Н. П. Соловьева, В. Д. Димитрова^а, М. П. Немерюк^а, О. С. Анисимова, А. Л. Седов*, В. Ф. Травень^а

ПРЕВРАЩЕНИЯ КУМАРИНОВ, СОПРОВОЖДАЮЩИЕСЯ ПРОМЕЖУТОЧНЫМ РАСКРЫТИЕМ И РЕЦИКЛИЗАЦИЕЙ ЛАКТОННОГО КОЛЫГА

3*. ИЗУЧЕНИЕ ВЗАИМОДЕЙСТВИЯ 3-ЭТОКСИКАРБОНИЛКУМАРИНОВ С ЦИАНАЦЕТИЛГИДРАЗИНАМИ МЕТОДОМ СПЕКТРОСКОПИИ ЯМР

Методом спектроскопии ЯМР ¹Н исследовано взаимодействие 3-этоксикарбонилкумарина с производными цианацетилгидразина непосредственно в ампуле спектрометра ЯМР. Установлена структура компонентов реакционных смесей и проведена оценка их относительных концентраций на разных стадиях протекания реакции. Проанализирована последовательность процессов, происходящих в исследуемых реакциях. Установлены как общие закономерности, так и различия в ходе протекания данной реакции при использовании в качестве второго компонента цианацетилгидразина или его N-изопропилиденового производного.

Ключевые слова: производные цианацетилгидразина, 3-этоксикарбонилкумарин, раскрытие и рециклизация лактонного кольца кумаринов, реакция Михаэля, спектроскопия ЯМР 1 Н в изучении продуктов реакции и реакционных масс.

В продолжение работ, в которых ранее взаимодействие 3-этоксикарбонилкумарина 1 с цианацетилгидразинами 2 изучалось методом массспектрометрии [2, 3], мы провели исследование данной реакции методом спектроскопии ЯМР ¹Н непосредственно в ампуле для регистрации спектров. В качестве второго компонента реакции использовали как сам цианацетилгидразин (2a), так и его изопропилиденовое производное 2b. Реакцию проводили в 1 мл метанола-d₄ при эквимолекулярном соотношении компонентов реакции 1 + 2a и 1 + 2b.

Характеристики полученных спектров ЯМР 1 Н представлены в табл. 1 и 2. Для надежной идентификации компонентов реакционной массы были проанализированы спектры ЯМР 1 Н индивидуальных исходных веществ 1 и 2а,b (растворитель метанол- d_4 и ДМСО- d_6) и соединений, которые могли служить модельными структурами для продуктов реакций (аддукты 5 и 6, см. далее). Следует отметить, что соединения 2а,b в растворах, судя по спектрам ЯМР 1 Н, существуют в виде смеси амидных конформеров (см. табл. 1). При регистрации спектров ЯМР 1 Н растворов соединений 1+2 в метаноле- d_4** происходит достаточно быстрый дейтерообмен с образованием фрагментов СНD и CD_2 , что приводит как к заметному

^{*} Сообщение 2 см. [1].

^{**} H₂O в метаноле-d₄ частично или полностью дейтерирована.

уменьшению интенсивности синглета метиленовых протонов в спектрах, так и к появлению триплетного сигнала, соответствующего фрагменту СНD (небольшое изменение значения химического сдвига происходит за счет изотопного замещения, $\Delta \delta = \delta \text{CH}_2 - \delta \text{CHD} \sim 0.01 - 0.02 \text{ м. д., табл. 1}$).

