Л. А. Баева*, Л. Ф. Бикташева, Т. С. Никитина, А. А. Фатыхов, Н. К. Ляпина

СИНТЕЗ

1,1'-{3-[(АЛКИЛСУЛЬФАНИЛ)МЕТИЛ]ТЕТРАГИДРО-2*H*-ТИОПИРАН-3,5-ДИИЛ}ДИЭТАНОНОВ НА ОСНОВЕ СУЛЬФИДА НАТРИЯ И ТИОЛОВ

Взаимодействием сульфида натрия и тиолов с формальдегидом и ацетоном в растворе гидроксида натрия или в этаноле получены $1,1'-\{3-[(алкилсульфанил)-метил]$ тетрагидро-2H-тиопиран-3,5-диил $\}$ диэтаноны.

Ключевые слова: 1,1'-{3-[(алкилсульфанил)метил]тетрагидро-2*H*-тиопиран-3,5-диил} диэтаноны, сульфид натрия, тиолы, многокомпонентная конденсация.

Ранее [1] нами разработан однореакторный метод синтеза 1,1'-{3-[(метилсульфанил)метил]тетрагидро-2*H*-тиопиран-3,5-диил}диэтанона, основанный на четырёхкомпонентной конденсации ацетона и формальдегида с сульфидом и метантиолатом натрия, присутствующими в неутилизируемых сульфиднощелочных растворах газоперерабатывающих предприятий. Найдено, что дисульфоксид [2], полученный из 8-метил-5-[(метилсульфанил)метил]-3-тиабицикло[3.3.1]нон-7-ен-6-она [1, 3, 4] — продукта внутримолекулярной кротоновой конденсации 1,1'-{3-[(метилсульфанил)метил]тетрагидро-2*H*-тиопиран-3,5-диил}диэтанона, проявляет противовоспалительное и антиаритмическое [5] действие, а эпоксидисульфон из этого же соединения — противовирусную активность в отношении вируса гриппа В [2].

В настоящей работе с целью расширения границ метода изучена возможность синтеза 1,1'-{3-[(алкилсульфанил)метил]тетрагидро-2*H*-тиопиран-3,5-диил}диэтанонов взаимодействием ацетона с формальдегидом, сульфидом натрия и алифатическими тиолами. Показано, что конденсация сульфида натрия (1.2–5.7% водный раствор) и 1-пропан-, 2-пропан- или 1-бутантиола (1а-с) с четырёхкратным избытком формальдегида и ацетона в этаноле при 20 °C в течение 1–2 ч приводит к соответствующим 1,1'-{3-[(алкилсульфанил)метил]тетрагидро-2*H*-тиопиран-3,5-диил}диэтанонам 2а-с с выходами 54, 31 и 47% (в расчёте на сульфид натрия) соответственно.

Тетрагидро-2*H*-тиопиран-3,5-диилдиэтаноны **2a**—**c** синтезировали следующим образом: в 10% растворе NaOH тиолы **1a**—**c** превращаются в тиолаты натрия, далее полученные *in situ* тиолаты вступают во взаимодействие с сульфидом натрия, формальдегидом и ацетоном. Этот метод позволяет получать целевой продукт с более высоким выходом, чем в случае проведения реакции без гидроксида натрия (таблица, опыты 4, 5). Однако в растворе NaOH взаимодействие сопровождается осмолением смеси. Наилучшие выходы соединений **2a**—**c** достигаются при конденсации кетона, формальдегида и сульфида натрия непосредственно с тиолами в этаноле, в котором не наблюдается смолообразования (опыты 6, 8, 10). Выходы тетрагидро-2*H*-тиопиран-3,5-диилдиэтанонов **2a**—**c** снижаются с уменьшением концентрации сульфида натрия (опыты 3 и 4) и расхода исходных компонентов (опыты 1, 2 и 4). Реакционная способность тиолов возрастает при переходе от 2-пропан- к 1-бутан- и 1-пропантиолам.

