

Взаимодействие 6-замещенных 4-пирон-2-карбоновых кислот с o-фенилендиамином. Синтез и строение 3-(1H-1,5-бензодиазепин-2(3H)-илиденметил)хиноксалин-2(1H)-онов

Дмитрий Л. Обыденнов¹*, Вячеслав Я. Сосновских¹

¹ Институт естественных наук Уральского федерального университета, пр. Ленина, 51, Екатеринбург 620000, Россия; e-mail: dobydennov@mail.ru Поступило 4.01.2015 Принято 29.01.2015

6-Арил(алкил)-4-пирон-2-карбоновые кислоты реагируют с двумя молекулами *о*-фенилендиамина при кипячении в *н*-бутаноле, образуя с выходами 26–85% 3-(1*H*-1,5-бензодиазепин-2(3*H*)-илиденметил)хиноксалин-2(1*H*)-оны, существующие в двух таутомерных формах. Направление первоначальной атаки нуклеофила на пироновый цикл и таутомерный состав образующихся продуктов определяются главным образом заместителем при атоме C-6. Стабильность таутомеров в газовой фазе изучена с использованием квантово-химических расчетов.

Ключевые слова: 1,5-бензодиазепины, комановые кислоты, 4-пироны, *о*-фенилендиамин, хиноксалин-2-оны, таутомерия.

1,5-Бензодиазепины и хиноксалины представляют собой важные классы гетероциклических соединений, среди которых обнаружено много биологически активных веществ. Хотя производные 1,5-бензодиазепина не так широко используются в медицине, как транквилизаторы группы 1,4-бензодиазепина, к их числу относятся такие лекарственные вещества, как Clobazam и Triflubazam. ^{1a-d} Основной метод синтеза 1,5-бензодиазепинов базируется на взаимодействии дикетонов² и их синтетических эквивалентов³ с *о*-фенилендиамином (о-ФДА). Кроме того, из литературы известно, что и поликарбонильные соединения, такие как 1,3,5-трикетоны, ⁴ 1,2,4-трикетоны, ⁵ 1,3,4,6-тетракетоны, ⁶ а также этиловый эфир ацетондикарбоновой кислоты 1а,7 диэтиловый эфир 3,5-диоксопимелиновой кислоты⁸ реагируют только с одним молем о-ФДА с образованием замещенных 1,5-бензодиазепинов.

4-Пироны представляют собой скрытые 1,3,5-трикарбонильные соединения и широко используются для получения различных азотсодержащих гетероциклов. При взаимодействии с первичными аминами они всегда образуют 4-пиридоны, 10 а реакция производных 4-пирон-2-карбоновой (комановой) кислоты с 1,2-диаминами обычно приводит к конденсированным пиридонам, а именно пиридо[1,2-а]пиразинам. В то же время при взаимодействии комановых кислот, содержащих скрытые фрагменты 1,3-дикетона и пировиноградной кислоты, с о-ФДА, помимо пиридонов, можно ожидать образования 1,5-бензодиазепинов и хиноксалинов. 12 Однако, насколько нам известно, в литературе имеются лишь два примера подобных превращений. Так, хелидоновая и 6-ди(три)фторметилкомановые кислоты реагируют сразу с двумя молекулами ароматического 1,2-диамина дают бис(2-оксохиноксал-3-иден)ацетоны 4c,13 3-(1,5-бензодиазепин-2-илиденметил)хиноксалин-<math>2(1H)оны соответственно. 14 В связи с тем, что сведения о взаимодействии 4-пирон-2-карбоновых кислот с 1,2-диаминами весьма ограничены, мы изучили реакции комановой и 6-замещенных комановых кислот с о-ФДА и показали, что во всех случаях, кроме самой комановой кислоты, образуется гетероциклический ансамбль, состоящий из 1,5-бензодиазепинового и хиноксалинового циклов, связанных sp^2 -гибридизованным атомом углерода. Интересно, что ни в одной из изученных нами реакций образования 4-пиридонов не наблюдалось.

Комановая и хелидоновая кислоты и их эфиры. В первую очередь нас интересовала незамещенная комановая кислота (1a), о которой было известно только, что ее этиловый эфир 1b при нагревании с *o*-ФДА (2) без растворителя дает пиридо[1,2-*a*]хиноксалинон 3 (схема 1). Не Мы обнаружили, что при взаимодействии кислоты 1a с *o*-ФДА (2) в кипящем этаноле при мольном соотношении реагентов 1:2.2 образуется

Схема 1

аминовинилкетон 4 (выход 73%), строение которого однозначно указывает на то, что одна молекула о-ФДА атакует атом С-2, а другая - атом С-6. Реакция, повидимому, протекает через промежуточный бис-аддукт А, центральная карбонильная группа которого участия в процессе не принимает. Действительно, при попытке циклизации 4-5 в разных условиях (кипячение в н-бутаноле, диметилсульфоксиде, смеси уксусной кислоты и этанола) исходный аминоенон 4 всегда оставался либо в неизменном виде, либо с примесью пиридона 3. Данный факт согласуется с литературными данными, 26,15 подтверждающими, что отсутствие в подобных аминоенонах заместителя при атоме углерода, связанном с аминным азотом, затрудняет их циклизацию в бензодиазепиновый цикл. В растворе ДМСО- d_6 соединение **4** находится в виде смеси Z,Z- и

E,Z-изомеров в соотношении 90:10 (по данным спектроскопии ЯМР 1 Н), что объясняется повышенной стабильностью Z,Z-изомера благодаря двум внутримолекулярным водородным связям. Отметим, что при использовании 1.2 экв. o-ФДА образуется смесь соединений $\mathbf{3}$ и $\mathbf{4}$ в соотношении $\mathbf{3}$:1.

Из представителей ряда 4-пирон-2-карбоновых кислот хелидоновая кислота ($\bf 6a$) является наиболее изученной. Известно, что диэтилхелидонат ($\bf 6b$) в реакции с $\it o$ -ФДА дает пиридо[1,2- $\it a$]хиноксалинон $\bf 7$, $\it ^{4c,11d}$ тогда как хелидоновая кислота ($\bf 6a$) ведет себя аналогично ацилпировиноградным кислотам $\it ^{16}$ и по реакции Хинсберга $\it ^{12}$ приводит к бис(2-оксохиноксал-3-иден)ацетону $\it 8a$ $\it ^{4c,13}$ (схема 2). При взаимодействии пиронов $\it 6a$, $\it b$ с $\it o$ -аминофенолом, как и следовало ожидать, образуются пиридоны $\it 9a$, $\it b$ $\it ^{11d,13}$. В связи с тем, что

Схема 2

$$RO_{2}C$$

$$NCO_{2}R$$

$$OH$$

$$9a,b$$

$$RO_{2}C$$

$$OH$$

$$9a,b$$

$$RO_{2}C$$

$$OH$$

$$9a,b$$

$$RO_{2}C$$

$$OCO_{2}R$$

$$ref. 11d, 13$$

$$Ga,b$$

4-пирон-2-карбоновые кислоты и их эфиры по-разному реагируют с o-ФДА, что, по-видимому, связано с кислотностью среды, представляло интерес выяснить, как поведет себя в этой реакции моноэтилхелидонат (**6c**), являющийся одновременно и кислотой и эфиром.

Мы нашли, что взаимодействие моноэтилового эфира хелидоновой кислоты (6c) с о-ФДА (2) при кипячении в н-бутаноле приводит к образованию смеси бисхиноксалинона 8а и бензодиазепина 10 в соотношении 7:1 (по данным спектроскопии ЯМР 1 Н) (схема 2). Возможный механизм данного превращения, как и для комановой и хелидоновой кислот, включает присоединение двух молекул о-ФДА по атомам С-2 и С-6 пиронового цикла. Образующийся при этом интермедиат В подвергается дальнейшей циклизации преимущественно в более стабильный хиноксалинон 8а (путь a), ¹⁶ тогда как образование бензодиазепина **10** является менее выгодным процессом (путь b). Аналогичное превращение с о-аминофенолом подтверждает предполагаемый механизм и дает чистый бисбензоксазинон 8b (выход 52%), который ранее был выделен из реакции о-аминофенола с кислотой ба с выходом всего лишь 3%. 13 Следует отметить, что с о-аминотиофенолом моноэфир 6с реагирует неоднозначно и приводит к сложной смеси продуктов, из которой индивидуальные вещества выделить не удалось.