Ранее, при масс-спектрометрическом исследовании [2] строения компонентов реакционных смесей, оставшихся после выделения 3-циано-кумарина 3 из аналогичной реакции 1 + 2, проведенной в лабораторных условиях в спирте в присутствии каталитического количества пиперидина, была предложена схема первого этапа взаимодействия 3-этоксикарбонил-кумарина 1 с производными цианацетилгидразина 2а,b, который приводит к образованию 3-цианокумарина. Согласно этой схеме, первоначально происходит присоединение гидразина 2 по положению 4 кумаринового

Схема 1

^{*} При масс-спектрометрическом исследовании анализировали реакционные смеси 1+2 в спирте, для изучения реакции 1+2 методом спектроскопии ЯМР 1 Н в качестве растворителя использовали метанол- d_4 , всегда содержащий небольшие количества H_2O , HDO и D_2O . В метаноле- d_4 метиленовые протоны соединений 2a, в и 4a, в легко обмениваются на D (см. текст), вследствие чего во всех структурах, рассмотренных в ходе исследования методом ЯМР, метиновые протоны (кроме H-d), а также протоны при группе H0 реально замещены на H1.

Спектры ЯМР ¹Н соединений 1–3, 7

					Химически	Химические сдвиги, δ , м. д. $(J, \Gamma \mu)^*$			
Соеди- нение			Кумари	Кумариновый фрагмент	HT		Фрагмен	Фрагмент цианацетилгидразида	зида
	H-4 (c)	Н-5 (д)	(M) 9-H	(M) L-H	Н-8 (д)	3-Z**	$ m CH_2$	CH_3	HN
1	8.72	7.91	7.40	27.73	7.42	1.31 (T, $^3J = 7.2$, CH ₃);	ſ	I	I
ဇ	96.8	(3 - 7.6) 7.82 (3 - 7.6)	7.47	7.81	(3 - 8.4) 7.52 $(3 - 8.9)$	4.30 (K, J = 1.2, CH ₂)	I	I	I
2b***	1	(0.7 - 6.)	I	I	- 0.0)	I	4.01 (c) 3.76 (c)	1.84, 1.90 (c) 1.85, 1.93 (c)	10.59 (ym. c) 10.30 (ym. c)
1 + 2a***	8.70	7.80 (3 $J = 7.6$)	7.42	7.74	7.38 (3 $J = 8.4$)	($^{3}J=8.4$) 4.40 (^{6}K , $^{3}J=7.2$, CH ₃);	3.55 (c, CH ₂), 3.54 (r, $^{2}J_{HD} = 2.8$, CHD)	I	I
							3.92 (c, CH ₂), 3.90 (r, $^2J_{HD}$ = 2.8, CHD)	ı	1
1+2b***	8.70	7.80 (3 $J = 7.6$)	7.42	7.74	7.39 (3 $J = 8.4$)	1.42 (r, ${}^{3}J = 7.2$, CH ₃); 4.41 (к, ${}^{3}J = 7.2$, CH ₂)	3.73 (c, CH ₂), 3.72 (r, $^{2}J_{HD}$ = 2.8, CHD)	1.91, 2.00	I
							3.98 (c, CH ₂), 3.96 (r, ² J _{HD} =2.8, CHD)	1.99, 2.06	I
	8.72	7.91 (3 $J = 7.6$)	7.40	7.73	7.42 (3 $J = 8.4$)	1.31 (T, ${}^{3}J=7.2$, CH ₃); 4.30 (K, ${}^{3}J=7.2$, CH,)	4.00 (c, CH ₂)	1.84, 1.89	10.60
		2					3.76 (c, CH ₂)	1.85, 1.93	10.30

I	I
ı	ı
1	1
4.92 (ym. c, NH ₂); 9.59 (ym. c, NH)	1.96, 2.04 (c, CH ₃); 11.20 (ym. c, NH)
7.48 (3 $J = 8.0$)	7.48 ($^3J = 8.2$)
7.73	7.78
7.44	7.42
7.99 $(7.7 = L^{6})$	8.05 (3 $J = 7.6$)
8.80	86.8
7a	7b

* Спектры ЯМР 1 Н снимали в ДМСО- d_{6} (соединения 1, 2b, 3 и 7a, b) и МеОН- d_{4} (соединения 1+2b). 3-Цианокумарин 3 в метаноле- d_{4} не растворим.

