О. Г. Худина¹, Я. В. Бургарт^{1*}, В. И. Салоутин¹

2-МЕТИЛСУЛЬФАНИЛ-6-ПОЛИФТОРАЛКИЛПИРИМИДИН-4-ОНЫ: СИНТЕЗ И РЕАКЦИИ НУКЛЕОФИЛЬНОГО ЗАМЕЩЕНИЯ

Усовершенствованы условия синтеза 2-метилсульфанил-6-полифторалкилпиримидин-4-онов, позволившие, в частности, увеличить выход трифторметилзамещённого гетероцикла до 96%, а также получить новые полифторалкилзамещённые аналоги. Показано, что для этих гетероциклов при взаимодействии с морфолином или гидразинами характерно нуклеофильное замещение метилсульфанильной группы, приводящее к 2-морфолино- и 2-гидразино-6-полифторалкилпиримидин-4-онам. Взаимодействием 6-трифторметил-2-(2-фенилгидразин)пиримидин-4-она с параформом получен 5-оксо-7-трифторметил-2-фенил-5*H*-1,2,4-триазоло[4,3-*a*]пиримидин-1-ид-2-иум. На основании РСА, спектроскопии ИК и ЯМР установлено лактамное строение синтезированных гетероциклов.

Ключевые слова: гидразины, 2-метилсульфанил-6-полифторалкилпиримидин-4-он, морфолин, нуклеофильное замещение, PCA.

Биологическая активность производных пиримидин-2-тионов, и в частности 2-алкилсульфанилпиримидин-4-онов [1–5], обусловливает значительный интерес как к разработке оптимальных методов их синтеза, так и к химической модификации соединений этого класса.

Для 2-алкилсульфанилпиримидин-4-онов описаны превращения по всем пяти реакционным центрам: атомам азота N-1 и N-3, карбонильному атому кислорода, атому углерода С-5 и алкилсульфанильной группе. Алкилирование 2-метилсульфанилпиримидин-4-онов, в зависимости от условий и алкилирующего агента, реализуются по атомам N-1 [6-8], N-3 [9-11] или карбонильному атому кислорода [9, 11, 12]. Эпоксидирование [13] и ацилирование [14] проходят по атому N-1 лактамного фрагмента. Характерной реакцией для 2-метилсульфанилпиримидин-4-онов является нуклеофильное замещение метилсульфанильной группы на аминогруппу [15, 16]. С бифункциональными реагентами 2-метилсульфанилпиримидин-4-оны способны взаимодействовать по нескольким реакционным центрам: алкилирование Br(CH₂)_nOH даёт смесь О- и N-алкилпроизводных [17], а 1,2-дибромэтаном – смесь бис-N,N-, N,O- и О,О-изомеров [18]. Сплавление 2-метилсульфанилпиримидин-4-она с гидразидом карбоновой кислоты не ограничивается нуклеофильным замещением группы SMe, а сопровождается циклизацией по атому N-1, давая [1,2,4]триазоло[4,3-a]пиримидин-7(8H)-оны [19].

В то же время химические превращения полифторалкилсодержащих 2-метилсульфанилпиримидин-4-онов изучены лишь на незначительном числе примеров превращений 2-метилсульфанил-6-трифторметилпиримидин-4-онов [20–23], что, по-видимому, было обусловлено отсутствием эффективных методов их синтеза.

Ранее 2-метилсульфанил-6-трифторметилпиримидин-4-он ($\mathbf{2a}$) получали с выходом 67% конденсацией 4,4,4-трифтор-3-оксобутаноата $\mathbf{1a}$ с сернокислой S-метилизотиомочевиной в щелочных условиях [24, 25]. Проведение синтеза в водном растворе K_2CO_3 (вместо 10% NaOH) позволило нам повы-

сить выход целевого гетероцикла **2a** с 67% почти до количественного (96%). Аналогичным способом из 3-оксоэфиров **1b,c** нами получены новые 2-метилсульфанил-6-полифторалкилпиримидиноны **2b,c** с выходами 81–92%. В случае гептафторпропилсодержащего аналога **2d** выход составил 40% и только при проведении реакции в водно-ацетонитрильном растворе его удалось повысить до 65%.

$$R^{F}$$
 OMe OH...O $R_{2}^{CO_{3}}$ OMe $R_{2}^{CO_{3}}$ OMe $R_{2}^{CO_{3}}$ OMe $R_{2}^{CO_{3}}$ OH...O $R_{2}^{CO_{3}}$ OH...O $R_{2}^{CO_{3}}$ OMe $R_{2}^{CO_{3}}$ OH...O $R_{2}^{CO_{3}}$ OMe $R_{2}^{CO_{3}}$ OMe

Синтезированные пиримидины 2a-d могут существовать в четырёх таутомерных формах A-D из-за возможного участия в кето-енольной и/или амино-иминной таутомерии (рис. 1).

