Б. Виганте, Я. Озолс, А. Мишнев, Г. Дубурс, Б. Чекавичус

ОБРАЗОВАНИЕ ПРОИЗВОДНЫХ 5,6-ДИГИДРОТИАЗИНОВ-1,3 В РЕАКЦИИ ЭТИЛОВОГО ЭФИРА АЦЕТОТИОУКСУСНОЙ КИСЛОТЫ В УСЛОВИЯХ СИНТЕЗА ГАНЧА

Этиловый эфир ацетотиоуксусной кислоты в реакции с ароматическими альдегидами при нагревании в этаноле в присутствии водного аммиака образует производные 2H-5,6-дигидротиазина-1,3.

Ключевые слова: 5,6-дигидротиазин-1,3, этиловый эфир ацетотиоуксусной кислоты, синтез Γ анча.

В работе [1] показано, что этиловый эфир ацетотиоуксусной кислоты (1) в циклоконденсации с ароматическими альдегидами и ацетатом аммония при нагревании в уксусной кислоте образует симметрично замещенные 1,4-дигидропиридины с этокситиокарбонилзаместителями в положениях 3 и 5. Кислая среда является решающим условием реакции, ибо взаимодействие эфира 1 с ароматическими альдегидами в молярных соотношениях 2:1 при нагревании в этаноле в присутствии водного аммиака не приводит к 1,4-дигидропиридинам, а протекает по иному пути. Этиловый эфир ацетотиоуксусной кислоты 1, содержащий реакционноспособную тиокарбонильную группу, вступает в реакцию с аминным и альдегидным компонентами с выделением сероводорода, который в дальнейших превращениях образует 2H-5,6-дигидротиазины-1,3 (2):

a Ar = Ph, b 4'-MeOC₆H₄, c 4'-MeC₆H₄, d 4'-BrC₆H₄

Структура соединения **2a** доказана методом ЯМР 1 Н и 13 С. Полная однозначная интерпретация спектров достигнута с применением селективного двойного резонанса 13 С и 1 Н. Селективно облучались все мультиплеты в спектре ЯМР 1 Н и наблюдались изменения в спектрах 13 С без развязки от протонов. Этим методом измерены все имеющиеся КССВ 13 С—Н через одну, две и три связи в молекуле. Большая величина КССВ $J_{\text{H-1,H-2}} = 10.8$ Гц соответствует *транс*-диаксиальному расположению этих

протонов, следовательно, 5-СОСН3 и 6-С6Н5 заместители ориентированы псевдоэкваториально. Группа 2-С₆Н₅, очевидно, также ориентирована экваториально, так как гомоаллильное спин-спиновое взаимодействие ($J_{\text{H-2,H-3}} = 1.8 \, \Gamma \text{ц}$) столь большой величины не может реализоваться при аксиальной (2-Н) и экваториальной (3-Н) ориентации взаимодействующих протонов [2]. Результаты ЯМР ¹Н соединений 2a-d согласуются со структурой тиазина 2 (табл. 1). Механизм образования тиазинов-1,3 2 нельзя представить однозначно. Можно предположить, что образование тиазинов-1,3 2 происходит через промежуточное арилиденпроизводное А и соответствующее иминное соединение В, что имеет аналогию с образованием дигидротиазинов в реакции аммиака, оксосоединений и β-меркаптокетонов [3, 4]. Подтверждением выдвинутого механизма реакции является и то, что О-этиловый эфир 2-бензилиденацетотиоуксусной кислоты типа А при взаимодействии с аммиаком в этаноле образует тиазин 2а, что более подробно изложено в дальнейшем.