** $\mathbf{1} Z = CO_2Et$, $\mathbf{7} \mathbf{a} Z = CONHNH_2$, $\mathbf{b} Z = CONHNCMe_2$

сдвиги протонов преобладающего изомера, затем – минорной формы; относительное содержание амидных изомеров для 2b (ДМСО-d₆) – 65 и 35%; для 1 + 2a (метанол-d₄) – 80 и 20%; для 1 + 2b (метанол-d₄) – 55 и 45%; для 1 + 2b (ДМСО-d₆) – 65 и 35%. Растворы 1 + 2a и 1 + 2b не *** Соединения 2a,b в растворах метанола-d, и ДМСО-d, представлены смесью амидных конформеров; в первой строке приведены химические содержат катализатора (пиперидина); описание структуры минорных продуктов представлено в тексте. В растворе метанола-ф метиленовые протоны в 2а, в обмениваются на D, вследствие чего данные протоны представлены в спектрах как синглетами (фрагмент СН2), так и триплетами (фрагмент СНD). ядра (структура **A**). Далее пирановый цикл размыкается с присоединением молекулы спирта (структура **B**). Последовательное отщепление молекулы гидразина и замыкание пиранового цикла (структура **C**), отщепление малонового эфира приводят в конечном итоге к образо- ванию цианокумарина **3**. В свою очередь малоновый эфир легко взаимо- действует с ранее выделившимся гидразином, что приводит к появлению в реакционной смеси моногидразидов малонового эфира **4**. Отщепляющиеся в процессе рециклизации гидразины вступают также в реакцию с исходным 3-этоксикарбонилкумарином **1**, причем взаимодействие идет как по этоксикарбонильной группе с образованием соответствующего гидразида кумарин-3-карбоновой кислоты, так и путем присоединения гидразинов по положению 4 лактонного кольца [2].

При изучении реакции методом ЯМР ¹Н первоначально был проанализирован спектр свежеприготовленного раствора в метаноле-d₄ соединений 1 и 2а без добавления катализатора – пиперилина. В записанном спектре наряду с сигналами исходных соединений 1 и 2а (табл. 1) отчетливо фиксировались малоинтенсивные сигналы (≤ 1%) цианокумарина 3 (синглет протона Н-4 при 8.69 м. д.); малоинтенсивные сигналы этильных протонов фрагмента EtOCO, принадлежащего моногидразиду малонового эфира 4a $(\delta, \text{ м. д.: } 1.29, \text{ т. } 4.20, \text{ к}), \text{ а также малоинтенсивный мультиплет } (~1\%)$ ароматических протонов в интервале 6.80-7.20 м. д. В спектре ЯМР ¹Н исследуемого раствора, зарегистрированном спустя 20 мин, наблюдалось увеличение концентрации образовавшихся продуктов реакции до ~5% (относительно исходного 1). Таким образом, из данного эксперимента следует, что образование цианокумарина 3 происходит даже в отсутствие катализатора. Аналогичный эксперимент был проведен для соединений 1 + 2b (в метаноле-d₄), который также продемонстрировал образование минорного количества цианокумарина. Кроме того, реакция соединений 1 + 2b без добавления катализатора (пиперидина) при эквимолекулярном соотношении компонентов была проведена также в ДМСО-d₆, и в спектре ЯМР ¹Н данного раствора тоже отчетливо наблюдались сигналы новых образовавшихся соединений (в концентрации \sim 1%): цианокумарина 3-8.96(с, Н-4) и 7.82 м. д. (д, Н-5)*, и промежуточного продукта реакции типа А (енольная форма А'), который характеризуется сигналами: 1.19 (с, N=C(CH₃)₂); 1.17 (τ, ${}^{3}J$ = 7.2 Γμ), 4.10 (уш. к) (CO₂C₂H₅); 3.47 (c, H-4'), 4.79 (с, Н-4); 7.08-7.25 (м, СН аром.); 8.55 (NHC=O); 10.10 м. д. (2-ОН). Образование цианокумарина в данном случае можно объяснить только тем фактом, что в ДМСО-d₆, исполь- зованном в эксперименте, присутствует некоторое количество воды, которое и способствует протеканию реакции Михаэля. При этом раскрытие пиранового цикла кумаринового ядра (структура В) происходит в резуль- тате гидролиза (а не алкоголиза, как при проведении реакции в этаноле). что и приводит в дальнейшем к образованию цианокумарина 3. Поэтому при проведении реакции соединений 1 + 2 в метаноле-d₄ (в котором также присутствует вода) можно ожидать раскрытия пиранового цикла кума-

^{*} Малоинтенсивные сигналы других ароматических протонов соединения 3 маскируются сигналами аналогичных протонов исходного 1.

