

Эффективный синтез и противомикробная активность производных 1,3,7-триазаспиро[4.4]нонан-2,4-диона

Константин Ю. Кроленко¹*, Алексей В. Силин¹, Сергей В. Власов¹, Ирина А. Журавель¹, Сергей Н. Коваленко¹

¹ Национальный фармацевтический университет, ул. Пушкинская, 53, Харьков 61002, Украина; e-mail: krolenko.ky@gmail.com

Поступило 9.03.2015 Принято после доработки 30.04.2015

Разработаны эффективные методики синтеза производных 1,3,7-триазаспиро[4.4]нонан-2,4-диона с незамещенным пирролидиновым циклом, позволяющие получать не требующие дополнительной очистки полупродукты и целевые соединения с высокими выходами. Исследована противомикробная активность синтезированных соединений.

Ключевые слова: гидантоин, пирролидиновый цикл, алкилирование, антимикробная активность.

Методы синтеза и применение соединений, содержащих гидантоиновый цикл, подробно рассмотрены в опубликованной в 2004 г. обзорной статье. Недавние исследования доказывают перспективность применения данного класса соединений в качестве антипролиферативных, цитотоксических, противораковых агентов, ингибиторов деиминазы аргинина белков и др.

Среди соединений с гидантоиновым циклом особого внимания заслуживают спиропроизводные гидантоинов. Было установлено, что структуры, содержащие фрагмент замещенного 1,3,7-триазаспиро[4.4]нонан-2,4-диона, являются катализаторами реакции ферментативной переэтерификации. Также были проведены исследования, в ходе которых доказано, что соединения, содержащие рассматриваемый фрагмент, являются антагонистами интегрина $\alpha_L \beta_2$, который играет важную роль в доставке лейкоцитов к месту воспаления (соединение $\mathbf{1}$, рис. $\mathbf{1}$).

По литературным данным, производные, содержащие при пирролидоновом цикле *N*-замещенную амидную группу, могут быть использованы в лечении вирусного гепатита С (соединение **2**, рис. 1). Производные 1,3,7-триазаспиро[4.4]нонан-2,4-диона с *N*-замещенной метиламиногруппой в положении 9 являются ингибиторами матричных металлопротеиназ, что важно

при неконтролируемом делении соединительной ткани и коллагена, которое приводит к поглощению экстрацеллюлярной жидкости. Эти процессы характерны для таких патологических состояний, как остеоартрит, эпидермальные и желудочные язвы и заболевания десен. ¹⁰ По данным американского патента, соединение **3** (рис. 1) является потенциальным антагонистом хемокининовых рецепторов 2 и 5 (ССR2, CCR5). ¹¹

Несмотря на широкий спектр практического применения производных спирогидантоина, ранее практически не уделялось внимания 1,3,7-триазаспиро[4.4]-нонан-2,4-дионам с незамещенным у атомов углерода пирролидиновым циклом, хотя такие производные описаны в литературе, 12 а также в запатентованных исследованиях фармацевтической компании Ф. Хоффманн-Ля Рош Лтд. 11 Необходимость использования высокого давления и препаративной ВЭЖХ при получении этих соединений свидетельствует о сложности описанных методик.

Поэтому нами была поставлена задача разработать эффективные методы, позволяющие получать производные спирогидантоина на основе незамещенного N-Вос-защищенного пирролидона с высокими выходами и чистотой конечных и промежуточных продуктов.

Рисунок 1. Примеры биологически активных производных 1,3,7-триазаспиро[4.4]нонан-2,4-диона.

Первой стадией синтеза является образование спирогидантоина **5** из соответствующего кетона **4** по описанной методике ¹³ с выходом порядка 60–70% (схема 1). В спектре ЯМР ¹Н полупродукта **5** и всех последующих соединений, синтезированных на его основе, наблюдаются сигналы при 1.85–2.01 и 2.05–2.25 м. д., которые соответствуют протонам метиленовой группы в положении 9; о замыкании гидантоиновой системы судили по появлению сигналов протонов NН в положениях 1 и 3 при 8.40 и 10.78 м. д. соответственно. Также в спектре ЯМР ¹³С соединения **5** наблюдаются сигналы карбонильных атомов углерода в положениях 2 и 4 и сигнал четвертичного атома углерода заниженной интенсивности при 157.3, 177.0 и 67.0 м. д. соответственно.

Основным направлением дальнейшей модификации полученного продукта **5** было исследование способности к алкилированию и ацилированию по гетероциклическим атомам азота гидантоинового и пирролидинового циклов.

Согласно литературным данным, ¹⁴ наличие двух соседних электроноакцепторных карбонильных групп гидантоинового цикла придает протону в положении 3

более кислотный характер, чем в положении 1, поэтому алкилирование именно по положению 3 является предпочтительным.