Рис. 1. Таутомерные формы пиримидинов 2

По данным PCA (рис. 2), соединение 2a в кристаллах существует в амидной форме (изомер A) в виде димеров, образующихся за счёт двойного межмоле-кулярного взаимодействия карбонильной группы C(4)=O(1) одной молекулы с аминогруппой N(3)'-H другой молекулы и наоборот $(O(1)\cdots HN(3)' 1.738 \text{ Å})$.

Исследование ИК спектров соединений **2a–d** для растворов в CHCl₃ и для кристаллов показало их идентичность. Характеристичными сигналами для них являются полосы поглощения, соответствующие валентным и деформационным колебаниям аминогруппы (3103-3226 и 1583-1627 см⁻¹) и карбонильной группы (1663-1684 см⁻¹).

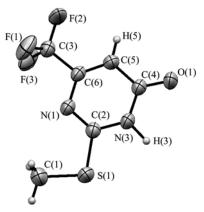
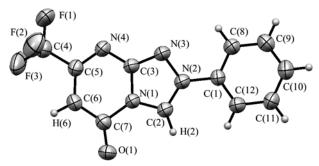


Рис. 2. Молекулярная структура соединения **2a** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью

По данным спектроскопии ЯМР 1 Н и 19 F, соединения **2a–d** в растворах ДМСО-d₆ и CDCl₃ существуют в виде одного изомера, для которого в спектре ЯМР 1 Н характерными являются сигналы протонов метильной группы при \sim 2.50 м. д., метинового протона при 6.31–6.64 м. д. и слабопольного сигнала аминного или гидроксильного протона при 13.02–13.44 м. д.

На основании этих данных можно сделать вывод об отсутствии таутомерии и существовании соединений **2a**—**d** в растворах в виде только одного "амидного" изомера **A**.

Данные по биологической активности нефторированных 2-гидразинопиримидинонов [26, 27] побудили нас изучить возможность синтеза их полифторалкильных аналогов реакцией нуклеофильного замещения метилсульфанильной группы в соединениях **2a**,**c** на гидразинную группу.


Реакцией 2-метилсульфанил-6-трифторметилпиримидин-4-она (**2a**) с 40% водным гидразингидратом в кипящем ацетонитриле был получен 2-гидразинопиримидин **3a** с выходом 21%. Проведение синтеза при кипячении в 2-пропаноле позволило повысить выход соединения **3a** до 42%.

2a,c RNHNH₂
$$A0-44\%$$
 $A0-44\%$ $A0-44$

Реакция пиримидина **2a** с фенилгидразином осуществима в 2-пропаноле при 135 °C, а 6-тетрафторэтилзамещённого аналога **2c** – в *н*-бутаноле при 160 °C под действием микроволнового облучения. При этом соединения **3b**,**c** получены с выходами 40–44%.

Данные спектров ЯМР 1 Н и 19 F, зарегистрированных в ДМСО- d_{6} или CDCl₃, свидетельствуют о существовании соединений **3а**—с в растворах только в одной из нескольких теоретически возможных таутомерных форм (рис. 3).

Рис. 3. Таутомерные формы пиримидинов 3

Рис. 4. Молекулярная структура соединения 4 в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью

Присутствие в спектрах ЯМР 1 Н сиглетного сигнала метинового протона при 5.44—6.02 м. д. и уширенных слабопольных сиглетных сигналов амино- или гидроксигрупп позволяют исключить из рассмотрения таутомеры G и I, имеющие метиленовую группу.