В ИК спектрах соединений 2a-d наблюдаются два характерных максимума при 1640 и 1720 см⁻¹, которые относятся к колебаниям связей N=C и C=O. В районе поглощения 3μ абсорбция отсутствует. В электронных спектрах поглощения в УФ области имеются два максимума поглощения при 205 нм и вторая полоса с максимумом в пределах 222-237 нм, что свидетельствует о наличии ароматического заместителя, а также об отсутствии каких-либо сопряженных структурных фрагментов. Восстановление 2a-c боргидридом натрия в смеси ацетонитрила и метанола в присутствии соляной кислоты [5] привело к восстановлению карбонильной группы в положении 5 с образованием 1,3-тиазинил-5-метилкарбинолов 3.

2a-c
$$Me-H_{(4)}C$$
 $Me-H_{(2)}C$ $Me-H_{(3)}C$ $Me-H_{(3)}C$ $Me-H_{(3)}C$ $Me-H_{(3)}C$ $Me-H_{(4)}C$ $Me-H_{(4)$

a Ar = Ph, b 4'-MeOC₆H₄, c 4'-MeC₆H₄

Эта реакция также подтверждает структуру тиазина 2, ибо азометиновая связь легко восстанавливается боргидридом натрия у 4-H-1,3-тиазинов [5], а у 2-H-1,3-тиазинов азометиновая связь является более устойчивой. При кипячении дигидротиазинов 2 с замещенными 1,4-бензохинонмоноиминами происходит их окисление с образованием 1,3-тиазинов 4.

a Ar = Ph, b 4'-MeOC₆H₄

Спектры ЯМР ¹Н 2,6-диарил-4-этокси-5-ацетил-5,6-дигидро-2Н-1,3-тиазинов 2

-	Химический сдвиг, δ, м. д., в дейтерохлороформе, относительно ТМС							
Соеди- нение	CH₂C <u>H</u> ₃ (т, 3H)	C(O)-CH ₃ (c, 3H)	С-H ₍₁₎ (д, 1H)	O-CH ₂ - (кв, 2H)	С-H ₍₂₎ (д, 1H)	С-H ₍₃₎ (д, 1H)	Ar	КССВ, <i>J</i> (Гц) Н ₍₁₎ —Н ₍₂₎
2a*	1.29	2.09	4.0	4.27	4.64	6.11	7.33 (c, 10 H)	11.5
2 b	1.16	2.0	4.02	4.09	4.58	6.09	3.59 (с, 6H) 6.84; 7.29 (2д, 8H)	11.3
2c	1.27	2.13	3:95	4.22	4.70	6.00	2.31 (c, 6H); 7.22 (c, 8H)	11.4
2d	1.27	2.09	4.0	4.26	4.55	6.10	6.75 (c, 8H)	11.5

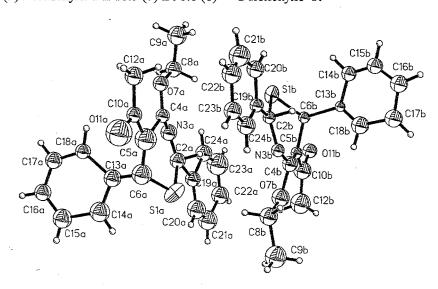

^{*}Спектр ЯМР ¹³С соединения **2a** (CDCl₃), δ , м. д.: 205.2 (C=O); 159.9 (C₄); 140.8 (C_{α'}); 138.1 (C_α); 128.9; 128.3; 127.4; 126.6 (C_{α'}, C_α, C_{m'}, C_m); 128.1 (C_{p'}); 127.6 (C_p); 63.5 (C₂); 61.5 и 13.9 (OC₂H₅); 57.5 (C₅); 47.3 (C₆); 33.0 (CH₃CO).

