенсивном перемешивании, в результате чего вещество кристаллизуется. Выход 1.12 г (57%). Очистку проводят перекристаллизацией из бензина.

Производные 4b-d получают аналогично. После окончания реакции реакционные смеси нейтрализуют, выпавшие продукты в виде твёрдых веществ отфильтровывают и очищают перекристаллизацией из $H_2O-MeOH$. Более высокая степень очистки

соединений достигается превращением их в перхлораты с последующей перекристаллизацией из смеси H_2O –ДМФ и выделением свободных аминов.

Б. Смесь 1.41 г (0.01 моль) соединения **5**, 0.78 г 40% водного раствора MeNH₂ и 1.6 мл (0.02 моль) 36% раствора формалина в 5 мл AcOH оставляют на 1 сут, после чего смесь нейтрализуют насыщенным раствором K_2CO_3 . Дальнейшую обработку и очистку осуществляют таким же способом, как описано в методе A. Выход 1.05 г (54%).

Аналогично получают соединения **4b–d**. Обработку и очистку соединений осуществляют таким же способом, как описано в методе А. Выходы составляют: **4b** 75%, **4c** 48%, **4d** 57%.

8'-(N,N-Диметиламинометил)-5',6',7',8'-тетрагидро-1'H,3'H-спиро[циклогексан-1,2'-хиназолин]-4'-он (6а). К 0.815 г (0.01 моль) Me_2NH ·HCl в 10 мл MeOH добавляют 0.8 мл 36% раствора формалина и 2.203 г (0.01 моль) соединения 1, смесь кипятят на водяной бане в течение 2 ч. Реакционную смесь охлаждают и выливают в раствор NH_3 со льдом. Отфильтровывают соединение 6a (2.000 г, 72%), которое перекристаллизовывают из H_2O -MeOH.

Соединения 6b-f получают аналогично.

СПИСОК ЛИТЕРАТУРЫ

- 1. H. Tecle, G. Hite, Probl. Drug Depend., 464 (1976); Chem. Abstr., 88, 69028z (1978).
- 2. R. Jeyaraman, S. Avila, Chem. Rev., 81, 149 (1981).
- 3. H. O. House, P. P. Wickham, H. C. Muller, J. Am. Chem. Soc., 84, 3139 (1962).
- 4. А. В. Харченко, Ю. П. Строев, И. В. Маркова, *Вопр. химии и хим. технол.*, 16 (2009).
- 5. Г. Р. Пучина, Автореф. дис. канд. хим. наук, Уфа, 2007.
- 6. М. А. Титов, Автореф. дис. канд. хим. наук, Москва, 2008.
- И. В. Шахкельдян, Дис. докт. хим. наук, Тула, 2003.
- 8. Л. И. Власова, Автореф. дис. канд. хим. наук, Уфа, 2007.
- 9. G. Zigeuner, G. Gübitz, Monatsh. Chem., 101, 1547 (1970).
- 10. A. F. McKay, E. J. Tarlton, C. Podesva, J. Org. Chem., 26, 76 (1961).
- 11. H. C. Scarborough, W. A. Gould, J. Org. Chem., 26, 3720 (1961).
- 12. C. Bischoff, H. Herma, J. Prakt. Chem., 318, 773 (1976).
- 13. S. Rossi, W. Butta, Ann. Chim. (Rome), 52, 381 (1962); Chem. Abstr., 57, 98101 (1962).

Украинский государственный химико-технологический университет, пр. Гагарина, 8, Днепропетровск 49005, Украина e-mail: faratok@mail.ru Поступило 16.04.2011 После доработки 21.10.2011