Для соединений 3a—c в ИК спектрах, зарегистрированных в твёрдом состоянии и в растворе в $CHCl_3$, характеристичными являются полосы поглощения при 3360—3090 и 1651—1608 см $^{-1}$ (амид II) и при 1667—1672 см $^{-1}$ (амид I), что позволяет исключить из рассмотрения гидроксиформы I—L. Интенсивный характер полос деформационных колебаний аминогрупп (амид II) указывает на их принадлежность амидным формам E или F. Отсутствие в ИК спектре дополнительной полосы поглощения изолированной связи C=N в области 1665—1630 см $^{-1}$ формы F позволяет для соединений 3a—c предпочесть структуру аминоамидного изомера E.

Фенилгидразин может вступать в реакцию нуклеофильного замещения как первичной, так и вторичной аминогруппой [28], образуя изомерные 2-(1-фенилгидразино)пиримидиноны \mathbf{M} или 2-(2-фенилгидразино)пиримидиноны $\mathbf{3b}$, \mathbf{c} .

Для установления строения продуктов реакции соединений **2a,c** с фенилгидразином мы провели реакцию 2-гидразинопиримидина **3b** с параформом в кипящем ацетонитриле. Выделенный продукт **4** по данным РСА имел структуру мезоионного 1,2,4-триазоло[4,3-*a*]пиримидин-5-она (рис. 4), который мог образоваться только в результате гетероциклизации 2-фенилгидразинозамещённого гетероцикла **3b** с параформом по амидному N-3 и β-гидразинному атомам азота. Отсюда можно сделать вывод, что в реакцию нуклеофильного замещения метилсульфанильной группы пиримидинонов **2** вступает первичная аминогруппа фенилгидразина.

На примере реакции с морфолином показана возможность нуклеофильного замещения метилсульфанильной группы в 2-метилсульфанил-6-полифторалкил-пиримидин-4-онах 2 на фрагмент гетероциклического амина. Наиболее подходящими условиями для получения продуктов замещения **5а,b** оказалось кипячение соединений **2b,c** в избытке морфолина. Данные ИК и ЯМР спектроскопии свидетельствуют о существовании гетероциклов **5а,b** в амидной форме **A**.

$$2\mathbf{b},\mathbf{c} + \bigvee_{O}^{H} \bigvee_{O}^{A} \bigvee_{N}^{N} \bigvee$$

Таким образом, нами предложен удобный препаративный метод синтеза 2-метилсульфанил-6-полифторалкилпиримидин-4-онов, что делает эти соединения более доступными в качестве исходных для дальнейших превращений, в частности для использования в реакциях нуклеофильного замещения с аминами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на фурье-спектрометре Perkin Elmer Spectrum One с приставками нарушенного полного внутреннего отражения (соединение 4) или диффузного отражения (остальные соединения). Спектры ЯМР 1 Н и 19 F зарегистрированы на спектрометре Bruker DRX-400 (400 и 376 МГц соответственно) в CDCl3 (соединение 3c), ацетоне- d_6 (соединение 4) и ДМСО- d_6 (остальные соединения). Внутренние стандарты: ТМС (для ядер 1 Н) и C_6 F $_6$ (для ядер 19 F). Масс-спектры зарегистрированы на газовом хромато-масс-спектрометре Agilent GC 7890A MSD 5975C inert XL EI/CI с кварцевой капиллярной колонкой HP5-MS (диметилполисилоксан 5% фенильных групп, $30 \text{ м} \times 0.25 \text{ мм}$, толщина пленки 0.25 мкм) и квадрупольным масс-спектрометрическим детектором, ионизация 9У (70 зB). Газ-носитель – гелий, растворитель EtOH. Элементный анализ выполнен на анализаторе Perkin Elmer PE 2400 series II. Температуры плавления определены в открытых капиллярах на аппарате для определения точки плавления Stuart SMP30. Колоночная хроматография проведена на силикагеле 60 (0.063–0.020 мм) марки Мегск. Реакции пиримидинов 2a,с с фенилгидразином проведены в микроволновой системе для синтеза Explorer 12 (Hybrid) фирмы CEM.

2-Метилсульфанил-6-трифторметилпиримидин-4(3*H***)-он (2a). К раствору 153 мг (0.55 ммоль) сульфата** *S***-метилтиомочевины и 138 мг (1.00 ммоль) K_2CO_3 в 300 мл H_2O добавляют 170 мг (1.00 ммоль) 3-оксоэфира 1a. Раствор перемешивают 8 ч. Реакционную смесь нейтрализуют 15% AcOH до pH 8. Осадок отфильтровывают, промывают водой и перекристаллизовывают из AcOH. Выход 96%, белый порошок, т. пл. 178–179 °C (т. пл. 179–180 °C [24], т. пл. 181–182 °C (EtOH) [25]).**

Соединения **2b**—**d** получены аналогично соединению **2a** (в случае соединения **2d** реакцию проводят в смеси H_2O —MeCN, 2:1).