Таблица б Спектры ЯМР ¹Н (2,6-диарил-4-этокси-5,6-дигидро-2Н-1,3-тиазинил)-5-метилкарбинолов 3а--с

Соеди- нение		Химический сдвиг, 8, м. д. (ДМСО), относительно ТМС								КССВ, J , Γ ц		
	ОСН ₂ С <u>Н</u> 3 (т, 3Н)	С <u>Н</u> ₃ -СН ₍₄₎ (д, 3Н)	С–H ₍₂₎ (ш. д, 1H)	С- <u>Н</u> ₍₄₎ (м, 1Н)	-O-CH ₂ - (кв, 2H)	С-H ₍₁₎ (д, 1H)	ОН ₍₅₎ (д, 1Н)	C-H ₍₃₎ (c, 1H)	Ar	H ₍₁₎ -H ₍₂₎	H ₍₄₎ -H ₍₃₎	H ₍₄₎ -CH ₃
3a	1.29	1.27	2.8	3,93	4.16	4.67	4.89	5.89	7.31 (c, 10H)	9.0	5.0	6.4
3b	1.27	1.24	2.76	3.91	4.15	4.53	4.86	5.85	3.53 (c, 3H) 7.02 (M, 8H)	-		
3e	1.27	1.24	2.74	3.91	4.13	4.50	4.86	5.82	2.27 (c, 6H) 7.16 (м, 8H)	9.0	5.0	6.2

Электронные спектры поглощения в УФ области соединений 4a, b имеют длинноволновый максимум при 402 нм, что свидетельствует об образовании сопряженных структурных фрагментов. ИК спектры, спектры ЯМР 1 Н и 13 С соединений 4 подтверждают их общую структуру (см. экспериментальную часть).

Для однозначного установления пространственной и молекулярной структуры соединения 4a было проведено его рентгеноструктурное исследование. Тем самым надежно подтверждена и структура его предшественника 2a. В асимметричной части элементарной ячейки обнаружено две независимых молекулы $(a\ u\ b)$ соединения 4a, связанные центром псевдосимметрии и отличающиеся конформациями гетероцикла. Молекулы $a\ u\ b$ в кристалле показаны на рисунке. Конформация гетероцикла в молекуле a близка к твист-форме, тогда как в молекуле b — к форме полукресла. Торсионные углы гетероцикла в молекулах $a\ u\ b$ приведены в табл. a0. Наклон фенильных колец в положениях a10. К средней плоскости гетероциклов характеризуется двугранными углами a13.5(9) и a2.3(9) в молекуле a16.5 (7) и a6.8 (8)° — в молекуле a6.

Молекулы а и в в кристалле соединения 4а

Таблица 2 Торсионные углы (w) в молекуле 4a

Угол	ω, град.				
. 91011	форма а	форма <i>b</i>			
S ₍₁₎ -C ₍₂₎ -N ₍₃₎ -C ₍₄₎	18(3)	4(3)			
$C_{(2)}-N_{(3)}-C_{(4)}-C_{(5)}$	-36(3)	3(4)			
N ₍₃₎ -C ₍₄₎ -C ₍₅₎ -C ₍₆₎	9(4)	23(3)			
$C_{(4)}-C_{(5)}-C_{(6)}-S_{(1)}$	34(4)	-50(3)			
$C_{(5)}-C_{(6)}-S_{(1)}-C_{(2)}$	-42(3)	51(1)			
$C_{(6)}-S_{(1)}-C_{(2)}-N_{(3)}$	22(3)	-28(2)			

В реакции О-этилового эфира ацетотиоуксусной кислоты с бензальдегидом при охлаждении в бензоле в присутствии пиперидина образуется смесь E- и Z-изомеров О-этилового эфира 2-бензилиденацетотиоуксусной кислоты (5). Методом дробной кристаллизации получают отдельно E- и Z- формы соединения 5.

 $\mathbf{a} R = CN$; $\mathbf{b} R = COOEt$

При взаимодействии бензилиденпроизводного 5 с аммиаком в растворе этанола получены тиазин 2a, а с этиловым эфиром и нитрилом 3-аминокротоновой кислоты кипячением в этаноле 2,6-диметил-4-фенил-3-этокси-карбонил-5-этокситиокарбонил- и 3-циано-1,4-дигидропиридины 6a,b. Структура соединений 5 и 6 подтверждена совокупностью данных физикохимических методов.