6-Арил- и 6-алкилкомановые кислоты. Мы нашли, что 6-замещенные комановые кислоты 11а-j, из которых кислоты 11а-g стали более доступными, благодаря недавно описанной нами кислотной перегруппировке 5-ацил-2-карбэтокси-4-пиронов, 17 реагируют с 2.2-2.5 моль о-ФДА (2) при кипячении в н-бутаноле с образованием окрашенных высокоплавких соединений 12а-j (схема 3, табл. 1). Эти продукты относятся к редкой 14 гетероциклической системе, состоящей из 1,5-бензодиазепинового и хиноксалинового колец, и могут находиться в двух таутомерных формах. Из реакционной смеси они выпадают преимущественно в виде метиленового таутомера A-12, за исключением соединений 12h-j, для которых более характерной является сопряженная форма B-12.

Фторсодержащие соединения 12i,j образуются с наибольшими выходами (80-85%) при минимальном времени кипячения $(0.5\,$ вместо $4\,$ ч), что связано с электроноакцепторным влиянием групп CF_2H и CF_3 (табл. 1). Эти соединения получены нами ранее с выходами 44-63% при проведении реакции в кипящем этаноле. 14

Схема 3

Таблица 1. Соотношение таутомеров **A** и **B** в ДМСО- d_6 и выходы соединений **12** в кипящем μ -бутаноле

Соединение	R	A:B	Цвет	Время, ч	Выход, %
12a	Ph	100:0 (92:8)*	Желтый	4	75 (67)*
12b	$4-MeC_6H_4$	94:6	Красный	4	62
12c	$4\text{-MeOC}_6\text{H}_4$	89:11	Оранжевый	4	69
12d	$4-ClC_6H_4$	100:0	Желтый	4	69
12e	$2-C_{10}H_7$	100:0	Желтый	4	66
12f	$2-C_4H_3S$	100:0	Желтый	4	81
12g	t-Bu	100:0	Желтый	4	55
12h	Me	15:85 (10:90)**	Красный	2	26 (18)**
12i	CF ₂ H	22:78 (35:65)***	Красный	0.5	80 (44)***
12j	CF ₃	27:73 (79:21)***	Красный (оранжевый) ***	0.5	85 (63)***

^{*} При использовании 2.2 экв. o-ФДА.

^{**} Кипячение в EtOH (2 ч). 14

^{***} Кипячение в EtOH (0.5 ч). 14

По сравнению с фторсодержащими кислотами 11і, і 6-арил- и 6-алкилкомановые кислоты 11а-h менее реакционноспособны, что приводит к необходимости увеличения времени кипячения в н-BuOH до 4 ч для соединений 11а-д (выходы 55-75%) и до 2 ч для соединения 11h (выход 26%) (табл. 1). Отметим, что в этаноле реакция с кислотами 11а-д не идет, а с кислотой 11h дает более низкий выход продукта (18%). Низкий выход соединения 12h может быть связан с частичной деструкцией пиронового кольца в соединении 11h, так как из фильтрата в незначительных количествах был выделен известный 3-метилхиноксалинон. 18 Наличие в пироне 11g объемного третбутильного заместителя не сказывается на времени протекания реакции и лишь незначительно понижает выход бензодиазепина 12g. Следует заметить, что превращение 11→12 протекает с участием всех четырех реакционных центров 4-пирон-2-карбоновых кислот и является уникальным для химии этих соединений. С о-аминофенолом и о-аминотиофенолом аналогичная реакция не идет.

Вероятный механизм реакции может включать первоначальную атаку аминогруппы по атомам С-2 и С-6 пиронового цикла. Однако следует учесть, что в 6-арил- и 6-алкилкомановых кислотах 11а-h атом С-6 дезактивирован по сравнению с атомом С-2 из-за электронодонорного влияния заместителей и стерических затруднений, особенно заметных в случае 6-третбутилпирона 11g. Поскольку природа заместителя в положении 6 пиронового кольца практически не влияет на выход и скорость образования продуктов 12а-д, то логично предположить, что первоначальная атака будет протекать по атому С-2 (интермедиат С) с последующим присоединением второй молекулы о-ФДА по атому С-4 (интермедиат **D**) и внутримолекулярной рециклизацией в бензодиазепины 12а-h (схема 3). Ранее нами было показано, 9d что комановая, 6-метил- и 6-фенилкомановая кислоты аналогичным образом реагируют с фенилгидразином в диоксане, давая фенилгидразоны 3-(*N*-фенилпиразол-3-ил)пировиноградной кислоты как результат атаки по атомам С-2 и С-4 пиронового кольца.

Следует отметить, что выпавшие из реакционной смеси бензодиазепины 12d,е содержали очень небольшое количество дикетохиноксалинонов 13d,е, которые были выделены в чистом виде с выходами 1.4 и 4.1% соответственно, благодаря лучшей растворимости в кипящем этаноле. Образование этих побочных продуктов можно объяснить раскрытием пиронового цикла интермедиата С и циклизацией его в хиноксалинон 13 без присоединения второй молекулы о-ФДА (схема 4). Соединения 13 не являются интермедиатами в синтезе бензодиазепинов 12, так как они не реагируют с о-ФДА в аналогичных условиях, но сам факт их обнаружения подтверждает правильность вывода о первоначальной атаке по атому С-2 в случае 6-арилкомановых кислот.

Ранее на основании квантово-химических расчетов для реакции $6-R^F$ -комановых кислот **11i,j** с o-ФДА¹⁴ и

Схема 4

фенилгидразином 9d нами было показано, что первоначальная атака нуклеофила на пироновый цикл происходит не по атому C-2, а по C-6, электрофильность которого из-за электроноакцепторного действия групп CF_2H и CF_3 (R^F) значительно увеличена. Эта особенность $6-R^F$ -комановых кислот хорошо согласуется и с небольшим временем кипячения, необходимым для превращения кислот 11i,j в бензодиазепины 12i,j (табл. 1). В данном случае реакция, по-видимому, протекает через открытый интермедиат F, который далее реагирует со второй молекулой o- Φ ДА (интермедиат G) и дает продукты 12i,j (схема 3).

Строение и имино-енаминная таутомерия. Хорошо известно, что таутомерные равновесия оказывают большое влияние не только на реакционную способность, ¹⁹ но и на биологическую активность органических соединений. ²⁰ В этом плане синтезированные 1,3,5-трииминные системы 12 являются интересными объектами для изучения имино-енаминной таутомерии, в которой принимают участие оба гетероциклических фрагмента молекулы 12.

Нами установлено, что природа заместителя при атоме С-6 комановой кислоты оказывает значительное влияние на соотношение таутомеров А и В в выпавшем из реакционной смеси продукте реакции 12. Обычно желтый цвет вещества соответствует метиленовой форме А, а красный – сопряженной форме В (табл. 1). Исключением является бензодиазепин 12b ($R = 4\text{-MeC}_6H_4$), который представляет собой порошок красного цвета, но по данным спектра ЯМР ¹Н соответствует таутомеру А с 6% формы В. Из 6-метил-, 6-дифторметил- и 6-трифторметилкомановых кислот 11h-i в качестве основного образуется сопряженный таутомер В-12, содержание которого составляет 73-85%. Однако при проведении реакции СГ₃-замещенной кислоты 11j в этаноле наблюдается обратное соотношение таутомерных форм (**A**:**B** = 79:21). При взаимодействии 6-арили 6-трет-бутилкомановых кислот 11a,d-g был получен несопряженный таутомер А в чистом виде, тогда как продукты из кислот 11b,c содержали небольшое количество формы В (6–11%). Основность среды также оказывает влияние на соотношение таутомеров: из реакции 6-фенилкомановой кислоты 11а с 2.2 экв.

o-ФДА была выделена смесь соединений **A-12a** и **B-12a** в соотношении 92:8 (выход 67%), тогда как при использовании 2.5 экв. o-ФДА таутомер **A-12a** образуется в чистом виде (выход 75%, табл. 1).