6-Дифторметил-2-метилсульфанилпиримидин-4(3*H***)-он (2b)**. Выход 92%, белый порошок, т. пл. 198–199 °C. ИК спектр, v, см⁻¹: 3103 (NH^{вал}), 1684 (C=O), 1627 (NH^{асф}), 1104–1059 (C–F). Спектр ЯМР ¹H, δ , м. д. (*J*, Γ u): 2.49 (3H, c, CH₃); 6.31 (1H, c, H-5); 6.67 (1H, т, J = 54.3, CHF₂); 13.02 (1H, уш. c, NH). Спектр ЯМР ¹⁹F, δ , м. д. (*J*, Γ u): 41.1 (2F, д, J = 54.3, CHF₂). Найдено, %: C 37.65; H 3.05; N 14.41. C₆H₆F₂N₂OS. Вычислено, %: C 37.50; H 3.15; N 14.58.

2-Метилсульфанил-6-(1,1,2,2-тетрафторэтил)пиримидин-4(3*H***)-он (2c).** Выход 81%, белый порошок, т. пл. 152–153 °С. ИК спектр, v, см $^{-1}$: 3011 (NH $^{\text{вал}}$), 1663 (C=O), 1591 (NH $^{\text{леф}}$), 1125–1102 (С–F). Спектр ЯМР 1 Н, δ , м. д. (J, Γ u): 2.52 (3H, c, CH₃); 6.51 (1H, c, H-5); 6.87 (1H, т. т, $^{2}J_{\text{H-F}}$ = 51.8, $^{3}J_{\text{H-F}}$ = 5.8, (CF₂)₂H); 13.31 (1H, уш. с, NH). Спектр ЯМР 19 F, δ , м. д. (J, Γ u): 23.5 (2F, д. т, $^{2}J_{\text{F-H}}$ = 51.8, $^{3}J_{\text{F-F}}$ = 8.4, CF₂H); 40.4 (2F, уш. с, CF₂CF₂H). Найдено, %: C 34.58; H 2.46; N 11.69. C₇H₆F₄N₂OS. Вычислено, %: C 34.71; H 2.50; N 11.57.

6-Гептафторпропил-2-метилсульфанилпиримидин-4(3*H***)-он (2d)**. Выход 65%, белый порошок, т. пл. 106–108 °C. ИК спектр, v, см⁻¹: 3030 (NH^{вал}), 1669 (C=O), 1583 (NH^{геф}), 1231–1124 (C–F). Спектр ЯМР ¹H, δ , м. д.: 2.49 (3H, c, CH₃); 6.64 (1H, c, H-5); 13.44 (1H, уш. c, NH). Спектр ЯМР ¹⁹F, δ , м. д. (*J*, Γ u): 36.4–36.8 (2F, м, CF₂); 45.5–45.9 (2F, м, CF₂); 82.7 (3F, т, J = 8.8, CF₃). Найдено, %: C 31.11; H 1.58; N 9.16. C₈H₃F₇N₂OS. Вычислено, %: C 30.98; H 1.62; N 9.03.

2-Гидразино-6-трифторметилпиримидин-4(3H)-он (3a). А. К раствору 164 мг (0.78 ммоль) соединения **2**a в 8 мл 2-РгОН добавляют 173 мг (3.46 ммоль) 40% N_2H_4 : H_2O . Раствор кипятят в течение 14 ч в колбе с ловушкой, наполненной твёрдым NaOH, растворитель отгоняют, остаток очищают колоночной хроматографией (элюент CHCl₃).

Б. К раствору 164 мг (0.78 ммоль) соединения ${\bf 2a}$ в 8 мл MeCN добавляют 173 мг (3.46 ммоль) 40% $N_2H_4\cdot H_2O$. Раствор кипятят в течение 14 ч в колбе с ловушкой,

наполненной твёрдым NaOH. Образовавшийся осадок отфильтровывают, промывают MeCN, сушат.