 $\label{eq: Tadhula3}$ Координаты неводородных атомов (\times 10^3) в молекуле 4a

A		Форма а		Форма <i>b</i>				
Атом	х	у	z	х	у	z		
1	2	3	4	5	6	7		
S ₍₁₎	-42(1)	471(1)	343(1)	39(1)	873(3)	160(1)		
$C_{(2)}$	183(3)	551(2)	278(1)	163(2)	815(1)	227(1)		
$N_{(3)}$	-264(3)	648(2)	279(1)	242(2)	701(1)	222(1)		
C ₍₄₎	-223(3)	733(2)	328(1)	237(3)	633(2)	166(1)		
C ₍₅₎	-158(4)	663(3)	394(1)	172(2)	654(1)	110(1)		
C ₍₆₎	-122(4)	534(3)	403(1)	147(2)	799(1)	98(1)		
O ₍₇₎	-293(2)	845(1)	317(1)	252(2)	497(1)	180(1)		
C ₍₈₎	-358(3)	886(2)	256(1)	313(3)	453(2)	245(1)		
C ₍₉₎	-370(4)	1021(3)	261(1)	402(4)	313(3)	246(2)		
C ₍₁₀₎	-144(3)	768(2)	444(1)	143(3)	558(3)	52(1)		
C(11)	-92(4)	719(3)	498(1)	86(2)	623(1)	4(1)		
C ₍₁₂₎	-190(3)	904(2)	443(1)	191(4)	426(3)	61(2)		
C ₍₁₃₎	-264(3)	480(2)	408(1)	304(2)	884(1)	87(1)		

Окончание таблицы 3

1	2	3	4	5	6	7
C(14)	-267(4)	346(3)	422(1)	291(3)	1019(2)	77(1)
C ₍₁₅₎	-449(3)	268(3)	431(1)	397(3)	1077(2)	67(1)
C ₍₁₆₎	-584(3)	338(2)	433(1)	539(3)	1037(2)	66(1)
C ₍₁₇₎	-581(3)	468(2)	423(1)	570(4)	902(3)	74(1)
C(18)	-442(2)	541(2)	415(1)	432(3)	839(3)	88(1)
C ₍₁₉₎	-186(3)	460(2)	217(1)	177(2)	872(2)	284(1)
$C_{(20)}$	-132(4)	342(3)	215(2)	135(3)	1004(2)	289(1)
$C_{(21)}$	-152(4)	274(4)	159(2)	148(4)	1058(3)	352(2)
C ₍₂₂₎	-218(3)	352(3)	97(2)	201(3)	1005(3)	393(2)
$C_{(23)}$	-268(5)	481(4)	101(2)	253(3)	880(2)	396(1)
$C_{(24)}$	-258(3)	543(3)	161(1)	236(3)	814(3)	337(1)

Таблица 4

Характеристики синтезированных 2,6-диарил-4-этокси-5-ацетил-5,6-дигидро-2H-1,3-тиазинов 2а-d

Соеди-	Т. пл.,	Бругто-формула		Выход,	M ^{+.}			
нение	°C	- F. F F F F F F F	С	Н	N	S	%	
2a	133	C ₂₀ H ₂₁ NO ₂ S	70.5 70.8	6.1 6.2	3.9 4.1	10.1 9.5	56	339
2 b	134	C ₂₂ H ₂₅ NO ₄ S	66.4 66.1	6.4 6.3	3.4 3.5	7.8 8.0	51	367
2e	141	C ₂₂ H ₂₅ NO ₂ S	72.2 71.9	6.9 6.8	3.5 3.8	8.5 8.7	46	399
2d	143	C ₂₀ H ₁₉ Br ₂ NO ₂ S	48.9 48.3	4.0 3.9	2.7 2.8	6.8 6.5	27	÷.