Таким образом, донорные заместители в бензодиазепинах **12** (R = Ar, t-Bu) благоприятствуют иминоформе A, а акцепторные ($R = CO_2Et$, CF_2H , CF_3) – енаминоформе В. Это можно объяснить тем, что электроноакцепторные группы повышают кислотность водородных атомов группы СН2 таутомера А и тем самым способствуют переходу $A \rightarrow B$, тогда как электронодонорные группы, наоборот, стабилизируют форму А за счет сопряжения с фрагментом С=N. Полученные результаты хорошо согласуются с литературными данными по исследованию таутомерных процессов в 1,5-бензодиазепиновой системе, 21 для которой несопряженная форма 3*H*-1,5-бензодиазепина является наиболее стабильной, 22 но введение электроноакцепторного заместителя ведет к появлению сопряженного 1H-1,5-бензодиазепина. ^{3a,b}

Важно отметить, что продукты 12 очень плохо растворимы в н-бутаноле, а указанные в табл. 1 соотношения таутомеров А-12 и В-12 не являются равновесными. В связи с этим мы изучили взаимный переход между формами А и В при нагревании и при комнатной температуре в ДМСО, в котором вещества 12 достаточно хорошо растворяются, и показали, что термодинамическое равновесие между формами А и В устанавливается при 100-120 °C в течение 0.5-4 ч или при комнатной температуре в течение 1 месяца (табл. 2). Согласно полученным данным, фторсодержащие бензодиазепины 12і,і, независимо от первоначального состава кинетической смеси, полностью переходят в сопряженную форму В, а тиенильное производное 12f существует только в метиленовой форме А, которая оказывается наиболее стабильной и для анизильного производного 12c (A:B = 83:17). Бензодиазепины 12a и 12h с фенильным и метильным заместителями в условиях термодинамического равновесия находятся в виде смеси примерно равных

Таблица 2. Соотношение таутомеров **A-12** и **B-12** до и после нагревания в ДМСО

Соеди-	R	A:B*	Темпе- ратура, °С	Время	A:B**
12a	Ph	92:8	100	2 ч	50:50
12c	4-MeOC_6H_4	89:11	100	2 ч	83:17
12f	$2-C_4H_3S$	100:0	100	2 ч	100:0
12h	Me	15:85	100	2 ч	47:53
		15:85	20–25	30 сут	44:56
12i	CF ₂ H	22:78	80	4 ч	$0:100^{14}$
		35:65	20–25	30 сут	0:100
12j	CF ₃	27:73	120	0.5 ч	$0:100^{14}$
		79:21	20–25	30 сут	0:100

^{*} До нагревания (кинетическая смесь).

количеств таутомеров \mathbf{A} и \mathbf{B} ; в первом случае равновесие достигается путем перехода $\mathbf{A} \rightarrow \mathbf{B}$, а во втором – за счет перехода $\mathbf{B} \rightarrow \mathbf{A}$. Повышенная стабильность сопряженного таутомера \mathbf{B} в ДМСО, что особенно явно проявляется в случае \mathbf{R}^F -бензодиазепинов $\mathbf{12i,j}$, связана, вероятнее всего, с образованием межмолекулярных водородных связей между протонами NH и молекулами растворителя (табл. 2).

Теоретически бензодиазепины 12 могут существовать в растворе в четырех наиболее стабильных таутомерных формах А-D с сильной внутримолекулярной водородной связью (ВВС), из которых в спектрах ЯМР 1 Н наблюдаются только две – **A** (**C**) и **B** (**D**). Таутомеры A-12 и C-12, а также B-12 и D-12, различаются между собой положением атома водорода, участвующего в образовании ВВС и проявляющегося в спектре ЯМР ¹Н в виде самого слабопольного узкого синглета (схема 5).23 Чтобы выяснить, какие формы являются энергетически наиболее стабильными и как влияет природа заместителя на устойчивость отдельных таутомеров, нами были рассчитаны методом DFT B3LYP/6-31G(d,p) относительные энергии четырех структур А, В, С и В в газовой фазе. Оказалось, что в случае бензодиазепинов 12а, h, і для близких по строению метиленовых форм А и С наиболее термодинамически стабильной оказывается форма А, а в паре В и D форма В. Из расчетов также видно, что электронодонорные заместители (R = Me, Ph) стабилизируют таутомер A, а электроноакцепторные ($R = CF_3$) – таутомер В (табл. 3), что хорошо согласуется с нашими экспериментальными данными (табл. 1 и 2).

Строение соединений **12а**–**j** подтверждено данными элементного анализа, ИК спектроскопии и спектроскопии ЯМР 1 Н и 13 С. В спектрах ЯМР 1 Н в ДМСО- d_{6} (табл. 4) для сопряженного таутомера **B-12**, помимо

Схема 5

Таблица 3. Относительная энергия таутомеров **A–D**, кДж/моль

R	A	В	C	D
Me	0	12.3	9.4	49.4
Ph	0	13.6	10.8	52.8
CF_3	0	-6.8	0.74	39.9

^{**} После нагревания в ДМСО (термодинамическая смесь).

ароматических протонов, наблюдаются сигналы двух винильных протонов при 4.27-5.53 и 5.58-6.03 м. д. и протона NH хиноксалинона (11.94–12.20 м. д.), а также двух протонов NH бензодиазепинового цикла при 12.07–12.41 и 7.66–8.36 м. д., из которых первый участвует в образовании ВВС. Структура таутомера В-12 была однозначно установлена на основании мультиплетности сильнопольного сигнала винильного протона бензодиазепинового цикла в области 4.27-5.53 м. д., который представляет собой триплет (J = 1.3– 1.5 Гц) или неразрешенный триплет из-за расщепления на двух протонах NH, что хорошо согласуется с литературными данными для подобных систем. 4а Для таутомера А-12 характерными сигналами являются синглеты группы CH_2 (3.22–3.91 м. д.), винильного (5.58-6.06 м. д.) и амидного протонов (12.04-12.13 м. д.), а также узкий синглет бензодиазепинового протона NH, участвующего в образовании BBC (13.11-13.24 м. д.). Этот сигнал смещен примерно на 1 м. д. в слабое поле по сравнению с аналогичным сигналом таутомера В-12, что свидетельствует о более прочной водородной связи в форме А-12.

Хиноксалиновые ароматические протоны для пары **A-12** и **B-12** имеют близкие химические сдвиги, что указывает на одинаковое строение пиразинового цикла в этих таутомерах. Так, химический сдвиг протона H-5, который должен быть наиболее чувствителен к строению пиразинона, для таутомеров **A-12** составляет 7.63–7.70 м. д., а для таутомеров **B-12** – 7.55–7.71 м. д. Ароматические протоны бензодиазепинового цикла в форме **B-12** из-за наличия двух донорных групп NH наблюдаются при 6.64–7.02 м. д., а в форме **A-12**, у которой один атом азота становится иминным, смещаются в область слабого поля и проявляются при 7.15–7.46 м. д. Все эти данные хорошо согласуются с предложенными структурами для продуктов **12**.

В ИК спектрах продуктов **12** присутствует характерная полоса поглощения валентных колебаний группы С=О пиразинового цикла в области 1651–1673 см⁻¹. Для соединений **12**, содержащих ароматические заместители, эта полоса располагается в более узком интервале (1669–1673 см⁻¹), а сами они представляют собой желтые или оранжевые ватообразные порошки.

Однако *пара*-толильное производное **12b**, которое образуется в виде красных кристаллов, имеет $v_{C=0}$ при 1651 см $^{-1}$, что на 20 см $^{-1}$ меньше, чем для аналогичных соединений. Поскольку, по данным спектра ЯМР 1 Н, это вещество находится в растворе ДМСО- d_{6} преимущественно в виде метиленового таутомера **A-12b** (94%), то можно предположить, что в кристаллическом состоянии оно представляет собой форму **C**, которая при растворении в ДМСО быстро переходит в более стабильную форму **A**.