Выход 42% (метод A), 21% (метод Б), белый порошок, т. пл. 165–167 °С. ИК спектр, v, см $^{-1}$: 3360, 3090 (NH $^{\text{вал}}$), 1672 (C=O), 1651 (NH $^{\text{леф}}$), 1598, 1485 (C=C, C=N), 1182–1128 (C–F). Спектр ЯМР 1 Н, δ , м. д.: 5.44 (1H, c, H-5); 7.56 (4H, уш. c, 2NH, NH₂). Спектр ЯМР 19 F, δ , м. д.: 92.5 (3F, c, CF₃). Масс-спектр, m/z ($I_{\text{отн}}$, %): 194 [М] $^{+}$ (100), 175 [М–F] $^{+}$ (11), 163 [М–N₂H₃] $^{+}$ (25), 138 (26), 125 [М–СF₃] $^{+}$ (48), 75 (23), 69 [СF₃] $^{+}$ (61), 68 (60), 67 (25), 57 (25), 43 [СОNН] $^{+}$ (29), 42 [СОN] $^{+}$ (33), 32 [NH₂–NH₂] $^{+}$ (44), 31 [N₂H₃] $^{+}$ (68), 29 (32), 28 [СО] $^{+}$ (64). Найдено, %: С 31.21; H 2.64; N 29.06. C₅H₅F₃N₄O. Вычислено, %: С 30.94; H 2.60; N 28.86.

6-Трифторметил-2-(2-фенилгидразин)пиримидин-4(3*H***)-он (3***b***). К раствору 210 мг (1 ммоль) пиримидин-4-она 2a** в 8 мл 2-РгОН добавляют 108 мг (1 ммоль) фенилгидразина. Реакционную смесь нагревают в микроволновом синтезаторе (40 W, 135 °C) в течение 2 ч. Растворитель отгоняют при пониженном давлении с использованием ловушки, наполненной твёрдым NаОН. Остаток очищают колоночной хроматографией (элюент CHCl₃), а затем дополнительно перекристаллизацией из CH_2Cl_2 . Выход 42%, белый порошок, т. пл. 219–220 °C. ИК спектр, v, см⁻¹: 3183, 3311, 3345 (NH^{вал}), 1677 (C=O), 1621 (NH^{леф}), 1587, 1500, 1484 (C=C, C=N), 1190–1141 (C–F). Спектр ЯМР ¹H, δ , м. д.: 6.02 (1H, c, H-5); 6.72–6.80 (3H, м, H-3,4,5 Ph); 7.20 (2H, уш. c, H-2,6 Ph); 7.95 (1H, c, NH); 9.85 (1H, уш. c, NH); 11.58 (1H, c, NH). Спектр ЯМР ¹⁹F, δ , м. д.: 92.2 (3F, c, CF₃). Найдено, %: C 49.14; H 3.35; N 20.86. $C_{11}H_0F_3N_4O$. Вычислено, %: C 48.90; H 3.36; N 20.73.

6-(1,1,2,2-Тетрафторэтил)-2-(2-фенилгидразин)пиримидин-4(3H)-он (3c). К раствору 242 мг (1 ммоль) пиримидин-4-она 2c в 8 мл n-ВиОН добавляют 108 мг (1 ммоль) фенилгидразина. Реакционную смесь нагревают в микроволновом синтезаторе (50W, 160 °C) в течение 2 ч. Растворитель отгоняют при пониженном давлении с использованием ловушки, наполненной твёрдым NаОН. Остаток очищают колоночной хроматографией (элюент CHCl₃), а затем дополнительно перекристаллизацией из смеси CCl_4 — CH_2Cl_2 , 1:1. Выход 40%, белый порошок, т. пл. 211–212 °C. ИК спектр, v, см⁻¹: 3311, 3182 (NH), 1667 (C=O), 1608 (NH^{neф}), 1584, 1490 (C=C, C=N), 1116–1087 (C=F). Спектр ЯМР ¹H, δ , м. д. (J, Γ u): 5.82 (1H, c, H-5); 6.14 (1H, т. т, $^2J_{H-F}$ = 53.3, $^3J_{H-F}$ = 5.2, (CF₂)₂H); 6.29 (1H, c, NH); 6.86–6.88 (3H, м, NH, H-3,5 Ph); 7.06 (1H, т, J = 7.6, H-4 Ph); 7.33 (2H, т, J = 7.6, H-2,6 Ph); 9.66 (1H, уш. c, NH). Спектр ЯМР ¹⁹F, δ , м. д. (J, Γ u): 23.4 (2F, д. т, $^2J_{F-H}$ = 53.3, $^3J_{F-F}$ = 7.2, CF_2 H); 38.4–38.7 (2F, м, CF_2 CF₂H). Найдено, %: C 47.82; H 3.33; N 18.66. C_{12} H₁₀F₄N₄O. Вычислено, %: C 47.69; H 3.34; N 18.54.