Таблица 5

Характеристики синтезированных (2,6-диарил-4-этокси-5,6-дигидро-2H-1,3-тиазинил)-5-метилкарбинолов За-с

Соеди-	Т. пл., ℃	Брутто-формула		<u>Найден</u> Вычисл			Выход,
нение			С	Н	N	S	%
3a	97	C ₂₀ H ₂₃ NO ₂ S	69.9 70.4	6.8 6.8	4.6 4.1	9.9 9.4	85
3b	110	C ₂₂ H ₂₇ NO ₄ S	66.0 65.8	6.6 6.8	3.2 3.5	7.6 8.0	67
3c	67	C ₂₂ H ₂₇ NO ₂ S	71.0 71.5	7.4 7.4	3.7 3.8	8.3 8.7	84

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

. ИК спектры получены на спектрометре Perkin-Elmer 580 В в нуйоле, электронные спектры — на приборе Spectra UV-vis (в этаноле), спектры ЯМР 1 Н — на спектрометре Bruker WH-90/DS, внутренний стандарт ТМС. Масс-спектры сняты на приборе AEI MS-50. Кристаллы соединения 4а состава $C_{20}H_{19}NO_2S$, выращенные из смеси метанол—хлороформ, 1:1, моноклинные и имеют следующие кристаллографические параметры: $a=8.170(2),\ b=10.230(2),\ c=21.600(4)$ Å, $\beta=100.23(3),\ V=1776.6(6)$ Å 3 , $M=337.42,\ d_{\text{выч}}=1.262\ r.cm^3,\ Z=4$, простр. группа $P2_1$. Интенсивности 3039 отражений измерены на автоматическом дифрактомере Syntex $P2_1$ (МоК $_{\alpha}$ -излучение, графитовый монохроматор, $\theta/2\theta$ -сканирование, $\theta_{\text{max}}=23.5^{\circ}$). В расчетах использовано 1546 независимых отражений с $I>2\sigma(I)$. Структура расшифрована прямым методом по программе SHELXS-86 [6, 7] и уточнена полноматричным МНК (SHELXL-93) [8] анизотропно для атомов серы и изотропно для остальных атомов до окончательного значения 0.092. Координаты неводородных атомов приведены в табл. 3.

2,6-Диарил-5-ацетил-5,6-дигидро-4-этокси-2H-1,3-гиазины (2a-d). Смесь 2.92 г (0.02 моль) О-этилового эфира ацетотиоуксусной кислоты 1, 0.01 моль ароматического альдегида и 4 мл водного аммиака кипятят в 20 мл этанола 30 мин. Выделяется сероводород. После охлаждения смесь разбавляют водой. Выпавшее масло кристаллизуют из метанола. Характеристики синтезированных соединений приведены в табл. 4.

(2,6-Днарил-4-этокси-5,6-днгидро-2H-1,3-тиазинил)-5-метилкарбинолы (3а-с). К раствору 0.003 моль 5-ацетил-1,3-тиазина (2а-с) в 10 мл ацетонитрила, 2 мл метанола и 1 мл конц. соляной кислоты добавляют по частям 0.45 г (0.012 моль) боргидрида натрия. Оставляют при комнатной температуре на 24 ч, фильтруют, растворители отгоняют в вакууме, остаток обрабатывают горячей водой. Карбинолы 3а-с отделяют и кристаллизуют из метанола (табл. 5, 6, см. с. 980).

2,6-Диарил-5-ацетил-4-этокси-2H-1,3-тиазины (4а, b). К раствору 0.003 моль 2H-5,6-дигидро-1,3-тиазина (2а,b) в 70 мл горячего бензола добавляют 1.06 г (0.003 моль) N-фенил-сульфонил-2,3,6-трихлор-1,4-бензохинонмоноимина и кипятят 8 ч. Растворитель отгоняют в вакууме, остаток растворяют в ацетоне и разделяют на препаративных стеклянных пластинках размером 220—280 мм на незакрепленном слое силикагеля L 40/100 в системе хлороформ-гексан—ацетон, 9:7:1. С пластинок собирают ярко-оранжевую полосу, извлекают ацетоном и упаривают в вакууме досуха. Остаток кристаллизуют из метанола. Получают 0.81 г (80%) 2-H-1,3-тиазина 4а с т. пл. 144 °C.