Таким образом, нами показано, что 6-замещенные комановые кислоты реагируют с двумя молекулами о-фенилендиамина по всем четырем реакционным центрам с образованием редкой бензодиазепин—хиноксалиновой системы. Направление первоначальной атаки и таутомерный состав образующихся продуктов зависят главным образом от природы заместителя при атоме С-6 пиронового цикла. Электроноакцепторные ди(три)фторметильные группы способствуют атаке по атому С-6 и образованию сопряженной таутомерной формы, в то время как ароматические заместители делают более выгодной атаку аминогруппы по атому С-2 и стабилизируют метиленсодержащий таутомер.

Экспериментальная часть

ИК спектры зарегистрированы на приборе Perkin-Elmer Spectrum BX-II с использованием приставки нарушенного полного внутреннего отражения (НПВО). Спектры ЯМР ¹Н и ¹³С зарегистрированы на спектрометре Bruker Avance II (400 и 100 МГц соответственно) в ДМСО-d₆, внутренний стандарт ТМС. Протоны хиноксалинового цикла обозначены как H Qn, бензодиазепинового - H Bzd, нафталинового - H Naph, тиофенового - H Th. Элементный анализ выполнен на автоматическом анализаторе РЕ 2400. Температуры плавления определены на приборе SMP30. Квантовохимические расчеты выполнены с использованием программного пакета Gamess US.²⁴ Комановая кислота (**1a**),^{25a} моноэтилхелидонат (6c), 25a 6-замещенные комановые кислоты 11a-g, 17,25b 6-метилкомановая кислота (11h), 25c,d 6-дифторметилкомановая кислота (11i),^{25e} 6-трифторметилкомановая кислота $(11j)^{25f}$ получены по соответствующим литературным методикам.

Таблица 4	 Характерные сигналы 	в спектрах ЯМР	1 Н (м. д. (J , Γ ц)) таутомеров A	А и B бензодиазепинов 12 в ДМСО- d_6

Соеди-		Таутомер А		Таутомер В			
нение	CH ₂	=CH	NH (BBC)	=CH Bzd	=CH	NH Bzd	NH (BBC)
12a	3.77	6.04	13.18	4.78 (T, J=1.5)	5.84	8.03 (д, J=1.5)	12.39 (д, $J = 1.5$)
12b	3.73	6.02	13.16	4.76 (неразр. т)	5.82	7.94 (неразр. д)	12.39
12c	3.71	6.02	13.16	4.76	5.82	7.97	12.41
12d	3.76	6.05	13.17	4.81 (неразр. т)	5.86	8.05 (неразр. д)	12.37
12e	3.91	6.15	13.24	4.91 (неразр. т)	5.86	маскируется	12.40
12f	3.74	6.10	13.14	-	_	_	_
12g	3.36	5.97	13.22	-	_	_	_
12h	3.22	5.91	13.01	4.37 (T, J = 1.3)	5.58	7.82 (д, J = 1.3)	12.32 (д, $J = 1.2$)
12i	3.50	5.92	13.11	4.96 (неразр. т)	5.86	8.19 (неразр. д)	12.15
12j	3.67	5.98	13.11	5.24 (неразр. т)	6.03	8.37 (д, $J = 1.4$)	12.20
10	-	_	-	5.53 (T, J = 1.4)	5.97	7.66 (д, $J = 1.5$)	12.07 (д, $J = 1.3$)

3-(4-(2-Аминофениламино)-2-оксобут-3-енилиден)-3,4-дигидрохиноксалинон-2(1H)-он (4), смесь Z,Z- и **Е, Z-изомеров 90:10**. Смесь 100 мг (0.7 ммоль) комановой кислоты (1a) и 170 мг (1.6 ммоль) o-ФДА кипятят в 2.5 мл EtOH в течение 1 ч, после чего осадок отфильтровывают и промывают EtOH. Выход 156 мг (73%). Красный порошок. Т. пл. 279-280 °С. ИК спектр, v, см⁻¹: 2862, 1671, 1631, 1578. **Изомер** *Z*,*Z*-4: Спектр ЯМР ¹H, δ , м. д. (*J*, Γ ц): 4.81 (2H, c, NH₂); 5.38 (1H, д, J = 7.8, =CH); 5.96 (1H, c, =CH); 6.64–6.71 (1H, M, H-3 Ar); 6.81-6.87 (2H, M, H-4,5 Ar); 6.95-7.04 (1H, M, H-6 Ar); 7.05 (2H, т. д, J = 7.6, J = 1.4, H-6,7 Qn); 7.13 (1H, д, J = 7.8, H-8 Qn); 7.26 (1H, \pm , J = 7.5, H-5 Qn); 7.49 (1H, д. д, J = 12.2, J = 7.8, =CH); 11.35 (1H, д, J = 12.2, NH); 11.66 (1H, c, NHCO Qn); 12.88 (1H, c, NH Qn). Изомер **E,Z-4**: Спектр ЯМР ¹H, δ, м. д. (*J*, Γц): 4.98 (2H, c, NH₂); 5.66 (1H, д, J = 13.2, =CH); 5.93 (1H, c, =CH); 6.50–7.60 (8H, м, H Ar, H Qn); 8.95 (1H, д, J = 12.2, NH); 11.99 (1H, c, NHCO Qn); 13.41 (1H, c, NH Qn). Найдено, %: С 67.23; Н 4.95; N 17.25. С₁₈Н₁₆N₄О₂. Вычислено, %: C 67.49; H 5.03; N 17.49.

Смесь (3Z,3'Z)-3,3'-(2-оксопропан-1,3-диилиден)бис-(3,4-дигидрохиноксалин-2(1H)-она) (8а) и (Z)-3-((2-карбэтокси-1*H*-1,5-бензодиазепин-4-ил)метилен)-3,4-дигидро**хинолин-2(1***H***)-она (10)**. Смесь 100 мг (0.5 ммоль) моноэтилхелидоната (6с) и 112 мг (1.0 ммоль) о-ФДА кипятят в 2 мл н-ВиОН в течение 2 ч, после чего осадок отфильтровывают и промывают EtOH. Выход 113 мг. Темно-красный порошок. Полученный продукт представляет собой смесь бисхиноксалина 8а и бензодиазепина 10 в соотношении 7:1; индивидуальные соединения не были выделены в чистом виде. Соединение 8а: Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 6.06 (2H, c, =CH); 7.02– 7.13 (6H, м, H Qn); 7.31 (2H, д, J = 7.6, H-5); 11.78 (2H, с, NHCO); 12.97 (2H, с, NH). Соединение 10: Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.32 (3H, τ , J = 7.1, CH_{3}); 4.27 $(2H, KB, J = 7.1, CH_2); 5.53 (1H, T, J = 1.4, =CH Bzd);$ 5.97 (1H, c, =CH); 6.72–6.77 (2H, M, H Bzd); 6.81 (1H, т. д, J = 7.5, J = 1.4, H-8 Bzd); 7.02 (1H, д. д, J = 8.0, J = 1.4, H-9 Bzd); 7.20 (1H, д. д, J = 8.0, J = 1.2, H-8 Qn); 7.24 (1H, т. д, J = 7.8, J = 1.3, H-7 Qn); 7.35 (1H, т. д, J = 7.7, J = 1.2, H-6 Qn); 7.66 (1H, д, J = 1.5, NH Bzd); 7.69 (1H, д. д, J = 7.9, J = 1.3, H-5 Qn); 12.07 (1H, д, J = 1.3, NH Bzd); 12.19 (1H, c, NH Qn).

(3Z,3'Z)-3,3'-(2-Оксопропан-1,3-диилиден)бис(3,4-дигидро-2*H*-бензоксазин-2-он) (8b). Смесь 100 мг (0.5 ммоль) моноэтилхелидоната (6c) и 129 мг (1.2 ммоль) о-аминофенола кипятят в 2 мл H-ВиОН в течение 4 ч, после чего осадок отфильтровывают и промывают ЕtOH. Выход 86 мг (52%). Темно-зеленый порошок. Т. пл. 314–315 °C (т. пл. 305 °C)²⁶. Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 6.28 (2H, c, =CH); 7.08 (2H, т. д, J = 7.7, J = 1.4, H-6, Ar); 7.16–7.22 (4H, м, H-7,8 Ar); 7.34 (2H, д. д, J = 8.4, J = 1.1, H-5 Ar); 12.43 (2H, c, NH). Спектр ЯМР ¹³С, δ , м. д.: 99.9; 115.9; 116.5; 123.0; 124.3; 125.4; 137.4; 140.9; 156.0; 190.0.