В ходе реакции наряду с образованием тетрагидро-2*H*-тиопиран-3,5-диилдиэтанонов **2а**—**с** протекает конкурирующее алкилтиометилирование ацетона формальдегидом и тиолами **1а**—**с**, приводящее к 1,1-*бис*(алкилсульфанилметил)пропан-2-онам **3а**—**с**. В условиях реакции, когда выходы целевых продуктов незначительны (таблица, опыты 1, 7, 9), выходы *бис*(алкилсульфанилметил)замещённых пропан-2-онов **3а**—**c** достигают 75, 74, 53% (в расчёте на тиол) соответственно. На примере соединения **2b** установлено, что при увеличении продолжительности реакции наблюдается его внутримолекулярная циклизация в 8-метил-5-[(2-пропилсульфанил)метил]-3-тиабицикло-[3.3.1]нон-7-ен-6-он (**4b**), выход которого за 3 ч составляет 10%.

Состав и строение соединений $2\mathbf{a}$ – \mathbf{c} , $3\mathbf{a}$ – \mathbf{c} и $4\mathbf{b}$ подтверждены данными элементного анализа и спектральных исследований. ИК спектры тетрагидро-2H-тиопиран-3,5-диилдиэтанонов $2\mathbf{a}$ – \mathbf{c} и тиабицикло[3.3.1]нон-7-ен-6-она $4\mathbf{b}$ содержат две (1701, 1705–1708 см⁻¹) и одну (1662 см⁻¹) полосы поглощения

Условия конденсации сульфида натрия и тиолов с формальдегидом и ацетоном (5.7% раствор Na_2S , 20 °C, 1–2 ч) и выходы соединений 2a–с

№ опыта	Тиол	Мольное соотношение Na ₂ S:тиол:NaOH: CH ₂ O:кетон	превращ	пень ения***, 6 Тиол	Продукт	Содержание соединения 2 в смеси, %	Выход соединения 2 (в расчёте на Na ₂ S), %
1	PrSH	1:1:1:2.5:2.5	78	89	2a	15	13
2	PrSH	1:1:1:4:2.5	82	90	2a	42	37
3*	PrSH	1:1:1:4:4	85	92	2a	33	32
4	PrSH	1:1:1:4:4	100	98	2a	50	46
5	PrSH	1:1:0:4:4	99	93	2a	28	25
6**	PrSH	1:1:0:4:4	99	98	2a	60	54
7	2-PrSH	1:1:1:4:4	97	96	2b	8	9
8**	2-PrSH	1:1:0:4:4	99	98	2b	38	31
9	BuSH	1:1:1:4:4	92	94	2c	14	11
10**	BuSH	1:1:0:4:4	99	99	2c	54	47

^{* 1.2%} раствор Na₂S.

^{**} B EtOH

^{***} Согласно потенциометрическому определению [6] содержания сульфидной и меркаптидной серы в реакционной смеси.

карбонильных групп соответственно. В спектрах ЯМР ¹Н всех соединений **2а–с**, наряду с сигналами семи неэквивалентных протонов трёх метиленовых и метиновой групп цикла, наблюдаются характерные синглеты протонов двух ацетильных групп (2.14–2.21 и 2.23–2.30 м. д.), а также триплет (0.90 м. д., соединения **2a,c**) или дублет (1.17 м. д., соединение **2b**) метильных и сигналы метиленовых групп алкилтиометильного заместителя. По сравнению с тетрагидро-2*H*-тиопиран-3,5-диилдиэтаноном **2b**, в спектре ЯМР ¹Н тиабицикло-[3.3.1]нон-7-ен-6-она **4b** отсутствуют синглетные сигналы протонов двух ацетильных групп, но наблюдаются синглеты метильной группы при двойной связи (1.88 м. д.) и олефинового протона при 6.14 м. д. В спектре ЯМР ¹³С соединения **4b** присутствует сигнал углерода (199.6 м. д.) кетогруппы, сопряженной с двойной связью, углеродные атомы которой резонируют при 131.3 и 160.2 м. д.