ринового ядра как в результате метанолиза, так и гидролиза (как это

происходило в случае применения в качестве растворителя ДМСО- d_6). По данным масс-спектров реакционной смеси соединений 1 + 2a, в метаноле раскрытие пиранового цикла происходит в основном за счет метанолиза [2].

В ходе дальнейшего исследования реакции Михаэля в свежеприготовленные растворы соединений 1+2a и 1+2b (в метаноле- d_4) было добавлено каталитическое количество пиперидина, после чего сразу был записан спектр № 1 ЯМР 1 Н (20 мин ушло на приготовление раствора и регистрацию спектра № 1). Затем запись спектров ЯМР 1 Н осуществлялась каждые 10 мин: спектр № 2 – 30 мин от начала реакции, № 3 – 40 мин, № 4 – 50 мин; далее – через 1ч 20 мин (спектр № 5); через 3 (спектр № 6) и 6 ч (спектр № 7). Наконец, последние два спектра были записаны, соответственно, через 1 и 2 сут после начала эксперимента.

В спектрах ЯМР 1 Н 1 Н 1 1 для обеих реакций (1 + 2a и 1 + 2b) кроме сигналов соединений 1 и 2 четко фиксируются интенсивные сигналы цианокумарина 3, в частности, синглет протона Н-4 при 8.69 м. д. Одновременно наблюдаются сигналы моногидразидов малонового эфира **4а,b**: для гидразида **4a** характерны сигналы фрагмента $CO_2C_2H_5$ при 1.28 (т, $^{3}J = 7.2$) и 4.20 м. д. (к, $^{3}J = 7.2$ Гц); для соединения **4b**, которое в растворе существует в виде смеси изомерных форм с относительным содержанием 2:1, характерны синглетные сигналы фрагмента N=C(CH₃)₂ при 1.99, 2.00, 2.06, 2.07 и сигналы протонов группы CO₂C₂H₅ при 1.27, 1.30 (т, ${}^{3}J$ = 7.2) и 4.18, 4.21 м. д. (к, ${}^{3}J$ = 7.2 Γ ц). Из анализа приведенных в табл. 2 относительных концентраций основных компонентов реакции видно, что компоненты 3 и 4а, в уже в начале реакции (спектр № 1) присутствуют в значительном количестве: 15 (3) и 16.5 (4а) для реакции **1 + 2a** и 30 (**3**) и 39% (**4b**) для **1+2b***. Первый этап реакции Михаэля протекает достаточно быстро. Промежуточные продукты реакции А, В и С являются короткоживущими и практически малофиксируемы в случае реакции соединений 1 + 2b (~1%); для реакции 1 + 2a суммарная концентрация этих соединений составляет ~ 4.5%**. Высокая скорость превращения промежуточных структур $A \rightarrow B \rightarrow C$ в конечный продукт реакции 3 отмечалась и при масс-спектрометрическом исследовании данной реакции [2].

Как только в растворе образовался цианокумарин 3, сразу же начинается второй этап реакции, в котором соединение 3 взаимодействует с исходными цианогидразинами 2a,b. Присоединение последних идет по положению 4 кумаринового ядра (как и в случае соединения 1) с образованием промежуточного дигидропиранового аддукта D, который достаточно быстро

^{*} Здесь и далее приводятся и сравниваются значения относительных концентраций основных компонентов реакций, оцененных без учета концентрации соединения **2a,b** (см. табл. 2, примечание).