5-Оксо-7-трифторметил-2-фенил-5*H***-1,2,4-триазоло[4,3-***a***]пиримидин-1-ид-2-иум (4). К раствору 270 мг (1.0 ммоль) соединения 3b** в 8 мл МеСN при перемешивании добавляют 36 мг (1.2 ммоль) параформа. Реакционную смесь кипятят в течение 3 ч. Непрореагировавший избыток параформа отфильтровывают, фильтрат упаривают, остаток очищают колоночной хроматографией (элюент CHCl₃-EtOH, 30:1). Выход 78%, светло-розовый порошок, т. возг. 261–263 °С. ИК спектр, v, см⁻¹: 1681 (C=O), 1625, 1563, 1531, 1511 (C=C, C=N), 1188–1107 (C–F). Спектр ЯМР ¹H, δ, м. д.: 6.08 (1H, с, H-6); 7.70–7.77 (3H, м, H-3,4,5 Ph); 8.20–8.22 (2H, м, H-2,6 Ph); 10.67 (1H, с, H-3). Спектр ЯМР ¹⁹F, δ, м. д.: 94.0 (3F, с, CF₃). Масс-спектр, *m/z* (*I*_{отн}, %): 280 [M]⁺ (24), 211 [M–CF₃]⁺ (10), 104 (26), 93 [C₆H₇N]⁺ (19), 77 [C₆H₅]⁺ (100), 69 [CF₃]⁺ (22), 65 (18), 64 (17), 51 [CHF₂]⁺ (56), 50 [CF₂]⁺ (15), 39 (18). Найдено, %: C 51.24; H 2.51; N 20.16. C₁₂H₇F₃N₄O. Вычислено, %: C 51.44; H 2.52; N 19.99.

Реакция 2-метилсульфанил-6-полифторалкилпиримидин-4(3*H*)-онов 2b,c с морфолином (общая меотдика). Смесь 1 ммоль пиримидин-4-она 2b,c и 4 мл морфолина кипятят в течение 7 ч в колбе с ловушкой, наполненной твердым NaOH. Избыток морфолина отгоняют на ротационном испарителе, остаток перекристаллизовывают из 70% EtOH.

6-Дифторметил-2-(морфолин-4-ил)пиримидин-4(3*H***)-он (5a)**. Выход 66%, белый порошок, т. пл. 203–205 °C. ИК спектр, v, см⁻¹: 3087 (NH^{вал}), 1674 (C=O), 1594, 1576, 1509 (C=C, C=N), 1079–1060 (C–F). Спектр ЯМР ¹H, δ , м. д. (J, Γ µ): 3.63 (8H, c, 4CH₂ морфолин); 5.91 (1H, уш. с, H-5); 6.54 (1H, т, J = 54.7, CHF₂); 11.57 (1H, уш. с, NH). Спектр ЯМР ¹⁹F, δ , м. д.: 41.1 (2F, уш. с, CHF₂). Найдено, %: С 46.59; H 4.82; N 18.16. С₉H₁₁F₂N₃O₂. Вычислено, %: С 46.76; H 4.80; N 18.17.