Поскольку внутримолекулярная кротоновая конденсация соединения **2b** может вести к двум изомерным 1- и 5-[(2-пропилсульфанил)метил]-8-метил-3-тиабицикло[3.3.1]нон-7-ен-6-онам, структура единственного образующегося изомера **4b** была уточнена с помощью двумерного ЯМР 1 H $^{-13}$ C спектра, зарегистрированного в режиме НМВС. В ЯМР 1 H $^{-13}$ C спектре соединения **4b** наблюдаются кросс-пики между протонами метильной группы при двойной связи (1.88 м. д.) и атомами C-7 (131.3), C-8 (160.2), C-1 (36.7 м. д.), но отсутствует кросс-пик с атомом C-5 (44.1 м. д.).

Аналогично 1,1'-{3-[(метилсульфанил)метил]тетрагидро-2H-тиопиран-3,5-ди-ил}диэтанону [1] в молекуле соединения **2a** ацетильная группа при атоме C-5" занимает преимущественно экваториальное положение, о чём свидетельствуют высокие значения вицинальных КССВ между протонами H-5" и H-4",6" ($J_{6"a,5"a} = J_{5"a,4"a} = 11.9 \ \Gamma$ ц) в спектрах ЯМР ¹Н. Диэкваториальное расположение ацетильных групп объясняет относительную устойчивость соединений **2a-с** к внутримолекулярной циклизации в изученных условиях синтеза.

Таким образом, реакция в четырёхкомпонентной системе сульфид натрия – тиол (тиолат натрия) – формальдегид – ацетон позволяет получать в одну стадию 1,1'-{3-[(алкилсульфанил)метил]тетрагидро-2*H*-тиопиран-3,5-диил}диэтаноны и расширяет синтетические возможности ранее описанного метода.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе Specord M-80 в тонком слое. Спектры ЯМР 13 С и 1 Н зарегистрированы на спектрометре Bruker AM-300 (75 и 300 МГц соответственно), двумерные ЯМР 1 Н— 1 Н, 1 Н— 13 С эксперименты COSY, NOESY и HSQC, HMBC — на спектрометре Bruker Avance III (500 МГц). Все спектры ЯМР зарегистрированы в CDCl $_{3}$ относительно ТМС. Масс-спектры получены на приборе Thermo Finnigan MAT 95 XP с прямым вводом вещества при энергии ионизации 70 эВ. ГЖХ анализ проводился на хроматографе Хром-5, колонка 2.4 м × 3 мм, неподвижная фаза SE-30 (5%) на хроматоне N-AW-DMCS (0.16—0.20 мм), рабочая температура 50—300 °С, пламенно-ионизационный детектор, газ-носитель — гелий. Контроль за ходом реакции осуществлялся путём определения содержания сульфидной и меркаптидной серы потенциометрическим титрованием аммиакатом азотнокислого серебра [6]. В качестве сорбента применялся силикагель фирмы Acros, 0.060—0.200 мм, 60 A.

Синтез 1,1'-{3-[(алкилсульфанил)метил]тетрагидро-2*H*-тиопиран-3,5-диил}-диэтанонов 2а-с (общая методика). А. К 6.6 мл (18.3 ммоль) 10% водного раствора

NaOH при перемешивании добавляют 18.3 ммоль соответствующего тиола. Через 30 мин последовательно прибавляют 25 г (18.3 ммоль) 5.7% водного раствора Na₂S, 6.1 мл (73.2 ммоль) 33% раствора формальдегида, 5.4 мл (73.2 ммоль) ацетона и перемешивают при комнатной температуре 1–2 ч. Затем отделяют органический слой, а водно-щелочной слой разбавляют водой (1:2) и экстрагируют CHCl₃ (3 × 20 мл). Экстракт, объединённый с ранее выделенным органическим слоем, промывают 10% раствором HCl, водой (1:1 по объёму) и сушат MgSO₄. Растворитель отгоняют, получают из 1-пропан-, 2-пропан- и 1-бутантиолов соответственно 4.61, 5.51, 4.27 г смеси веществ, которые хроматографируют (в количестве 1 г) на колонке с силикагелем (элюент EtOAc-гексан, 1:2).