Алкилирование соединения 5 по положению 3 замещенными бензилхлоридами 6 проходит при нагревании в среде диметилформамида и карбоната калия (схема 1). Кислотность группы 3-NH обеспечивает в данных условиях легкость образования аниона, который вступает в реакцию алкилирования. Характерной особенностью проведения данного взаимодействия является температурный режим. Экспериментально было установлено, что при повышении температуры реакционной среды до 100 °C процессы осмоления превалируют над реакцией алкилирования, а при температуре ниже 40 °C реакция практически не идет. Таким образом, именно при 50-55 °C удалось выделить промежуточные соединения 7, не содержащие примесей. Соединения 7 использовались для дальнейших синтезов без дополнительной очистки. Снятие защитной Вос-группы с аминогруппы пирролидинового цикла в ряду соединений 7 проводилось в среде этилового спирта и присутствии трифторуксусной кислоты. В виду значительной растворимости

7, 8 a, 10h R^1 = 4-Cl; 7, 8 b, 10a,b,j R^1 = 4-Me; 7, 8 c, 10g R^1 = 4-F; 7, 8 d, 10e,f R^1 = H; 7, 8 e, 10c,d,i R^1 = 3-Me; 10 a,d R^2 = 4-Me, b,c,f-h R^2 = 4-F, e R^2 = 4-Br, i,j R^2 = 4-Cl

продуктов реакции, после нейтрализации раствором карбоната калия реакционная среда упаривалась досуха, а полученная смесь промывалась хлороформом, так как экстракция из системы жидкость-жидкость оказалась неэффективной и значительное количество продукта осталась в водной фазе. При таком подходе выходы реакций составили более 90% относительно соединений 7. Выделенные продукты 8а-е представляют собой светложелтые маслянистые вещества, которые со временем кристаллизуются с образованием светло-коричневых порошкообразных веществ. На селективность протекания алкилирования указывает сохранение в спектрах ЯМР ¹Н соединений **8а**—е сигнала протона в положении 1. химический сдвиг которого практически не изменяется по сравнению с исходным соединением 5 и находится в диапазоне 8.51-8.55 м. д. При этом сигнал протона в положении 3 (10.78 м. д. в спектре соединения 5) в спектрах продуктов реакции отсутствует.

Для проведения реакции ацилирования в качестве ацилирующих агентов были выбраны имидазолиды соответствующих бензойных кислот 9, которые генерировались in situ с помощью 1,1'-карбонилдиимидазола (схема 1). Реакция легко проходит при комнатной температуре в среде дихлорметана. Для освобождения от имидазола, который образуется в ходе генерации имидазолида, реакционная среда промывается водой. В спектрах ЯМР ¹Н полученных соединений 10а-і ароматические протоны бензильной группы проявляются в более сильном поле (6.99-7.25 м. д.), чем протоны бензоильной группы (7.50-7.65 м. д.). Интересным является тот факт, что ацилирование вторичного атома азота пирролидинового цикла производных 8а-е затрудняет инверсию неподеленной пары электронов на атоме азота, в результате чего в спектрах ЯМР продуктов 10а-і, в отличие от ряда соединений 8, наблюдается удвоение количества сигналов ядер, вероятно, за счет появления устойчивых ротамеров. При этом данные ротамеры неразделимы методами ВЭЖХ в условиях проведения хромато-масс-спектрометрии.

Все полученные соединения проявляют противомикробную активность, наиболее чувствительным к синтезированным веществам оказался штамм Bacillus subtilis. Результаты исследований антибактериальной и противогрибковой активности соединений 5, 8а-е и 10а-ј в отношении грамположительных (Staphylococcus aureus, Bacillus subtilis), грамотрицательных (Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa) бактерий и грибков (Candida albicans) приведены в табл. 1.

При исследовании противомикробной активности была обнаружена тенденция к ее повышению при введении в ароматический цикл бензоила гидрофобных заместителей и атомов фтора. Доказательством этого утверждения выступают соединения 10f,j, которые проявили наибольшую антимикробную активность и содержат в своей структуре указанные заместители. В то же время и промежуточные амины с метильным радикалом в положении 3 бензильного фрагмента (соединение 8e) или с незамещенной бензильной

Таблица 1. Противомикробная активность синтезированных соединений **5**, **8**а–е и **10**а–**j**

Соеди-	Зона задержки роста*, мм					
	Грамположительные бактерии**		Грамотрицательные бактерии**			Грибки**
	S. a.	B. s.	E. c.	P. v.	P. a.	C. a.
5	15	16	14	14	13	13
8a	16	15	15	14	13	14
8b	16	14	15	14	13	13
8c	15	16	15	14	14	14
8d	15	17	15	13	14	14
8e	16	17	15	14	14	14
10a	16	16	14	14	14	13
10b	16	16	15	13	13	13
10c	15	16	16	13	14	13
10d	16	15	16	13	14	13
10e	15	16	16	13	13	13
10f	16	17	15	13	13	13
10g	15	17	16	12	13	13
10h	16	16	15	13	13	13
10i	16	16	16	13	14	13
10j	16	16	14	13	13	13
Метронидазол	14	16	14	0	0	14
Синтомицин	14	17	17	17	17	0

^{*} Средние значения для 3 экспериментов.