Синтез бензодиазепинов 12 (общая методика). Кипятят 1.0 ммоль замещенной комановой кислоты 11 с 2.5 ммоль o-фенилендиамина (2.2 ммоль для соеди-

нений **11g**,**i**,**j**) в 7 мл (3 мл для соединений **11h**-**j**) *н*-ВиОН в течение 0.5–4 ч. Затем к реакционной смеси добавляют 10 мл ЕtOH и осадок отфильтровывают. В случае бензодиазепинов **12a**-**c**,**f** полученную суспезию дополнительно кипятят в течение 5 мин, охлаждают и осадок отфильтровывают.

(Z)-3-((4-Фенил-1*H*-1,5-бензодиазепин-2(3*H*)-илиден)-метил)хиноксалин-2(1*H*)-он (A-12a). Выход 0.284 г (75%). Желтый порошок. Т. пл. 323–324 °C. ИК спектр, v, см⁻¹: 2971, 2884, 1667, 1614, 1599, 1359, 687. Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 3.77 (2H, c, CH₂); 6.04 (1H, c, =CH); 7.16 (1H, д. д, J = 8.1, J = 1.2, H-8 Qn); 7.19 (1H, т. д, J = 7.8, J = 1.2, H-6 Qn); 7.26 (1H, т. д, J = 7.7, J = 1.4, H-7 Qn); 7.28 (1H, т. д, J = 7.7, J = 1.6, H-7/8 Bzd); 7.32 (1H, т. д, J = 7.6, J = 1.7, H-8/7 Bzd); 7.44 (2H, д. д, J = 7.4, J = 1.6, H-6,9 Bzd); 7.52–7.59 (3H, м, H Ph); 7.65 (1H, д. д, J = 8.0, 1.2, H-5 Qn); 8.20 (2H, д. д, J = 7.9, J = 1.8, H-2,6 Ph); 12.06 (1H, c, NH Qn); 13.18 (1H, c, NH Bzd). Найдено, %: C 75.79; H 4.67; N 14.90. С₂₄H₁₈N₄O. Вычислено, %: C 76.17; H 4.79; N 14.81.

(*Z*)-3-((4-Фенил-1*H*-1,5-бензодиазепин-2(5*H*)-илиден)-метил)хиноксалин-2(1*H*)-он (B-12a) получают нагреванием 100 мг смеси таутомеров **A-12a**:**B-12a** в соотношении 94:6 при 100 °C в ДМСО в течение 2 ч. После охлаждения реакционную смесь разбавляют водой, осадок отфильтровывают и промывают водой. Продукт представляет собой равновесную смесь состава **A-12a**:**B-12a** = 50:50, которая не была разделена. Спектр ЯМР 1 H, δ , м. д. (*J*, Γ II): 4.78 (1H, τ , *J* = 1.5, =CH Bzd); 5.84 (1H, c, =CH); 6.75–6.80 (2H, м, H Bzd); 6.84 (1H, τ , д, *J* = 7.5, *J* = 1.5, H-8 Bzd); 6.96 (1H, д. д, *J* = 7.6, *J* = 1.8, H-9 Bzd); 7.15–7.65 (9H, м, H Ar); 8.03 (1H, д, *J* = 1.5, NH Bzd); 12.01 (1H, c, NH Qn); 12.39 (1H, д, *J* = 1.5, NH Bzd).

(Z)-3-((4-napa-Толил-1H-1,5-бензодиазепин-2(3H)илиден)метил)хиноксалин-2(1*H*)-он (A-12b). Полученный продукт представляет собой смесь таутомеров **A-12b** (94%) и **B-12b** (6%). Выход 0.243 г (62%). Красный порошок. Т. пл. 344–346 °С. ИК спектр, v, см⁻¹: 2961, 2878, 1651, 1621, 1600, 1360, 731. Таутомер А-12b: Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.39 (3H, c, CH₃); 3.73 (2H, c, CH₂); 6.02 (1H, c, =CH); 7.16 (1H, д. д, <math>J = 8.1, J = 1.3, H-8 Qn); 7.18 (1H, т. д, J = 7.7, J = 1.5, H-8 Qn); 7.25 (1H, т. д, J = 7.2, J = 1.4, H-7 Qn); 7.24–7.30 (1H, м, H-7/8 Bzd); 7.30 (1H, т. д, J = 7.3, J = 1.8, H-8/7 Bzd); 7.35 (2H, д, J = 8.4, H-3,5 Ar); 7.43 (2H, AA'XX', J = 6.6, J = 1.8, H-6, H-9 Bzd); 7.64 (1H, д. д, J = 8.0, J = 1.3, H-5 Qn); 8.17 (2H, д, J = 8.2, H-2,6 Ar); 12.05 (1H, c, NH Qn); 13.16 (1H, c, NH Bzd). **Таутомер В-12b**: Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 4.76 (1H, неразр. т, =CH Bzd); 5.82 (1H, c, =CH); 6.73–6.85 (3H, м, H Bzd); 6.95 (1H, д, J = 7.6, H-9 Bzd); 7.49 (2H, π , J = 8.0, H-2,6 Ar); 7.60 (1H, д, J = 7.6, H-5 Qn); 7.94 (1H, неразр. д, NH); 12.00(1H, c, NH Qn); 12.39 (1H, c, NH Bzd); остальные протоны не видны из-за наложения сигналов. Найдено. %: С 76.23; H 5.07; N 14.31. С₂₅H₂₀N₄O. Вычислено, %: C 76.51; H 5.14; N 14.28.

(Z)-3-((4-пара-Анизил-1*H*-1,5-бензодиазепин-2(3*H*)илиден)метил)хиноксалин-2(1*H*)-он (A-12c). Продукт

представляет собой смесь таутомеров А-12с (89%) и **B-12c** (11%). Выход 0.288 г (69%). Оранжевый порошок. Т. пл. 318–320 °C. ИК спектр, v, см⁻¹: 2994, 2902, 3052, 2830, 1670, 1621, 1602, 1365, 1246, 737. Таутомер **A-12c**: Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 3.71 (2H, c, CH₂); 3.86 (3H, c, CH₃); 6.02 (1H, c, CH); 7.08 (2H, д, J = 8.7, H-3,5 Ar); 7.16 (1H, π , J = 7.9, H-8 Qn);7.18 (1H, т, J = 7.9, H-6 Qn); 7.25 (1H, т, J = 8.1, H-7 Qn); 7.24– 7.30 (1H, м, H-7/8 Bzd); 7.29 (1H, т. д, J = 7.2, J = 1.7, 7.42 (1H, д. д, J = 6.9, J = 1.7, H-9/6 Bzd); 7.64 (1H, д, J = 7.8, H-5 Qn); 8.18 (2H, д, J = 8.7, H-2,6 Ar); 12.05 (1H. c. NH On): 13.16 (1H. c. NH Bzd). **Taytomen B-12c**: Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 3.81 (3H, c, CН₃); 4.76 (1H, c, =CH); 5.82 (1H, c, =CH); 6.74–6.81 (2H, M, H Bzd); 6.84 (1H, т, J = 7.3, H-8/7 Bzd); 6.96 (1H, д, J = 7.4, H-9 Bzd); 7.01 (2H, д, J = 8.6, H-3,5 Ar); 7.56 (2H, д, J = 8.6, H-2,6 Ar); 7.60 (1H, д, J = 7.7, H-5 Qn); 7.97 (1H, c, NH Bzd); 12.00 (1H, c, NH Qn); 12.41 (1H, c, NH Bzd); протоны хиноксалинового цикла Н-6,7,8 маскируются в области 7.03-7.46 м. д. Найдено, %: С 72.04; H 5.19; N 13.33. С25H20N4O2·0.5H2O. Вычислено, %: С 71.93; Н 5.07; N 13.42.