- Б. К раствору 18.3 ммоль тиола в 25 мл ЕtOH последовательно прибавляют 25 г (18.3 ммоль) 5.7% водного раствора Na_2S , 6.1 мл (73.2 ммоль) 33% раствора формальдегида, 5.4 мл (73.2 ммоль) ацетона и перемешивают при комнатной температуре 1 ч. Далее обрабатывают аналогично методу А. Получают 4.56, 4.10 и 5.66 г смеси веществ из 1-пропан-, 2-пропан- и 1-бутантиола соответственно.
- **1,1'-{3-[(Пропилсульфанил)метил]тетрагидро-2***Н*-тиопиран-3,5-диил}диэтанон (2а). Светло-жёлтое маслообразное вещество, выход 0.50 г (46%, метод A), 0.60 г (54%, метод Б). ИК спектр, \mathbf{v} , см $^{-1}$: 1701, 1707 (С=O). Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 0.90 (3H, \mathbf{r} , $J_{5}^{\text{m}},4^{\text{m}}=7.3$, $\mathrm{CH_2CH_2CH_3}$); 1.10 (1H, \mathbf{r} , $J_{4}^{\text{m}},5^{\text{m}}=11.9$, 4"-CHa); 1.50 (2H, секстет, $J_{3}^{\text{m}},4^{\text{m}}=J_{5}^{\text{m}},4^{\text{m}}=7.3$, $\mathrm{CH_2CH_2CH_3}$); 2.14 (3H, c , 2'-CH₃); 2.24 (3H, c , 2-CH₃); 2.40 (2H, r , $J_{3}^{\text{m}},4^{\text{m}}=7.3$, $\mathrm{CH_2CH_2CH_3}$); 2.47–2.55 (3H, m , 6"-CH₂, 4"-CHe); 2.56 (2H, c , 1"'-CH₂); 2.65 (1H, g , $^2J=14.2$, 2"-CHa); 2.78 (1H, g , $^2J=14.2$, 2"-CHa). Спектр ЯМР 13 С, δ , м. g .: 13.3 (CH₂CH₂CH₃); 22.8 (CH₂CH₂CH₃); 26.4 (C-2); 28.3 (C-2'); 29.1 (C-6"); 34.4 (C-4"); 34.6 (C-2"); 36.5 ($\mathrm{CH_2CH_2CH_3}$); 42.8 (C-1"); 48.4 (C-5"); 53.0 (C-3"); 209.2 (C-1); 209.6 (C-1'). Найдено, m/z: 274.1061 [M] $^+$. Вычислено, m/z: 274.1056. Найдено, %: C 56.97; H 7.83; S 24.09. $\mathrm{C_{13}H_{22}O_2S_2}$. Вычислено, %: C 56.89; H 8.08; S 23.37.
- **1,1'-{3-[(2-Пропилсульфанил)метил]тетрагидро-2***H*-тиопиран-3,5-диил}ди-этанон (**2b**). Светло-жёлтое маслообразное вещество, выход 0.11 г (9%, метод A), 0.38 г (31%, метод Б). ИК спектр, v, см $^{-1}$: 1701, 1705 (C=O). Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.10 (1H, м, 4"-CHa); 1.17 (6H, д, ^{3}J = 6.5, CH(C $\underline{\text{H}}_3$)2); 2.14 (3H, c, 2'-CH $_3$); 2.23 (3H, c, 2-CH $_3$); 2.49–2.55 (3H, м, 6"-CH $_2$, 4"-CH $_2$); 2.56 (2H, c, 1""-CH $_2$); 2.66 (1H, д, ^{2}J = 14.1, 2"-CH $_3$); 2.72–2.76 (1H, м, CHMe $_2$); 2.77 (1H, м, 5"-CH $_3$); 2.88 (1H, д. т, ^{2}J = 14.1, $J_{2"e,4"e} = J_{2"e,6"e} = 2.0$, 2"-CH $_3$). Спектр ЯМР 13 С, δ , м. д.: 23.2 (СН($\underline{\text{CH}}_3$)2); 26.3 (C-2); 28.3 (C-2'); 29.1 (C-6"); 34.4 (C-4"); 34.6 (C-2"); 36.8 (СНМе $_2$); 40.7 (С-1"); 48.4 (C-5"); 52.6 (C-3"); 209.2 (C-1); 209.5 (C-1'). Найдено, m/z: 274.1061 [M] $^+$. Вычислено, m/z: 274.1056. Найдено, %: C 56.70; H 7.94; S 23.59. C_{13} H $_{22}$ O $_2$ S $_2$. Вычислено, %: C 56.89; H 8.08; S 23.37.
- **1,1'-{3-[(Бутилсульфанил)метил]тетрагидро-**2*H*-тиопиран-3,5-диил}диэтанон (2c). Жёлтое масло, выход 0.10 г (11%, метод A), 0.44 г (47%, метод Б). ИК спектр, v, см⁻¹: 1701, 1708 (C=O). Спектр ЯМР 1 Н, δ , м. д. (J, Γ п): 0.90 (3H, т, $J_{6",5"} = 7.2$, CH₂CH₂CH₂CH₃); 1.12–1.16 (1H, м, 4"-CHa); 1.38 (2H, м, CH₂CH₂CH₂CH₃); 1.56 (2H, м, CH₂CH₂CH₂CH₃); 2.21 (3H, c, 2'-CH₃); 2.30 (3H, c, 2-CH₃); 2.48 (2H, т, $J_{3",4"} = 7.5$, CH₂CH₂CH₂CH₃); 2.56–2.61 (2H, м, 6"-CH₂, 4"-CHa); 2.62 (2H, c, 1"'-CH₂); 2.71 (1H, д, $J_{2} = 14.0$, 2"-CHa); 2.85 (1H, м, 5"-CHa); 2.94 (1H, д. т, $J_{2} = 14.1$, $J_{2",4"} = J_{2",6,6"} = 2.4$, 2"-CHa). Спектр ЯМР $J_{2} = J_{2} = J_$
- **1,1-бис**(**Пропилсульфанилметил**)**пропан-2-он (3a)**. Выход 0.08 г (18%, метод A). ИК спектр, v, см⁻¹: 1712 (C=O). Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 0.95 (6H, τ , 3J = 7.1, 2CH₂CH₂CH₃); 1.57 (4H, секстет, 3J = 7.1, 2CH₂CH₂CH₃); 2.24 (3H, c, CH₃CO); 2.46