группой — 8d проявили повышенную активность. Следует отметить, что данная закономерность наблюдается только в отношении грамположительных бактерий, в то время как грамотрицательные бактерии имеют низкую чувствительность к синтезированным соединениям.

Таким образом, нами представлен метод синтеза новых производных 1,3,7-триазаспиро[4.4]нонан-2,4-диона с незамещенным пирролидиновым циклом, обоснованы направления реакций алкилирования и ацилирования для данных систем. По результатам микробиологического исследования синтезированных соединений установлено, что наличие атомов фтора и гидрофобных заместителей в ароматическом цикле бензоильного фрагмента повышает их противомикробную активность в отношении штаммов грамположительных микроорганизмов.

Экспериментальная часть

Спектры ЯМР 1 Н зарегистрированы на спектрометре Varian Mercury-200 (200 МГц), спектры ЯМР 13 С — на спектрометре Varian Geminy-300 (75 МГц), растворитель — ДМСО- d_6 , внутренний стандарт ТМС. Хроматомасс-спектры записаны на приборе Applied Biosystems (Shimadzu 10-AV LC, Gilson-215 автоматическая подача образца, масс-спектрометр API 150EX, детекторы UV (215 и 254 нм) и ELS, колонка Luna-C18, Phenomenex,

^{**} Штаммы бактерий и грибков: S. a. – Staphylococcus aureus (ATCC 25923); B. s. – Bacillus subtilis (ATCC 6633); E. c. – Escherichia coli (ATCC 25922); P. v. – Proteus vulgaris (ATCC 4636); P. a. – Pseudomonas aeruginosa (ATCC 27853); C. a. – Candida albicans (ATCC 885/653).

5 см × 2 мм, ионизация электрораспылением). Элементный анализ выполнен на приборе EuroVector EA-3000. Температуры плавления определены на приборе Кофлера. Все растворители и реагенты коммерческие.

Трет-бутиловый эфир 2,4-диоксо-1,3,7-триазаспиро-[4.4]нонан-7-карбоновой кислоты (5) получают по стандартной методике. Выход 68%. Светло-коричневый порошок. Т. пл. 243—245 °C. Спектр ЯМР 1 H, δ , м. д.: 1.37 (9H, c, (CH₃)₃); 1.85—2.01 (1H, м) и 2.05—2.25 (1H, м, 9-CH₂); 3.27—3.53 (4H, м, 6,8-CH₂); 8.40 (1H, c, 1-NH); 10.78 (1H, c, 3-NH). Спектр ЯМР 13 C, δ , м. д.: 28.5; 35.7; 44.8; 54.2; 67.0; 79.1; 153.6; 157.3; 177.0. Масс-спектр, m/z: 256 [М+H] $^{+}$. Найдено, %: C 51.92; H 6.91; N 16.59. $C_{11}H_{17}N_3O_4$. Вычислено, %: C 51.76; H 6.71; N 16.46.

Синтез замещенных 3-бензил-1,3,7-триазаспиро-[4.4]нонан-2,4-дионов 8а-е (общая методика). Алкилирование трет-бутилового эфира 2,4-диоксо-1,3,7триазаспиро[4.4]нонан-7-карбоновой кислоты (4): 10.0 г (39.2 ммоль) соединения 4 растворяют в 200 мл ДМФА, добавляют 39.2 ммоль соответствующего замещенного бензилхлорида 6 и 5.40 г (39.2 ммоль) поташа. Смесь нагревают при 50-55 °C в течение 4-5 ч. Ход реакции контролируют методом TCX, элюент гексан-EtOAc, 1:1. Затем доводят реакционную смесь до комнатной температуры и добавляют 500 мл воды, подкисляют эквимолярным количеством уксусной кислоты и экстрагируют дихлорметаном. Объединенные экстракты дважды промывают водой. Органический слой упаривают под вакуумом. Полученные соединения 7а-е вводят в следующую стадию без выделения.

Снятие защитной Вос-группы: к раствору 20.0 ммоль соединения **7а-е** в 100 мл этанола добавляют 2.30 мл (30.0 ммоль) трифторуксусной кислоты и греют в течение 3–4 ч при температуре 50–55 °C, ход реакции контролируют методом ТСХ (элюент СНСІ₃–МеОН, 4:1). Затем реакционную смесь охлаждают до комнатной температуры, заливают насыщенным раствором поташа, упаривают досуха и отмывают продукт хлороформом, который после упаривают под вакуумом.