(Z)-3-((4-пара-Хлорфенил-1<math>H-1,5-бензодиазепин-2(3H)илиден)метил)хиноксалин-2(1H)-он (A-12d). Продукт дополнительно кипятят 10 мин в 60 мл EtOH, раствор упаривают до 40 мл, охлаждают, осадок отфильтровывают и промывают EtOH. Выход 0.295 г (69%). Желтый порошок. Т. пл. 335–336 °С. ИК спектр, v, см⁻¹: 2981, 2898, 1673, 1622, 1603, 1366, 739. Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 3.76 (2H, c, CH₂); 6.05 (1H, c, =CH); 7.17 (1H, д. д, J = 7.7, J = 1.3, H-8 Qn); 7.19 (1H, т. д, J = 7.7, J = 1.4, H-6 Qn); 7.26 (1H, т. д, J = 7.5, J = 1.3, H-7 Qn); 7.28 (1H, т. д. J = 7.6, J = 1.5, H-7/8 Bzd); 7.33 (1H, т. д. J = 7.7, J = 1.7, H-8/7 Bzd); 7.44 (2H, д. д, J = 7.8, J = 1.6, H-6,9 Bzd); 7.62 (2H, д, J = 8.7, H-3,5 Ar); 7.65 (1H, д. д. J = 8.0, J = 1.2, H-5 Qn); 8.53 (2H, д, J = 8.7, H-2,6 Ar); 12.07 (1H, c, NH Qn); 13.17 (1H, c, NH Bzd). Найдено, %: С 67.83; Н 4.35; N 13.18. С₂₄H₁₇ClN₄O·0.8H₂O. Вычислено, %: С 67.97; Н 4.61; N 12.80.

(Z)-3-((4-Нафт-2-ил-1<math>H-1,5-бензодиазепин-2(3H)илиден)метил)хиноксалин-2(1H)-он (A-12e). Продукт дополнительно кипятят 10 мин в 60 мл EtOH, раствор упаривают до 40 мл, охлаждают, осадок отфильтровывают и промывают ЕtOH. Выход 0.287 г (66%). Желтый порошок. Т. пл. 337–339 °C. ИК спектр, v, см⁻¹: 2965, 2838, 1673, 1620, 1597, 1360, 746. Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 3.91 (2H, c, CH₂); 6.15 (1H, c, =CH); 7.15 (1H, д. д. J. = 8.1, J = 1.1, H-8 Qn); 7.18 (1H, т. д. J = 7.9,J = 1.1, H-6 Qn); 7.25 (1H, т. д, J = 7.6, J = 1.1, H-7 Qn); 7.30 (1H, т. д, J = 7.4, J = 1.5, H-7/8 Bzd); 7.34 (1H, т. д, J = 7.8, J = 1.6, H-8/7 Bzd); 7.46 (1H, д. д. J = 7.8, J = 1.5, 7.60-7.67 (3H, M, Ar); 7.96-8.00 (1H, M, H-5 Naph); 8.02 (1H, μ , J = 9.0, H-3 Naph); 8.15–8.20 (1H, μ , H-8 Naph); 8.33 (1H, д. д. J = 8.7, J = 1.7, H-4 Naph): 8.88 (1H, д. J = 1.1, H-1 Naph); 12.04 (1H, c, NH Qn); 13.24 (1H, c, NH Bzd). Найдено, %: С 77.48; Н 4.74; N 12.84. $C_{28}H_{20}N_4O\cdot 0.33H_2O$. Вычислено, %: С 77.41; Н 4.79; N 12.90.

(Z)-3-((4-Тиен-2-ил-1H-1,5-бензодиазепин-2(3H)илиден)метил)хиноксалин-2(1H)-он (A-12f). Выход 0.311 г (81%). Желтый порошок. Т. пл. 353-354 °C. ИК спектр, v, см⁻¹: 3058, 2840, 1669, 1618, 1600, 1362, 749. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 3.74 (2H, c, CH_{2}); 6.10 (1H, c, =CH); 7.16 (1H, д. д, J = 7.6, J = 1.4, H-8 Qn); 7.18 (1H, т. д, J = 7.7, J = 1.3, H-6 Qn); 7.23–7.28 (3H, м, Qn, Bzd, H-4 Th); 7.30 (1H, т. д, J = 7.5, J = 1.8, H-7/8 Bzd); 7.37 (1H, д. д, J = 7.7, J = 1.7, H-6/9 Bzd); 7.42 (1H, д. д, J = 7.9, J = 1.4, H-9/6 Bzd); 7.65 (1H, д. д, J = 8.0, J = 1.2, H-5 Qn); 7.83 (1H, д. д, J = 4.8, J = 1.0, H-5 Th); 8.13 (1H, д. д. J = 3.8, J = 1.0, H-3 Th); 12.06 (1H, c, NH On); 13.14 (1H, c, NH Bzd). Спектр ЯМР ¹³С, δ, м. д.: 37.0; 87.8; 114.9; 122.9; 123.2; 124.3; 125.1; 126.4; 128.4; 128.8; 129.5; 131.4; 131.4; 132.2; 132.8; 139.5; 143.5; 152.3; 154.3; 154.8; 157.5. Найдено, %: С 68.35; Н 4.03; N 14.57. С₂₂Н₁₆N₄OS. Вычислено, %: C 68.73; H 4.19; N 14.57.

(*Z*)-3-((4-*трет*-Бутил-1*H*-1,5-бензодиазепин-2(3*H*)-илиден)метил)хиноксалин-2(1*H*)-он (A-12g). После проведения реакции реакционную смесь выдерживают в течение 12 ч при комнатной температуре, осадок отфильтровывают и промывают 10 мл этанола. Выход 0.197 г (55%). Желтый порошок. Т. пл. 311–312 °C. ИК спектр, ν , см⁻¹: 2966, 2884, 1661, 1616, 1600, 1357, 755. Спектр ЯМР ¹H, δ , м. д. (*J*, Γ ц): 1.26 (9H, c, 3CH₃); 3.36 (2H, c, CH₂); 5.97 (1H, c, CH); 7.16–7.28 (6H, м, Ar); 7.32 (1H, д, J = 7.9, H-9 Bzd); 7.63 (1H, д, J = 7.8, H-5 Qn); 12.05 (1H, c, NH Qn); 13.22 (1H, c, NH Bzd). Найдено, %: С 73.69; H 6.37; N 15.70. $C_{22}H_{22}N_4O$. Вычислено, %: С 73.72; H 6.19; N 15.63.

(Z)-3-((4-Метил-1H-1,5-бензодиазепин-2(5H)-илиден)метил)хиноксалин-2(1H)-он (B-12h). Продукт представляет собой смесь таутомеров В-12h (85%) и А-12h (15%). Выход 0.082 г (26%). Красный порошок. Т. пл. 322–324 °C. ИК спектр, v, см⁻¹: 3276, 3133, 3052, 2881, 1649, 1620. **Taytomep B-12h**: Cπεκτρ ЯМР ¹H, δ, м. д. (J, Γ_{II}) : 1.82 (3H, c, CH₃); 4.37 (1H, T, J = 1.3, =CH Bzd); 5.58 (1H, c, =CH); 6.64-6.78 (4H, м, H Bzd); 7.15 (1H, д. д. J = 7.8, J = 1.5, H-8 Qn); 7.18 (1H, т. д, J = 7.7, J = 1.5, H-6 Qn); 7.22 (1H, т. д, J = 7.6, J = 1.5, H-7 Qn); 7.55 (1H, д. д, J = 7.8, J = 1.5, H-5 Qn); 7.82 (1H, д, J = 1.3, NH Bzd); 11.94 (1H, c, NH Qn); 12.32 (1H, π , J = 1.2, NH Bzd). **Tavтомер A-12h**: Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 2.27 (3H, c, CH₃); 3.22 (2H, c, CH₂); 5.91 (1H, c, =CH); 7.10–7.30 (6H, M, H Ar); 7.37 (1H, μ , J = 8.0, H-6/9 Bzd); 7.65 (1H, д, J = 7.3, H-5 Qn); 12.07 (1H, c, NH Qn); 13.01 (1H, c, NH Bzd). Найдено, %: С 72.16; Н 5.21; N 17.95. С₁₉H₁₆N₄O. Вычислено, %: С 72.13; Н 5.10; N 17.71.