^{**} Оценка относительной концентрации соединений **A**, **B** и **C** проведена на основе сопоставления интенсивностей сигналов сложноэфирных групп и мультиплетов ароматических протонов с аналогичными сигналами исходного **1**. Для форм **A**, **B** и **C**: 0.85-1.10 (уш. т, $C\underline{H}_3CH_2O$), 3.70-3.90 (м, $CH_3C\underline{H}_2O$), 6.70-7.00 м. д. (м, CH аром.).

превращается в трициклическую структуру типа $E \rightleftharpoons E'$. Для структур E (E') в спектрах ЯМР 1 Н характерен мультиплет ароматических протонов

в интервале 7.0–7.4, для структур **D** он смещен в более сильное поле 6.70–6.95 м. д. Сигналы метиновых протонов H-4 наблюдаются при 4.6–4.9 м. д.; сигналы протонов H-3 и H-4' вследствие дейтерообмена в спектре наблюдаются в виде сильно уширенных и малоинтенсивных сигналов в области 3.40–3.65 м. д.

В качестве модельных соединений для продуктов реакции **D** и **E** были использованы аддукты **5** (см. экспериментальную часть) и **6*** [1], соответственно, в спектрах ЯМР 1 Н которых сигналы ароматических протонов представлены мультиплетами при 6.70–7.10 (**5**) и 7.00–7.40 м. д. (**6**).

Кроме того параллельно идет взаимодействие цианокумарина 3 с моногидразидами малонового эфира 4а, в с образованием дигидропирановых аддуктов G, которые легко превращаются в трициклические соединения Н (**H'**). Соединения **G** и **H** в спектрах ЯМР 1 Н, аналогично соединениям **D** и Е, характеризуются мультиплетами ароматических протонов в области 6.70-7.00 и 7.00-7.40 м. д., соответственно, а также наличием сигналов протонов сложноэфирных групп СО₂СН₂СН₃: (аналогично С) 0.85–1.10 (т, ^{3}J = 7.2, CH₃), 3.70–3.90 (м, CH₂) для **G**; 1.02–1.18 (т, ^{3}J = 7.2 Гц, CH₃), ~ 4.05 м. д. (узкий м, CH₂) для **H**. Усложнение формы сигналов метиленовых протонов сложноэфирных групп в спектрах ЯМР ¹Н происходит благодаря наличию в молекуле ассиметрических атомов углерода, причем в дигидропирановых структурах (С, G) мультиплет протонов группы СН2 сложноэфирных групп (б 3.70–3.90 м. д.) сильно вытянут, в то время как для трициклических структур Н метиленовые протоны в спектре образуют узкий четкий мультиплет с центром ~ 4.05 м. д. Суммарную оценку относительного содержания дигидропирановых соединений с двумя группами CN (D) и трициклических структур E проводили на основе интегральной интенсивности сигналов ароматических протонов в интервале 6.70-7.40 м. д., из которой вычитали интегральную интенсивность ароматических протонов, соответствующих структурам дигидропирановых аддуктов типа А, С, G и трициклической структуры Н. Последние две величины рассчитывали по интегральной площади мультиплетов метиленовых протонов фрагмента СО₂СН₂СН₃ при 3.70–3.90 и 4.05 м. д. соответственно.

В исследуемых растворах соединений 1+2 параллельно может идти процесс взаимодействия соединений 1 и 3 с выделяющимися в ходе реакции гидразинами NH_2R . Присоединение гидразинов идет по положению 4 кумаринового цикла с образованием дигидропирановых структур типа Fa,b ($3+NH_2R$) и La,b ($1+NH_2R$). Для структуры La возможна дальнейшая циклизация с отщеплением этилового спирта, приводящая к трициклическому соединению M, что невозможно в случае структуры Lb.