3-[(4-Хлорфенил)метил]-1,3,7-триазаспиро[4.4]нонан-2,4-дион (8а). Выход 91%. Светло-коричневый порошок. Т. пл. 161–163 °C. Спектр ЯМР ¹Н, δ , м. д. (J, Γ ц): 1.76–1.89 (1H, м) и 1.97–2.11 (1H, м, 9-CH₂); 2.78–3.01 (4H, м, 6,8-CH₂); 4.50 (2H, c, CH₂); 7.23 (2H, д, J = 8.5, H Ar); 7.38 (2H, д, J = 8.2, H Ar); 8.55 (1H, c, 1-NH). Спектр ЯМР ¹³С, δ , м. д.: 39.1; 40.9; 47.5; 58.3; 68.2; 129.0; 129.6; 132.4; 136.2; 155.8; 177.0. Масс-спектр, m/z: 280 [М+H]⁺. Найдено, %: С 56.07; H 5.29; N 14.89. $C_{13}H_{14}ClN_{3}O_{2}$. Вычислено, %: С 55.82; H 5.04; N 15.02.

3-[(4-Метилфенил)метил]-1,3,7-триазаспиро[4.4]-нонан-2,4-дион (8b). Выход 90%. Светло-коричневый порошок. Т. пл. 118–120 °C. Спектр ЯМР ¹H, δ , м. д.: 1.75–1.88 (1H, м) и 1.96–2.11 (1H, м, 9-CH₂); 2.24 (3H, с, CH₃); 2.78–3.01 (4H, м, 6,8-CH₂); 4.46 (2H, с, CH₂); 7.10 (4H, с, H Ar); 8.51 (1H, с, 1-NH). Спектр ЯМР ¹³С, δ , м. д.: 21.1; 39.0; 41.3; 47.4; 58.2; 68.1; 127.7; 129.5; 134.3; 136.9; 155.9; 176.9. Масс-спектр, m/z: 260 [M+H]^{\dagger}. Найдено, %: C 65.11; H 6.86; N 15.93. $C_{14}H_{17}N_3O_2$. Вычислено, %: C 64.85; H 6.61; N 16.20.

3-[(4-Фторфенил)метил]-1,3,7-триазаспиро[4.4]-нонан-2,4-дион (8c). Выход 94%. Светло-коричневый порошок. Т. пл. 131–133 °C. Спектр ЯМР ¹Н, δ , м. д.: 1.75–1.88 (1H, м) и 1.96–2.10 (1H, м, 9-CH₂); 2.78–3.00 (4H, м, 6,8-CH₂); 4.49 (2H, c, CH₂); 7.09–7.29 (4H, м, H Ar); 8.53 (1H, c, 1-NH). Спектр ЯМР ¹³С, δ , м. д.: 39.0; 40.9; 47.4; 58.3; 68.2; 115.6; 115.9; 129.8; 129.9; 133.4; 133.5; 155.8; 160.2; 163.5; 177.0. Масс-спектр, m/z: 264 [М+H]⁺. Найдено, %: C 59.67; H 5.51; N 16.11. $C_{13}H_{14}FN_3O_2$. Вычислено, %: C 59.31; H 5.36; N 15.96.

3-Бензил-1,3,7-триазаспиро[4.4]нонан-2,4-дион (8d). Выход 95%. Светло-коричневый порошок. Т. пл. 95–97 °C. Спектр ЯМР 1 Н, δ , м. д.: 1.76–1.89 (1H, м) и 1.98–2.12 (1H, м, 9-CH₂); 2.79–3.02 (4H, м, 6,8-CH₂); 4.51 (2H, c, CH₂); 7.18–7.36 (5H, м, H Ph); 8.53 (1H, c, 1-NH). Спектр ЯМР 13 С, δ , м. д.: 39.0; 41.5; 47.4; 58.3; 68.2; 127.6; 127.8; 129.0; 137.2; 155.9; 177.0. Масс-спектр, m/z: 246 [M+H] $^{+}$. Найдено, %: С 63.97; H 6.26; N 17.32. C_{13} H₁₅N₃O₂. Вычислено, %: С 63.66; H 6.16; N 17.13.