(*Z*)-3-((4-Дифторметил-1*H*-1,5-бензодиазепин-2(5*H*)-илиден)метил)хиноксалин-2(1*H*)-он (B-12i). Выход 0.282 г (80%). Красный порошок. Т. пл. 318–320 °С. Осадок представляет собой смесь таутомеров **B-12i** (65%) и **A-12i** (35%). Спектральные характеристики (спектры ИК, ЯМР 1 Н и 19 F) соответствуют литературным данным. 14

(Z)-3-((4-Трифторметил-1H-1,5-бензодиазепин-2(5H)-илиден)метил)хиноксалин-2(1H)-он (B-12j). Выход 0.315 г (85%). Красный порошок. Т. пл. 334–335 °C.

Осадок представляет собой смесь таутомеров **B-12j** (73%) и **A-12j** (27%). Спектральные характеристики (спектры ИК, ЯМР 1 Н и 19 F) соответствуют литературным данным. 14

(*Z*)-3-((*Z*)-4-(*пара*-Хлорфенил)-4-гидрокси-2-оксобут-3-енилиден)-3,4-дигидроксихинолин-2(1*H*)-он (13d) выделяют упариванием фильтрата, полученного после дополнительной очистки соединения **A-12d**. Выход 4.9 мг (1.4%). ИК спектр, \mathbf{v} , \mathbf{cm}^{-1} : 2888, 1670, 1585, 1557, 1489, 1279, 786. Спектр ЯМР 1 Н, δ , м. д. (*J*, Γ u): 6.05 (1H, c, =CH); 6.42 (1H, c, =CH); 7.03–7.09 (2H, м, H Qn); 7.11 (1H, т. д, *J* = 7.3, *J* = 2.3, H-7 Qn); 7.36 (1H, д. д, *J* = 7.1, *J* = 2.0, H-5 Qn); 7.48 (2H, д, *J* = 8.6, H-3,5 Ar); 7.89 (2H, д, *J* = 8.6, H-2,6 Ar); 11.83 (1H, c, NHCO Qn); 12.42 (1H, c, NH Qn); 15.88–16.10 (1H, уш. c, OH). Найдено, %: C 60.94; H 3.56; N 7.89. $\mathbf{C}_{18}\mathbf{H}_{13}\mathbf{CIN}_{2}\mathbf{O}_{3}\cdot 0.67\mathbf{H}_{2}\mathbf{O}$. Вычислено, %: C 61.27; H 4.10; N 7.94.

(*Z*)-3-((*Z*)-4-(Нафт-2-ил)-4-гидрокси-2-оксобут-3-енилиден)-3,4-дигидроксихинолин-2(1*H*)-он (13e) выделяют упариванием фильтрата, полученного после дополнительной очистки соединения **A-12e** при проведении реакции кислоты **11e** с 2.2 экв. *о*-ФДА. Выход 1.5 мг (4.1%). Красный порошок. Т. пл. 279–280 °С. ИК спектр, v, см⁻¹: 3046, 2888, 1677, 1601, 1583, 1411, 1371, 786. Спектр ЯМР 1 Н, δ , м. д. (*J*, Гц): 6.15 (1H, c, =CH); 6.73 (1H, c, =CH); 7.08–7.16 (3H, м, H Qn); 7.50–7.56 (1H, м, H-5 Qn); 7.56–7.75 (3H, м, H Naph); 7.95–8.05 (3H, м, H Naph); 8.08 (1H, д, *J* = 7.3, Naph); 11.92 (1H, c, NHCO Qn); 12.38 (1H, c, NH Qn); 16.27 (1H, c, OH). Найдено, %: C 72.90; H 4.45; N 7.75. C_{22} H₁₆N₂O₃·0.25H₂O. Вычислено, %: C 73.22; H 4.61; N 7.76.

Работа выполнена при финансовой поддержке РФФИ (грант 14-03-31925).

Список литературы

- 1. (a) Eleftheriadis, N.; Neochoritis, C. G.; Tsoleridis, C. A.; Stephanidou-Stephanatou, J.; Iakovidou-Kritsi, Z. Eur. J. Med. Chem. 2013, 67, 302. (b) Aastha, P.; Navneet, K.; Anshu, A.; Pratima, S.; Dharma, K. Res. J. Chem. Sci. 2013, 3, 90. (c) da Silva, E. F., Jr.; da Silva, D. L.; de Aquino, T. M.; Nogueira Ribeiro, E. A.; Jelvez Serra, N. S.; de Araújo, J. X., Jr. Pinnacle Medicine & Medical Sciences 2014, 1, 239. (d) Sankar, R.; Brown, R. CNS Drugs 2012, 26, 229. (e) Neochoritis, C. G.; Tsoleridis, C. A.; Stephanidou-Stephanatou, J.; Kontogiorgis, C. A.; Hadjipavlou-Litina, D. J. J. Med. Chem. 2010, 53, 8409. (f) Mamedov, V. A.; Zhukova, N. A. In *Progress in Heterocyclic Chemistry (Part 1)*, Gribble, G. W.; Joule, J. A., Eds.; Elsevier: Oxford, 2012, vol. 24, p. 55. (g) El-Sabbagh, O. I.; El-Sadek, M. E.; Lashine, S. M.; Yassin, S. H.; El-Nabtity, S. M. Med. Chem. Res. 2009, 18, 782. (h) Li, X.; Yang, K.-H.; Li, W.-L.; Xu, W.-F. Drugs Future **2006**, 31, 979.
- (a) Chemistry of Heterocyclic Compounds: Bicyclic Diazepines: Diazepines with an Additional Ring, Fryer R. I., Ed.; John Wiley & Sons, Inc., 1991, vol. 50, p. 209. (b) Archer, G. A.; Sternbach, L. H. Chem. Rev. 1968, 68, 747. (c) Lloyd, D.; McDougall, R. H.; Marshall, D. R. J. Chem. Soc. 1965, 3785. (d) Polshettiwar, V.; Varma, R. S. Tetrahedron Lett. 2008, 49, 397. (e) Goswami, P.; Das, B. Synth. Commun. 2010, 40, 1685.