^{*} Спектр ЯМР ¹H (ДМСО- d_6), δ , м. д. (J, Γ ц): 2.40, 3.09 (1H каждый, д. д, ${}^2J_{\text{HA,HB}} = 15.7$, ${}^3J_{\text{CHA,CH}} = 13.6$, ${}^3J_{\text{CHB,CH}} = 4.6$, CH₂); 4.00 (1H, д. д, ${}^3J_{\text{CHA,CH}} = 13.6$, ${}^3J_{\text{CHB,CH}} = 4.6$, H-10b); 7.00–7.40 (4H, м, H apoм.); 8.00 (2H, уш. c, 2NH); 10.2 (1H, c, OH).

Как и в случае ранее рассмотренных дигидропирановых структур сигналы ароматических протонов структур \mathbf{F} и \mathbf{L} в спектрах ЯМР 1 Н

должны быть представлены мультиплетами в интервале ~6.70-7.00 м. д. Это затрудняет оценку вклада реакций $1 + NH_2R$ и $3 + NH_2R$ в общий ход взаимодействия соединений 1 и 3 с различными продуктами в исследуемых смесях. Однако поскольку относительное содержание моногидразидов малоновых эфиров 4а, в исследуемых реакциях даже превышает относительное сопоставимо или количество цианокумарина 3 (табл. 2), можно предположить, что большая часть выделенных в ходе реакции гидразинов NH₂R образует гидразиды 4a,b, и лишь небольшое количество участвует в реакциях 1 + NH₂R и 3 + NH₂R. В статье, посвященной масс-спектрометрическому исследова- нию данной реакции, также отмечалось, что моногидразиды малонового эфира являются одними из основных компонентов реакционных смесей [2].

Параллельно описанным выше процессам в реакциях соединений 1 + 2a, в идет процесс образования нового кумаринового производного. Так, в спектрах ЯМР ¹Н обеих реакций, зарегистрированных спустя 30 мин после начала реакции (табл. 2, спектр № 2), наряду с вышеописанными компонентами, наблюдаются малоинтенсивные сигналы (\sim 1–2%) нового кумаринового производного: 8.78 (1H, c); 8.20 (1H, д, 3J = 7.7 Гц) в реакции 1 + 2a и 8.86 (1H, c), 8.19 м. д. (1H, д, 3J = 7.7 Гц) в реакции 1 + 2b. Поскольку, согласно данным масс-спектрометического исследования [2], среди продуктов реакции было обнаружено производное кумарина, образующееся при взаимодействии соединения 1 с выделяющимися в ходе реакции производными гидразина 1 соединение 1 , то естественно было приписать данные сигналы такого типа кумариновым производным.

Во время второго этапа реакции также возможна реакция исходного 3-этоксикарбонилкумарина 1 с образующимися моногидразидами малонового эфира **4a,b**, в ходе которой первоначально образуются дигидропирановые аддукты **Ja,b**, которые при отщеплении этилового спирта могут превращаться в трициклические соединения **Ka,b**.

Нельзя исключить и возможность образования трициклических соединений типа Іа.ь из промежуточного аддукта А с отшеплением этилового спирта при условии, что интермедиат А обладает достаточным временем жизни [2]. Однако, как уже отмечалось выше, в случае реакции соединений 1 + 2b структура А является короткоживущей, суммарное содержание аддуктов А, В и С не превышает 1%, и, следовательно, появление соединений с трициклической структурой типа Ib мало вероятно. Для взаимодействия соединений 1 + 2а, где суммарная концентация продуктов реакции A + B + C составляет ~4.5%, образование трициклической структуры **Ia** несколько более вероятно. Резюмируя все сказанное выше о превращениях 3-этоксикарбонилкумарина 1 в ходе реакции соединений 1 + 2, следует подчеркнуть, что образование трициклических структур типа, К, І и М должно протекать обязательно с отщеплением молекулы этанола. Выделяющийся этанол может, хотя бы частично, участвовать в процессе размыкания пиранового кольца кумаринового цикла (стуктура В).