3-[(3-Метилфенил)метил]-1,3,7-триазаспиро[4.4]-нонан-2,4-дион (8е). Выход 93%. Светло-коричневый порошок. Т. пл. 120–122 °C. Спектр ЯМР ¹Н, δ , м. д.: 1.76–1.89 (1H, м) и 1.97–2.16 (1H, м, 9-CH₂); 2.25 (3H, с, CH₃); 2.78–3.01 (4H, м, 6,8-CH₂); 4.47 (2H, с, CH₂); 6.96–7.23 (4H, м, H Ar); 8.53 (1H, с, 1-NH). Спектр ЯМР ¹³С, δ , м. д.: 21.4; 39.1; 41.5; 47.5; 58.4; 68.2; 124.6; 128.2; 128.4; 128.9; 137.2; 138.1; 156.0; 177.0. Масс-спектр, *m/z*: 260 [М+H][†]. Найдено, %: С 65.08; H 6.91; N 15.95. С₁₄Н₁₇N₃O₂. Вычислено, %: С 64.85; H 6.61; N 16.20.

Синтез замещенных 3-бензил-7-бензоил-1,3,7-триазаспиро[4.4]нонан-2,4-дионов 10а—ј (общая методика). Смешивают 10 ммоль соответствующей бензойной кислоты 9 и 1.75 г (10.8 ммоль) 1,1'-карбонилдиимидазола в 50 мл дихлорметана при комнатной температуре в течение 30 мин, после чего добавляют 10 ммоль соответствующего соединения 8а—е и перемешивают при комнатной температуре в течение 1 сут. Ход реакции контролируют методом ТСХ (элюент СНСІ₃—МеОН, 99:1), по окончании промывают реакционную смесь водой, органический слой упаривают.

7-(4-Метилбензоил)-3-[(4-метилфенил)метил]-1,3,7-триазаспиро[4.4]нонан-2,4-дион (10а). Выход 72%. Белый порошок. Т. пл. 108–110 °С. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.03 (1H, с) и 2.24 (4H, с, 9-CH₂, CH₃); 2.32 (3H, с, CH₃); 3.46–3.77 (4H, м, 6,8-CH₂); 4.38–4.54 (2H, м, CH₂); 7.11 (4H, с, H Ar); 7.22 (2H, д, *J* = 6.7, H-3,5 ArCO); 7.40 (2H, д, *J* = 7.4, H-2,6 ArCO); 8.73–8.93 (1H, м, 1-NH). Спектр ЯМР ¹³С, δ, м. д.: 21.1; 21.3; 34.3; 36.4; 41.5; 45.1; 48.0; 54.4; 57.1; 64.8; 66.1; 127.7; 129.2; 129.5; 133.8; 134.0; 137.0; 140.2; 155.9; 168.9; 173.9; 174.5. Масс-спектр, *m/z*: 378 [М+Н]⁺. Найдено, %: С 70.37; H 6.39; N 10.89. C₂₂H₂₃N₃O₃. Вычислено, %: С 70.01; H 6.14; N 11.13.

3-[(4-Метилфенил)метил]-7-(4-фторбензоил)-1,3,7-триазаспиро[4.4]нонан-2,4-дион (10b). Выход 74%. Белый порошок. Т. пл. 170–172 °С. Спектр ЯМР ¹H, б, м. д.: 2.05 (1H, c) и 2.24 (4H, c, 9-CH₂, CH₃); 3.47–3.78 (4H, м, 6,8-CH₂); 4.42–4.50 (2H, м, CH₂); 6.99–7.31 (6H,

м) и 7.55–7.62 (2H, м, H Ar); 8.82–8.92 (1H, м, 1-NH). Спектр ЯМР 13 С, δ , м. д.: 21.1; 34.4; 36.3; 41.5; 45.2; 48.0; 54.5; 57.1; 64.8; 66.1; 115.5; 115.8; 127.7; 129.5; 130.2; 130.3; 133.2; 134.0; 137.0; 155.9; 161.6; 164.9; 167.9; 173.8; 174.4. Масс-спектр, m/z: 382 [M+H] $^{+}$. Найдено, %: С 66.45; H 5.57; N 10.89. $C_{21}H_{20}FN_3O_3$. Вычислено, %: С 66.13; H 5.29; N 11.02.

3-[(3-Метилфенил)метил]-7-(4-фторбензоил)-1,3,7-триазаспиро[4.4]нонан-2,4-дион (10c). Выход 70%. Белый порошок. Т. пл. 111–113 °C. Спектр ЯМР ¹Н, δ , м. д.: 2.07 (1H, c) и 2.26 (4H, c, 9-CH₂, CH₃); 3.47–3.79 (4H, м, 6,8-CH₂); 4.43–4.51 (2H, м, CH₂); 6.99–7.31 (6H, м) и 7.55–7.62 (2H, м, H Ar); 8.82–8.93 (1H, м, 1-NH). Спектр ЯМР ¹³С, δ , м. д.: 21.4; 34.3; 36.3; 41.7; 45.1; 47.9; 54.4; 57.1; 64.8; 66.2; 115.5; 115.8; 124.7; 128.2; 128.4; 128.9; 130.2; 133.1; 136.9; 138.1; 155.9; 162.0; 164.5; 167.9. Масс-спектр, *m/z*: 382 [М+H]⁺. Найдено, %: С 66.49; H 5.62; N 11.27. С₂₁Н₂₀FN₃O₃. Вычислено, %: С 66.13; H 5.29; N 11.02.