Основные кристаллографические параметры и характеристики уточнения структур соединений 2a, 4

Параметр	Соединение 2а	Соединение 4
Брутто-формула	C ₆ H ₅ F ₃ N ₂ OS	$C_{12}H_7F_3N_4O$
M, г/моль	210.18	280.22
Температура, К	295(2)	295(2)
Длина волны, Å	0.71073	0.71073
Сингония	Триклинная	Триклинная
Пространственная группа	P1	P1
Параметры ячейки:		
a, Å	5.7796(8)	4.9603(7)
b, Å	7.6046(14)	10.2665(7)
c, Å	9.7626(15)	12.2966(13)
α, град.	84.857(14)	69.997(10)
β, град.	79.584(13)	85.402(10)
ү, град.	89.705(13)	82.111(11)
Объём ячейки, V , $Å^3$	420.28(12)	582.49(11)
Количество молекул в ячейке, Z	2	2
Плотность, $d_{\text{выч}}$, г/см ³	1.661	1.598
Коэффициент абсорбции, µ, мм ⁻¹	0.395	0.140
F(000)	212	284
$\theta_{ m max}$	28.27	26.37
Размер кристалла, мм ³	$0.25 \times 0.15 \times 0.05$	$0.25 \times 0.20 \times 0.15$
Общее количество отражений	3352	4825
Количество независимых отражений	1974	2311
Количество отражений с $I > 2\sigma(I)$	997	1255
Число уточняемых параметров	154	216
Факторы расходимости ($I > 2\sigma(I)$)	R_1 0.0447, wR_2 0.0895	R_1 0.0308, wR_2 0.0608
Факторы расходимости (все рефлексы)	R_1 0.1042, wR_2 0.0978	R_1 0.0734, wR_2 0.065

2-(Морфолин-4-ил)-6-(1,1,2,2-тетрафторэтил)пиримидин-4(3*H***)-он (5b)**. Выход 68%, белый порошок, т. пл. 213–214 °C. ИК спектр, v, см⁻¹: 3111 (NH^{вал}), 1664 (C=O), 1571, 1498 (C=C, C=N), 1144–1108 (C–F). Спектр ЯМР ¹H, δ , м. д. (J, Γ u): 3.65 (8H, c, 4CH₂ морфолин); 6.03 (1H, уш. c, H-5); 6.83 (1H, т. т, J = 52.0, J = 5.9, CF₂CF₂H); 11.73 (1H, уш. c, NH). Спектр ЯМР ¹⁹F, δ , м. д. (J, Γ u): 23.1 (2F, д. $^2J_{F-H}$ = 52.0, CF₂H); 40.1 (2F, уш. c, C<u>F</u>₂CF₂H). Найдено, %: C 42.95; H 3.96; N 15.01. C₁₀H₁₁F₄N₃O₂. Вычислено, %: C 42.71; H 3.94; N 14.94.

Рентгеноструктурное исследование соединений 2a, 4. Монокристаллы соединения 2a получены кристаллизацией из CHCl₃, монокристаллы триазоло[4,3-a]пиримидин-1-ид-2-иума 4 выращены из EtOH. Рентгенодифракционные эксперименты проведены на дифрактометре Xcalibur 3 с CCD-детектором (Мо $K\alpha$ -излучение, графитовый монохроматор, ω -сканирование). Структуры расшифрованы прямыми методами и последующими фурье-синтезами по программе SHELXS-97 и уточнены МНК в анизотропном полноматричном приближении для всех неводородных атомов по программе SHELXL-97 [29]. Координаты атомов водорода определены помещением их в рассчитанные позиции и уточнением по схеме "наездник". Основные кристаллографические параметры и характеристики уточнения структур соединений 2a, 4 депонирован в Кембриджском банке структурных данных (депоненты CCDC 968207 и CCDC 968208 соответственно).

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 13-03-00617) и Совета по грантам Президента РФ (грант НШ-3656.2014.3).