- 3. (a) Reddy, A. C. S.; Rao, P. S.; Venkataratnam, R. V. Tetrahedron 1997, 53, 5847. (b) Reddy, A. C. S.; Rao, P. S.; Venkataratnam, R. V. Tetrahedron Lett. 1996, 37, 2845. (c) Nishio, T.; Tokunaga, T.; Omote, Y. J. Heterocycl. Chem. 1985, 22, 405. (d) Kolos, N. N.; Orlov, V. D.; Yuzefovskaya, E. Y.; Yaremenko, F. G.; Vorob'eva, N. P.; Shishkin, O. V.; Struchkov, Y. T.; Ivkov, S. M. Chem. Heterocycl. Compd. 1995, 31, 827. [Химия гетероцикл. соединений 1995, 950.] (e) Вопасогѕо, Н. G.; Магques, L. M. L.; Zanatta, N.; Martins, M. A. P. Synth. Commun. 2002, 32, 3225. (f) Castillo, J.-C.; Presset, M.; Abonia, R.; Coquerel, Y.; Rodriguez, J. Eur. J. Org. Chem. 2012, 2338. (g) Ried, W.; König, E. Justus Liebigs Ann. Chem. 1972, 755, 24. (h) Ackroyd, J.; Scheinmann, F. Chem. Commun. 1981, 339.
- (a) Yachevskii, D. S.; Chizhov, D. L.; Kodess, M. I.; Pashkevich, K. I. *Monatsh. Chem.* 2004, 135, 23.
 (b) Furuhashi, A.; Aoki, K.; Sugimoto, M. *Bull. Chem. Soc. Jpn.* 1979, 52, 2157. (c) Eiden, F.; Beuttenmüller, M. *Arch. Pharm.* 1971, 304, 442.
- 5. Stetter, H.; von Praun, F. Chem. Ber. 1969, 102, 1643.
- 6. Finar, I. L. J. Chem. Soc. 1958, 4094.
- (a) Müller, E.; Haller, R.; Merz, K. W. Justus Liebigs Ann. Chem. 1966, 697, 193. (b) Acheson, R. M.; Wallis, J. D. J. Chem. Soc., Perkin Trans. 1 1982, 1905.
- Bendrath, F.; Specowius, V.; Michalik, D.; Langer, P. Tetrahedron 2012, 68, 6456.
- 9. (a) Usachev, B. I.; Obydennov, D. L.; Sosnovskikh, V. Y. J. Fluorine Chem. 2012, 135, 278. (b) Usachev, B. I.; Obydennov, D. L.; Sosnovskikh, V. Y. Russ. Chem. Bull., Int. Ed. 2012, 61, 1596. [Изв. АН, Сер. хим. 2012, 1580.] (c) Usachev, B. I.; Obydennov, D. L.; Röschenthaler, G.-V.; Sosnovskikh, V. Y. J. Fluorine Chem. 2012, 137, 22. (d) Obydennov, D. L.; Usachev, B. I.; Sosnovskikh, V. Y. Chem. Heterocycl. Compd. 2014, 50, 1388. [Химия гетероцикл. соединений 2014, 1510.]
- (a) Cavalieri, L. F. *Chem. Rev.* **1947**, *41*, 525. (b) Katritzky, A. R.;
 Murugan, R.; Sakizadeh, K. *J. Heterocycl. Chem.* **1984**, *21*, 1465. (c) Van Allan, J. A.; Reynolds, G. A.; Alessi, J. T.;
 Chang, S. C.; Joines, R. C. *J. Heterocycl. Chem.* **1971**, *8*, 919.
- 11. (a) Schwab, A. W. J. Am. Chem. Soc. 1954, 76, 1189. (b) Гаркуша, Г. А. Журн. орган. химии 1965, 1, 2222. (c) Eiden, F.; Beuttenmüller, M.; Schaumburg, H. Arch. Pharm. 1975, 308, 489. (d) El-Kerdawy, M. M.; Yousif, M. Y. Indian J. Chem. 1985, 24B, 182. (e) Markees, D. G. J. Heterocycl. Chem. 1990, 27, 1837. (f) Ma, Y.; Luo, W.; Camplo, M.; Liu, Z.; Hider, R. C. Bioorg. Med. Chem. Lett. 2005, 15, 3450. (g) Obydennov, D. L.; Sosnovskikh, V. Y. Chem. Heterocycl. Compd. 2014, 50, 579. [Химия гетероцикл. соединений 2014, 631.]
- (a) Gris, J.; Glisoni, R.; Fabian, L.; Fernández, B.; Moglioni, A. G. Tetrahedron Lett. 2008, 49, 1053. (b) Abasolo, M. I.; Gaozza, C. H.; Fernández, B. M. J. Heterocycl. Chem. 1987, 24, 1771. (c) Murthy, S. N.; Madhav, B.; Nageswar, Y. V. D. Helv. Chim. Acta 2010, 93, 1216.
- 13. Тюренкова, Г. Н.; Серебрякова, Н. В.; Мудрецова, И. И. *Журн. орган. химии* **1975**, *11*, 1669.
- Obydennov, D. L.; Usachev, B. I. J. Fluorine Chem. 2012, 141, 41.
- Ota, N.; Kamitori, Y.; Tomoda, T.; Terai, N.; Okada, E. Heterocycles 2009, 77, 461.
- (a) Yao, Q.-C.; Wu, D.-E.; Ma, R.-Z.; Xia, M. J. Organomet. Chem. 2013, 743, 1. (b) Xia, M.; Wu, B.; Xiang, G.-F. Synth. Commun. 2008, 38, 1268. (c) Korin, E.; Cohen, B.; Bai, Y.-X.; Zeng, C.-C.; Becker, J. Y. Tetrahedron 2012, 68, 7450.

- (d) Mashevskaya, I. V.; Mokrushin, I. G.; Bozdyreva, K. S.; Maslivets, A. N. *Russ. J. Org. Chem.* **2011**, *47*, 253 [*Журн. орган. химии* **2011**, 261]. (e) Салоутин, В. И.; Скрябина, З. Э.; Кондратьев, П. Н.; Перевалов, В. Г. *Журн. орган. химии* **1995**, *31*, 261. (f) Кондратьев, П. Н.; Скрябина, З. Э.; Салоутин, В. И.; Халилов, Л. М. *Журн. орган. химии* **1992**, *28*, 1380.
- 17. Obydennov, D. L.; Röschenthaler, G.-V.; Sosnovskikh, V. Y. *Tetrahedron Lett.* **2014**, *55*, 472.
- Mondieig, D.; Negrier, P.; Massip, S.; Leger, J. M.; Jarmoumi,
 C.; Lakhrissi, B. *J. Phys. Org. Chem.* **2011**, *24*, 1193.
- 19. Enamines: Synthesis, Structure, and Reactions, 2nd ed., Cook, I.; Gilbert, A., Eds.; Macel Dekker, Inc., 1988, p. 25.
- Katritzky, A. R.; Hall, C. D.; El-Gendy, B. E.-D. M.; Draghici, B. J. Comp. Aided. Mol. Des. 2010, 24, 475.
- (a) Okovytyy, S. İ.; Sviatenko, L. K.; Gaponov, A. A.; Kasyan, L. I.; Tarabara, I. N.; Leszczynski, J. Eur. J. Org. Chem. 2010, 280. (b) Pérez-Torralba, M.; Claramunt, R. M.; García, M. Á.; López, C.; Torralba, M. C.; Torres, M. R.; Alkorta, I.; Elguero, J. Beilst. J. Org. Chem. 2013, 9, 2156. (c) Claramunt, R. M.; Alkorta, I.; Elguero, J. Comp. Theor. Chem. 2013, 1019, 108.
- Lloyd, D.; Mcnab, H. In Advances in Heterocyclic Chemistry, Katritzky, A. R., Ed.; Elsevier: New York, 1998, vol. 71, p. 19.

- (a) Pietrzak, M.; Benedict, C.; Gehring, H.; Daltrozzo, E.;
 Limbach, H.-H. J. Mol. Struct. 2007, 844–845, 222.
 (b) Perrin, C. L.; Ohta, B. K. J. Mol. Struct. 2003, 644, 1.
- (a) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comp. Chem. 1993, 14, 347.
 (b) Gordon, M. S.; Schmidt, M. W. In Theory and Applications of Computational Chemistry: The First Forty Years, Dykstra, C. E.; Frenking, G.; Kim, K. S.; Scuseria, G. E., Eds.; Elsevier: Amsterdam, 2005, p. 1167.
- (a) Attenburrow, J.; Elks, J.; Elliott, D. F.; Hems, B. A.; Harris, J. O.; Brodrick, C. I. J. Chem. Soc. 1945, 571.
 (b) Usachev, B. I.; Obydennov, D. L.; Kodess, M. I.; Röschenthaler, G.-V.; Sosnovskikh, V. Y. Russ. Chem. Bull., Int. Ed. 2009, 58, 1248. [Изв. АН, Сер. хим. 2009, 1213.]
 (c) Sammes, M. P.; Leung, C. W. F.; Mak, C. K.; Katritzky, A. R. J. Chem. Soc., Perkin Trans. 1 1981, 1585.
 (d) Dorman, L. C. J. Org. Chem. 1967, 32, 4105.
 (e) Usachev, B. I.; Usachev, S. A.; Röschenthaler, G.-V.; Sosnovskikh, V. Y. Russ. Chem. Bull., Int. Ed. 2010, 59, 845. [Изв. АН, Сер. хим. 2010, 827.] (f) Usachev, B. I.; Bizenkov, I. A.; Sosnovskikh, V. Y. Russ. Chem. Bull., Int. Ed. 2007, 56, 558. [Изв. АН, Сер. хим. 2007, 537.]
- 26. Biekert, E.; Enslein, L. Chem. Ber. 1961, 94, 1851.