7-(4-Метилбензоил)-3-[(3-метилфенил)метил]-1,3,7-триазаспиро[4.4]нонан-2,4-дион (10d). Выход 71%. Белый порошок. Т. пл. 91–93 °С. Спектр ЯМР 1 Н, δ , м. д.: 2.06 (1H, c) и 2.26 (4H, c, 9-CH₂, CH₃); 2.31 (3H, c, CH₃); 3.42–3.78 (4H, м, 6,8-CH₂); 4.43–4.51 (2H, м, CH₂); 6.99–7.43 (8H, м, H Ar); 8.82–8.93 (1H, м, 1-NH). Спектр ЯМР 13 С, δ , м. д.: 21.3; 21.4; 34.4; 36.4; 41.7; 45.1; 48.0; 54.4; 57.1; 64.9; 66.1; 124.7; 127.7; 128.2; 128.4; 128.9; 129.2; 133.9; 136.9; 138.1; 140.2; 155.9; 168.8; 174.0; 174.6. Масс-спектр, m/z: 378 [М+Н] $^+$. Найдено, %: С 70.35; H 6.41; N 11.33. $C_{22}H_{23}N_3O_3$. Вычислено, %: С 70.01; H 6.14; N 11.13.

3-Бензил-7-(4-бромбензоил)-1,3,7-триазаспиро[4.4]-нонан-2,4-дион (10e). Выход 72%. Белый порошок. Т. пл. 118–120 °C. Спектр ЯМР ¹Н, δ , м. д.: 2.07 (1H, c) и 2.25 (1H, c, 9-CH₂); 3.49–3.78 (4H, м, 6,8-CH₂); 4.47–4.56 (2H, м, CH₂); 6.99–7.40 (5H, м, H Ph); 7.44–7.50 (2H, м, H-3,5 Ar); 7.60–7.68 (2H, м, H-2,6 Ar); 8.82–8.93 (1H, м, 1-NH). Спектр ЯМР ¹³С, δ , м. д.: 34.4; 36.3; 41.7; 45.1; 47.8; 54.4; 56.9; 64.8; 66.2; 123.9; 127.6; 127.8; 128.9; 129.0; 129.7; 129.8; 131.7; 135.9; 136.9; 155.9; 167.7; 167.9; 173.8; 174.4. Масс-спектр, m/z: 430 [M+H]⁺. Найдено, %: C 56.41; H 4.31; N 10.01. $C_{20}H_{18}BrN_3O_3$. Вычислено, %: C 56.09; H 4.24; N 9.81.

3-Бензил-7-(4-фторбензоил)-1,3,7-триазаспиро[4.4]-нонан-2,4-дион (10f). Выход 75%. Белый порошок. Т. пл. 88–90 °С. Спектр ЯМР ¹Н, δ , м. д.: 2.07 (1H, c) и 2.28 (1H, c, 9-CH₂); 3.49–3.83 (4H, м, 6,8-CH₂); 4.47–4.56 (2H, м, CH₂); 7.25 (7H, c, H-3,5 Ar, H Ph); 7.55–7.62 (2H, м, H-2,6 Ar); 8.84–8.95 (1H, м, 1-NH). Спектр ЯМР ¹³С, δ , м. д.: 34.4; 36.3; 41.7; 45.1; 47.9; 54.5; 57.0; 64.9; 66.2; 115.5; 115.8; 127.6; 127.8; 128.9; 130.2; 133.0; 136.9; 155.9; 162.0; 164.5; 167.7; 167.9; 173.9; 174.4. Масс-спектр, *m/z*: 368 [М+H]⁺. Найдено, %: С 65.77; H 5.17; N 11.09. $C_{20}H_{18}FN_{3}O_{3}$. Вычислено, %: С 65.39; H 4.94; N 11.44.

7-(4-Фторбензоил)-3-[(4-фторфенил)метил]-1,3,7-триазаспиро[4.4]нонан-2,4-дион (10g). Выход 70%. Белый порошок. Т. пл. 107–109 °C. Спектр ЯМР 1 Н, δ , м. д.: 2.07 (1H, c) и 2.27 (1H, c, 9-CH₂); 3.47–3.79 (4H, м, 6,8-CH₂); 4.46–4.54 (2H, м, CH₂); 7.01–7.38 (6H, м, H-2,3,5,6 Ar, H-3,5 ArCO); 7.54–7.61 (2H, м, H-2,6

АгСО); 8.82–8.92 (1H, м, 1-NH). Спектр ЯМР 13 С, δ , м. д.: 34.4; 36.3; 41.1; 45.1; 47.9; 54.4; 57.0; 64.9; 66.2; 115.5; 115.8; 129.9; 130.2; 133.2; 155.8; 160.6; 162.0; 163.1; 164.5; 167.7; 167.9; 173.8; 174.4. Масс-спектр, m/z: 386 [М+H] $^+$. Найдено, %: С 62.68; H 4.81; N 11.02. $C_{20}H_{17}F_2N_3O_3$. Вычислено, %: С 62.34; H 4.45; N 10.90.