СПИСОК ЛИТЕРАТУРЫ

- 1. H. Nakamura, J. Y. Noh, K. Itoh, S. Fukata, A. Miyauchi, N. Hamada, *J. Clin. Endocrinol. Metab.*, **92**, 2157 (2007).
- 2. S. Prachayasittikul, N. Sornsongkhram, R. Pingaew, S. Techatanachai, S. Ruchirawat, V. Prachayasittikul, *Eur. J. Sci. Res.*, **36**, 236 (2009).
- 3. M. B. Nawrozkij, D. Rotili, D. Tarantino, G. Botta, A. S. Eremiychuk, I. Musmuca, R. Ragno, A. Samuele, S. Zanoli, M. Armand-Ugón, I. Clotet-Codina, I. A. Novakov, B. S. Orlinson, G. Maga, J. A. Esté, M. Artico, A. Mai, *J. Med. Chem.*, **51**, 4641 (2008).
- 4. M. T. Abdel-Aal, Arch. Pharm. Res., 33, 797 (2010).
- H. Gershon, D. D. Clarke, A. T. Grefig, T. E. Anderson, *Monatsh. Chem.*, 121, 289 (1990).
- 6. A. A.-H. Abdel-Rahman, A.-A. SH. El-Etrawy, A. E.-S. Abdel-Megied, I. F. Zeid, El S. H. El Ashry, *Nucleosides, Nucleotides Nucleic Acids*, **27**, 1257 (2008).
- 7. M. Radi, E. Petricci, F. Corelli, M. Botta, *Heterocycles*, 72, 79 (2007).
- 8. A. A.-H. Abdel-Rahman, M. T. Abdel-Aal, J. Chem. Res., Synop., 251 (2002).
- 9. В. Сядярявичюте, П. Вайнилавичюс, *XTC*, 1525 (1992). [*Chem. Heterocycl. Compd.*, **28**, 1304 (1992).]
- 10. H. R. Bizzo, O. A. C. Antunes, A. L. Gemal, Heterocycl. Commun., 9, 359 (2003).
- 11. П. Й. Вайнилавичюс, В. Ю. Сядярявичюте, *XГС*, 1655 (1987). [*Chem. Heterocycl. Compd.*, **23**, 1332 (1987).]
- 12. А. И. Рахимов, И. Ю. Каменева, М. Б. Навроцкий, Е. С. Титова, С. В. Кудашев, *Журн. общ. химии*, **78**, 828 (2008). [*Russ. J. Gen. Chem.*, **78**, 971 (2008).]
- 13. M. M. Heravi, R. Motamedi, Heterocycl. Commun., 11, 19 (2005).
- 14. M. R. Shaaban, H. Ishii, T. Fuchigami, J. Org. Chem., 65, 8685 (2000).
- 15. А. В. Эркин, В. И. Крутиков, М. А. Чубраев, *Журн. общ. химии*, **74**, 466 (2004). [*Russ. J. Gen. Chem.*, **74**, 423 (2004).]
- 16. B. Tait, N. A. Powell, M. Cullen, WO Pat. Appl. 2012154880.
- 17. B. Abarca, C. Soriano, G. Jones, J. Chem. Res., Synop., 158 (1987).
- 18. В. С. Резник, И. Ш. Салихов, Ю. С. Швецов, Ю. Я. Ефремов, И. Х. Ризванов, *Изв. АН, Сер. хим.*, 335 (1995). [*Russ. Chem. Bull.*, **44**, 326 (1995).]
- 19. В. А. Янченко, А. Н. Гурьева, А. Р. Хайрулин, А. М. Демченко, *XTC*, 1296 (2002). [*Chem. Heterocycl. Compd.*, **38**, 1138 (2002).]
- 20. R. Ringom, E. Axen, J. Uppenberg, T. Lundbäck, L. Rondahl, T. Barf, *Bioorg. Med. Chem. Lett.*, 14, 4449 (2004).
- 21. M. L. Maddess, R. Carter, Synthesis, 44, 1109 (2012).
- Y. Nakagawa, S. Bobrov, C. R. Semer, T. A. Kucharek, M. Hamamoto, US Pat. Appl. 20050038041.
- 23. H. Mizuno, WO Pat. Appl. 2010134478.
- R. Domori, Y. Tanaka, S. Miyazaki, JP Pat. Appl. 42014952. Chem. Abstr., 68, 105224 (1968).
- 25. H. Gershon, A. T. Grefig, A. A. Scala, J. Heterocycl. Chem., 20, 219 (1983).
- G. Vasilev, N. Spasovska, A. Spasov, G. Kimenov, Dokl. Bolg. Akad. Nauk, 32, 809 (1979); Chem. Abstr., 92, 53262 (1980).
- 27. R. Pelova, N. Spassowska, L. Maneva, S. Taxirov, Pharmazie, 42, 251 (1987).
- 28. A. S. Shawali, R. H. Hilal, S. El-Sheikh, Monatsh. Chem., 132, 715 (2001).
- 29. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., A64, 112 (2008).

¹ Институт органического синтеза им. И. Я. Постовского УрО РАН, ул. С. Ковалевской, 22 / Академическая, 20, Екатеринбург 620990, Россия e-mail: burgart@ios.uran.ru

Поступило 24.03.2014