УФ спектр, λ_{max} , нм: 205, 276, 325 (пл.), 402. ИК спектр, см⁻¹: 1600, 1620, 1660. Спектр ЯМР ¹H (ДМСО- d_6), δ , м. д.: 1.40 (т, 3H, CH₃); 2.51 (с, 3H, CH₃CO); 4.56 (кв, 2H, CH₂); 5.73 (с, 1H, 2-CH); 7.1–8.0 (м, 10H, ароматические протоны). Спектр ЯМР ¹³С (СDCl₃ + циклогексан), δ , м. д.: 196.7 (С=O); 163.1 (С₍₄₎); 143,3 (С₍₆₎); 137.8 (С_(i)); 133.6 (С_(i)); 129.5; 129.3; 129.2; 128.2; 127.3 (С_{аром}); 97.6 (С₍₅₎); 63.7 (CH₂); 41.5 (С₍₂₎); 32.7(СОСН₃); 15.7 (СH₃). Масс-спектр, m/z: 337(М⁺). Найдено %: С 70.9; H 5.8; N 4.5; S 9.2. С₂₀H₁₉NO₂S. Вычислено, %: С 71.3; H 5.7; N 4.2; S 9.5.

. Аналогично получают 2H-1,3-тиазин 4b с выходом 75%, т. пл. 132–134 °C (из метанола). УФ спектр, λ_{max} , нм: 208, 238, 333 (пл.), 402. ИК спектр, см⁻¹: 1600, 1620, 1650. Спектр ЯМР ¹H (CDCl₃), δ , м. д.: 1.49 (т, 3H, CH₃); 2.62 (с, 3H, CH₃CO); 3.78 (с, 6H, 2OCH₃); 4.61 (кв, 2H, OCH₂); 5.75 (с, 1H, 2-CH); 7.2–7.9 (м, 8H, ароматические протоны). Найдено, %: С 66.0; Н 6.6; N 3.3; S 7.6. $C_{22}H_{23}NO_4S$. Вычислено, %: С 65.8; Н 6.8; N 3.5; S 8.0.

(Z, E)-О-Этиловый эфир 2-бензилиденацетотиоуксусной кислоты (5). К раствору 2.92 г (0.02 моль) свежеперегнанного О-этилового эфира ацетотиоуксусной кислоты в 10 мл сухого бензола добавляют 2.12 г (0.02 моль) бензальдегида и 3 капли пиперидина. Реакционную смесь оставляют при 0 °C на 48 ч, сушат безводным сульфатом натрия, растворитель удаляют в вакууме. Оранжевое масло перегоняют и собирают фракцию при 155-160 °C/10 мм рт. ст. Получают 3.46 г (74%) оранжевого масла, которое состоит из Z- и E- форм 5 в соотношении 1:1 (HPLC). Фракционной кристаллизацией из этанола при −5 – −10 °C получена 1.6 г (34%) Z-форма, т. пл. 62-68 °C, светло-желтые кристаллы. УФ спектр, λ_{тах}, нм: 202, 232, 253, 297. CHEKTP SIMP ¹H (CDCl₃), δ, м. д.: 1.42 (т, 3H, CH₂CH₃); 2.42 (с, 3H, CH₃CO); 4.69 (кв, 2H, OCH₂); 7.36(с. 5H, ароматические протоны); 7.42 (с. 1H, CH=). Масс-спектр, m/z: 234 (M⁺). Найдено, %: С 66.8; H 6.2; S 13.2. $C_{13}H_{14}O_2S$. Вычислено, %: С 66.6; H 6.0; S 13.7. После продолжительного охлаждения этанольного фильтрата отделяют темно-желтые кристаллы (Е-форма), выход 1.2 г (26%), т. пл. 58-60 °C. Найдено, %: С 66.5; Н 6.1; S 13.2. С₁₃Н₁₄О₂S. Вычислено, %: С 66.6; Н 6.0; S 13.7. УФ спектр, λ_{max} , нм: 202, 236, 326. Спектр ЯМР ¹Н (CDCl₃), δ , м. д.: 1.44 (т, 3H, CH₂CH₃); 2.33 (с. 3H, CH₃CO); 4.60 (кв. 2H, OCH₂); 7.33 (с. 5H, ароматические протоны), 7.69 (с. 1H, CH=). Масс-спектр, m/z: 234 (M⁺).