3-[(4-Хлорфенил)метил]-7-(4-фторбензоил)-1,3,7-триазаспиро[4.4]нонан-2,4-дион (10h). Выход 70%. Белый порошок. Т. пл. 176–178 °C. Спектр ЯМР ¹Н, δ, м. д.: 2.08 (1H, c) и 2.28 (1H, c, 9-CH₂); 3.50–3.79 (4H, м, 6,8-CH₂); 4.46–4.54 (2H, м, CH₂); 7.16–7.42 (6H, м, H-2,3,5,6 Ar, H-3,5 ArCO); 7.51–7.64 (2H, м, H-2,6 ArCO); 8.85–8.96 (1H, м, 1-NH). Спектр ЯМР ¹³С, δ, м. д.: 34.4; 36.3; 41.1; 47.2; 47.9; 54.5; 57.0; 64.9; 66.2; 115.5; 115.8; 128.9; 129.7; 130.2; 132.4; 133.1; 135.9; 155.8; 161.6; 164.9; 167.9. Масс-спектр, *m/z*: 402 [М+H]⁺. Найдено, %: С 60.02; H 4.54; N 10.31. C₂₀H₁₇CIFN₃O₃. Вычислено, %: С 59.78; H 4.26; N 10.46.

3-[(3-Метилфенил)метил]-7-(4-хлорбензоил)-1,3,7-триазаспиро[4.4]нонан-2,4-дион (10i). Выход 73%. Белый порошок. Т. пл. 109–111 °C. Спектр ЯМР ¹Н, δ , м. д.: 2.07 (1H, c) и 2.26 (4H, c, 9-CH₂, CH₃); 3.48–3.78 (4H, м, 6,8-CH₂); 4.43–4.51 (2H, м, CH₂); 6.99–7.24 (4H, м, H Ar); 7.53 (4H, c, H Ar); 8.82–8.93 (1H, м, 1-NH). Спектр ЯМР ¹³С, δ , м. д.: 21.4; 34.3; 36.3; 41.7; 45.1; 47.9; 54.4; 57.0; 64.8; 66.1; 124.7; 128.2; 128.4; 128.8; 128.9; 129.5; 135.1; 135.5; 136.9; 138.1; 155.9; 167.6; 167.8; 173.8; 174.4. Масс-спектр, m/z: 398 [M+H][†]. Найдено, %: C 63.71; H 5.35; N 10.72. $C_{21}H_{20}CIN_3O_3$. Вычислено, %: C 63.40; H 5.07; N 10.56.

3-[(3-Метилфенил)метил]-7-(4-хлорбензоил)-1,3,7-триазаспиро[4.4]нонан-2,4-дион (10j). Выход 71%. Белый порошок. Т. пл. 111–113 °C. Спектр ЯМР ¹Н, δ , м. д.: 2.05 (1H, c) и 2.25 (4H, c, 9-CH₂, CH₃); 3.46–3.77 (4H, м, 6,8-CH₂); 4.42–4.50 (2H, м, CH₂); 7.08–7.12 (4H, м, H Ar); 7.50–7.53 (4H, м, H Ar); 8.80–8.91 (1H, м, 1-NH). Спектр ЯМР ¹³С, δ , м. д.: 21.1; 34.3; 36.3; 41.5; 45.1; 47.9; 54.4; 56.9; 64.8; 66.1; 127.7; 128.8; 129.5; 129.6; 133.9; 135.1; 135.4; 136.9; 155.8; 167.6; 167.8; 173.8; 174.3. Масс-спектр, m/z: 398 [М+H]⁺. Найдено, %: С 63.62; H 5.36; N 10.75. $C_{21}H_{20}ClN_3O_3$. Вычислено, %: С 63.40; H 5.07; N 10.56.