(4H, т, ${}^{3}J$ = 7.1, 2SC $\underline{\text{H}}_{2}$ CH₂); 2.63–2.78 (4H, м, 2CH₂SPr); 2.74–2.82 (1H, кв, ${}^{3}J$ = 6.6, COCH). Спектр ЯМР 13 С, δ , м. д.: 13.5 (CH₂CH₂CH₃); 22.9 (CH₂CH₂CH₃); 31.0 (CH₃CO); 38.1 (SCH₂CH₂); 38.9 (CH(CH₂SPr)₂); 52.5 (COCH); 216.7 (CO). Найдено, %: C 56.24; H 9.42; S 27.48. C_{11} H₂₂OS₂. Вычислено, %: C 56.36; H 9.46; S 27.36.

Соединения **3b**,**c** выделяют с помощью вакуумной фракционной перегонки смеси, полученной по методу A.

1,1-*бис*(**2-Пропилсульфанилметил)пропан-2-он (3b)**. Выход 1.59 г (74%), т. кип. 135–136 °C (1 мм рт. ст.), n_D^{20} 1.4956, d_4^{20} 0.994. ИК спектр, v, см⁻¹: 1714 (С=О). Спектр ЯМР ¹Н, δ , м. д. (J, Γ ц): 1.24 (12H, д, 3J = 7.1, 2CH(С $_{13}$)₂); 2.25 (3H, с, CH₃CO); 2.67–2.97 (7H, м, COCH, 2C $_{12}$ (CH₃)₂), 2CH₂S). Спектр ЯМР ¹³С, δ , м. д.: 22.9, 23.0 (СН(С $_{13}$)₂); 30.5 (С $_{13}$ CO); 31.0 (СН₂S); 35.3 (С $_{13}$ CH(СН₃)₂); 52.1 (СОС $_{13}$ H); 209.2 (СО). Найдено, %: C 56.43; H 9.44; S 27.27. C_{11} H₂₂OS₂. Вычислено, %: C 56.36; H 9.46; S 27.36.