5-Ацетил-2,6-дифенил-4-этокси-2H-5,6-дигидро-1,3-тиазин (2а). К раствору 0.23 г (0.001 моль) (*Z*, *E*)-О-этилового эфира 2-бензилиденацетотиоуксусной кислоты 5 в 3 мл этанола добавляют 0.34 мл 25% гидроокиси аммония и кипятят 5 мин. Происходит осветление раствора и выделение сероводорода (доказано бумажкой с ацетатом свинца). После охлаждения отделяют белые кристаллы. Получают 0.13 г (76%) тиазина 2а, свойства и физико-химические характеристики которого отвечают ранее описанным.

2,6-Диметил-4-фенил-3-этоксикарбонил-5-этокситиокарбонил-1,4-дигидропиридин (6b). Кипятят 5 ч 2.34 г (0.01 моль) О-этилового эфира 2-бензилиденацетотиоуксусной кислоты 5 и 1.3 г (0.01 моль) этилового эфира β -аминокротоновой кислоты в 50 мл этанола с добавкой 5 мл уксусной кислоты. Растворители удаляют в вакууме, остаток обрабатывают эфиром. Получают желтые кристаллы с т. пл. 120 °C (из этанола). Выход 2.1 г (60.8%). УФ спектр, $\lambda_{\text{твах}}$, нм: 207, 280, 405. ИК спектр, v, см⁻¹: 1615, 1640, 1690, 3400. Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д.: 1.13 (т, 3H, CH₃); 1.27 (c, 3H, C(S)OCH₂CH₃); 2.20 (c, 3H, 2-CH₃); 2.31 (c, 3H, 6-CH₃); 3.96 (кв, 2H, -CH₂); 4.36 (кв, 2H, C(S)OCH₂); 5.47 (c, 1H, 4-CH); 7.11 (c, 5H, ароматические протоны); 9.04 (c, 1H, N-H). Масс-спектр, m/z: 345 (М[†]). Найдено, %: C 66.3; H 6.7; N 3.9; S 9.4. C_{19} H₂₃NO₃S. Вычислено, %: C 66.1; H 6.7; N 4.1; S 9.3.

СПИСОК ЛИТЕРАТУРЫ

- 1. Б. А. Виганте, Я. Я. Озолс, Г. Я. Дубурс, Е. М. Белаш, Ю. И. Бейлис, ХГС, № 2, 210 (1984).
- 2. M. Barfield, B. Chakrabarti, Chem. Rev., 69, 757 (1969).
- 3. M. Thiel, F. Asinger, G. Trümpler, Ann., 619, 137 (1958).
- F. Asinger, M. Thiel, W. Höringklee, Ann., 610, 1 (1948).
- 5. J. C. Getson, J. M. Greene, A. I. Meyers, J. Heterocycl. Chem., 1, 300 (1964).
- 6. G. M. Sheldrick, Acta crystallogr., A46, 467 (1990).
- G. M. Sheldrick, SHELXS-86. Programm for the Solution of Crystal Structures, 1985, University of Göttingen, Germany.
- G. M. Sheldrick, SHELXL-93. Programm for the Refinement of Crystal Structures, 1993, University of Göttingen, Germany.

Латвийский институт органического синтеза, Рига LV-1006, Латвия e-mail:arcady@osi.lanet.lv Поступило в редакцию 28.03.2000