Исследование противомикробной активности соединений 5, 8а-е и 10а-і проведено методом диффузии в агар (метод "колодцев") 15. Микробная суспензия микроорганизмов готовится с использованием прибора Densi-La-Meter (производство PLIVA-Lachema, Чехия; длина волны 540 нм). Микробная нагрузка составляет 10^7 микробных клеток на 1 мл среды и устанавливается по стандарту Макфарланда. В работу берут 18–24-часовую культуру микроорганизмов. Для исследований используют агар Мюллера-Хинтона. Исследуемые вещества вводят в виде раствора в ДМСО (концентрация 10 мкг/мл) в объеме 0.3 мл, стандартные соединения метронидазол – в виде раствора в ДМСО (30 мкг/мл). синтомицин – в виде раствора в Н₂О (30 мкг/мл). Антибактериальная активность оценивается путем измерения зон задержки роста соответствующего микроорганизма.

Учитывая значения диаметров зон задержки роста для известных антибиотиков по отношению к чувствительным штаммам микроорганизмов при оценке противомикробной активности соединений применяют следующие критерии: отсутствие зоны задержки роста микроорганизма или зона задержки не превышает 10 мм рассматривается как отсутствие чувствительности микроорганизма к соединению или недостаточконцентрация исследуемого вещества; задержки роста диаметром около 10-15 мм - умеренная чувствительность культуры микроорганизма к исследуемому веществу в данной концентрации; зона задержки роста диаметром 16-25 мм - чувствительность микроорганизма к исследуемому веществу; зоны задержки роста, диаметр которых превышал 25 мм, свидетельствуют о высокой чувствительности бактерий к исследуемым веществам. 15,17

Файл сопроводительной информации, содержащий спектры $\mathrm{SMP}^{-13}\mathrm{C}$ и масс-спектры синтезированных соединений, доступен на сайте http://hgs.osi.lv

Авторы благодарны зав. лабораторией биохимии микроорганизмов и питательных сред ГУ "ИМИ им. И. И. Мечникова НАМНУ" (Харьков), кандидату биологических наук, старшему научному сотруднику Татьяне Павловне Осолодченко за проведение исследования противомикробной активности синтезированных соединений.

Список литературы

- 1. Meusel, M.; Gütschow, M. Org. Prep. Proced. Int. 2004, 36, 391.
- Hmuda, S.; Trišović, N.; Rogan, J.; Poleti, D; Vitnik, Z.; Vitnik, V.; Valentić, N.; Božić, B.; Ušćumlić, G. Monatsh. Chem. 2014, 145, 821.

- 3. Bakalova, A.; Buyukliev, R.; Momekov, G. *J. Mol. Struct.* **2015**, *1091*, 118.
- 4. Marinova, P.; Marinov, M.; Kazakova, M.; Feodorova, Y.; Penchev, P.; Sarafian, V.; Stoyanov, N. *Biotechnol. Biotechnol. Equip.* **2014**, *28*, 316.
- Azizmohammadi, M.; Khoobi, M.; Ramazani, A.; Emami, S.; Zarrin, A.; Firuzi, O.; Miri, R.; Shafiee, A. Eur. J. Med. Chem. 2013, 59, 15.
- Jamali, H.; Khan, H. A.; Stringer, J. R.; Chowdhury, S.; Ellman, J. A. J. Am. Chem. Soc. 2015, 137, 3616.
- Kheirabadi, M.; Çelebi-Ölçüm, N.; Parker, M. F. L.; Zhao, Q.; Kiss, G.; Houk, K. N.; Schafmeister, C. E. J. Am. Chem. Soc 2012, 134, 18345.
- 8. Tran, S. B.; Maxwell, B. D.; Chen, S. Y.; Bonacorsi, S. J.; Leith, L.; Ogan, M.; Rinehart, J. K.; Balasubramanian, B. *J. Labelled Compd. Radiopharm.* **2009**, *52*, 236.
- Lin, C.-C.; Cheng, P.-C.; Liu, Y.-c.; Liu, C.-f.; King, C.-H. R. US Patent 20080108632.
- Sheppeck, J. E.; Duan, J.; Xue, C.-B.; Wasserman, Z. US Patent 20040209874.
- 11. Aebi, J.; Binggeli, A.; Green, L.; Hartmann, G.; Maerki, H. P.; Mattei, P.; Ricklin, F.; Roche, O. US Patent 20090029963.
- Winters, G.; Aresi, V.; Nathansohn, G. Farmaco, Ed. Sci. 1970, 25, 681.
- 13. Comprehensive Organic Name Reactions and Reagents; Wang, Z., Ed.; John Wiley & Sons, Inc.: Hoboken, 2010, vol. 122, p. 557.
- Avendaño Lopez, C..; González Trigo, G. In Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Elsevier: New York, 1985, vol. 38, p. 177.
- Manual of Antimicrobial Susceptibility Testing; Coyle, M. B., Ed.; American Society for Microbiology: Washington, 2005, pp. 29, 39.
- 16. McFarland, J. J. Am. Med. Assoc. 1907, 49, 1176.
- 17. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. Document M100-S22; CLSI: Wayne, 2012, vol. 32, no. 3, p. 169.