1,1-*бис*(Бутилсульфанилметил)пропан-**2-он** (**3c**). Выход 1.27 г (53%), т. кип. 164–165 °С (1 мм рт. ст.), n_D^{20} 1.4978. ИК и ЯМР ¹Н спектры соединения **3c** идентичны опубликованным в работе [7].

8-Метил-5-[(2-пропилсульфанил)метил]-3-тиабицикло[3.3.1]нон-7-ен-6-он (4b). Светло-жёлтое маслообразное вещество, выход 0.11 г (10%, метод Б, за 3 ч). ИК спектр, v, см⁻¹: 1662 (С=О), 1628 (С=С). Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 1.15 (6H, д, 3J = 6.5, CH(С \underline{H}_3)2); 1.61 (1H, д, 2J = 12.9, 4-CHa); 1.88 (3H, c, 8-CH $_3$); 2.15 (1H, д, 2J = 12.7, 9-CH $_3$); 2.25 (1H, д, 2J = 13.4, 2-CH $_3$); 2.30 (1H, д, 2J = 12.9, 4-CH $_3$); 2.40 (1H, д, 2J = 12.9, 1'-CH); 2.63 (1H, м, 9-CH $_3$); 2.66 (1H, м, С $_3$); 2.69 (1H, м, 1-CH); 2.82 (1H, д, 2J = 12.9, 1'-CH); 2.95 (1H, д, 2J = 13.4, 2-CH $_3$); 6.14 (1H, c, 7-CH). Спектр ЯМР 13 С, δ , м. д.: 22.7 (8-CH $_3$); 23.2, 23.4 (CH($_3$)2); 28.0 (C-2); 33.7 (C-9); 36.4 (2C, C-4, $_3$)2 (CH(CH $_3$)2); 36.7 (C-1); 38.4 (C-1'); 44.1 (C-5); 131.3 (C-7); 160.2 (C-8); 199.6 (C-6). Найдено, $_3$ 02: 256.0938 [М] $^+$. Вычислено, $_3$ 12: 256.0950. Найдено, %: C 60.97; H 7.83; S 24.49. $_3$ 13: С $_3$ 14: С 60.89; H 7.86; S 25.01.

СПИСОК ЛИТЕРАТУРЫ

- 1. Л. А. Баева, А. Д. Улендеева, О. В. Шитикова, Н. К. Ляпина, *XГС*, 1494 (2009). [*Chem. Heterocycl. Compd.*, **45**, 1197 (2009).]
- 2. А. Д. Улендеева, Л. А. Баева, Т. С. Никитина, Л. В. Спирихин, Е. В. Васильева, Н. К. Ляпина, *Нефтехимия*, **44**, 388 (2004).
- 3. А. Д. Улендеева, Л. А. Баева, Е. Г. Галкин, Е. В. Васильева, Н. К. Ляпина, *Нефтехимия*, **38**, 214 (1998).
- 4. А. Д. Улендеева, Л. А. Баева, Н. К. Ляпина, В. Н. Нестеров, Е. В. Васильева, *Нефтехимия*, **40**, 311 (2000).
- 5. А. Д. Улендеева, Т. С. Никитина, Л. А. Баева, Л. В. Спирихин, Л. Т. Карачурина, Р. Ю. Хисамутдинова, Н. С. Макара, Ф. С. Зарудий, Н. К. Ляпина, *Хим.-фарм. журн.*, **38**, № 12, 15 (2004).
- 6. И. А. Рубинштейн, З. А. Клейменова, Е. П. Соболев, в кн. *Методы анализа органических соединений нефти, их смесей и производных*, Москва, 1960, с. 74.
- 7. В. И. Дронов, Р. Ф. Нигматуллина, Л. В. Спирихин, Ю. Е. Никитин, *Журн. орган. химии*, **14**, 2357 (1978).

Институт органической химии Уфимского научного центра РАН, пр. Октября, 71, Уфа 450075, Россия e-mail: sulfur@anrb.ru Поступило 8.12.2011