Относительное содержание основных компонентов в реакционных смесях* 1 + 2a и 1 + 2b (растворитель – метанол-d4, катализатор – пиперидин)

Таблица 2

No	Время				1 + 2a, %				1+2	1 + 2b**, %	
спектра	реакции	1	3	4a	$\mathbf{D} + \mathbf{E}(\mathbf{E}') + \mathbf{F} + \mathbf{I}(\mathbf{I}')$	H(H') +K(K')	1	3	4b	$\mathbf{D} + \mathbf{E}(\mathbf{E}') + \mathbf{F}$	H(H') +K(K')
1**	20 мин* ⁴	38*4	8.5	9.5	2	2	17	28	32	8	<1
1.	20 мин	58	15	16.5	3	3	22	30	39	9	7
7	30 мин	44	20	21	9	S	21	25	38	11	7
3	40 мин	33	22	24	6	8	20	20	37	15	8
4	50 мин	21	23	27	13	12	18	15	35	20	∞
5	1 ч 20 мин	16	20	30	15	15	15	6	31	25	14
9	3 ч	12	13	35	19	18	10	4	25	29	22
7	ь 9	9	8*2	41	21	21	9	0~	20	30	29

* Суммарное содержание минорных компонентов в смеси не превышает 5%.

** В спектрах № 5-№ 7 реакции 1 + 2b появляются сигналы этанола, количество которого возрастает от 2 (спектр № 5) до 10% (спектр № 7). (8 СНз 1.20 м. д., т; $^3J = 7.2 \Gamma \text{LL}, \ \delta \ \text{CH}_2 \ 3.60 \ \text{M. L.}, \ \kappa, \ ^3J = 7.2 \ \Gamma \text{LL}).$

*** Свежеприготовленный раствор (время приготовления раствора и регистрации спектров № 1 и 1' занимает 20 мин).

изопропилиденового фрагмента (NCMe2), последующие оценки относительных концентраций компонентов смеси (спектры №2-№7) сделаны без учета соединения 2 затруднена вследствие быстрого D-замещения СН2-протонов и сильного перекрывания синглетных сигналов метильных протонов *4 Относительные концентрации компонентов представлены с учетом компонента 2 (2а 37%, 2b 12%). Поскольку далее достоверная оценка концентрации концентрации соединения 2. Вследствие этого для удобства сравнения значения для свежеприготовленного раствора (спектр № 1') представлены также без учета концентрации соединения 2.

*5 В ампуле появился осадок цианокумарина 3.

Интересно проанализировать последовательность процессов, протекающих в реакциях 1 + 2, выявить как общие закономерности реакций для 1 + 2a и 1 + 2b, так и различия между ними. В табл. 2 представлены значения относительного содержания основных компонентов реакций 1 + 2а и 1 + 2b, определенные для каждого из семи последовательно записанных спектров ЯМР ¹Н, соответствующих конкретному времени протекания реакции. Как уже отмечалось выше, из анализа данных спектра № 1, записанного сразу же после приготовления раствора (время реакции 20 мин) следует что, цианокумарин 3 образуется очень быстро в обеих реакциях. Кроме того, судя по этому же спектру № 1, концентации соединений 3 и 4 по сравнению с концентрацией исходного 1 значительно выше в случае реакции 1 + 2b [22 (1), 30 (3), 39% (4b)], чем для реакции 1 + 2a [58 (1), 15 (3), 16.5% (4a)], т. е. реакция Михаэля (на первом этапе) протекает заметно легче в случае изопропилиденового производного цианацетилгидразина 2.

Далее из анализа оценочных значений, представленных в табл. 2, следует, что в обеих реакционных смесях в течение 40 мин (спектры №№ 1-3) основными компонентами являются соединения 1, 3 и 4. Однако ход протекания этих реакций различен. Для реакции 1 + 2а характерно постепенное уменьшение концентрации исходного кумарина 1 и постепенное примерно одинаковое увеличение концентрации как цианокумарина 3, так и моногидразида малонового эфира 4а, и в спектре № 4 (через 50 мин после начала реакции) относительная концентрация основных компонентов составляет 21 (1), 23 (3) и 27% (4а). Параллельно в ходе этой постепенное практически одинаковое относительного суммарного содержания би- и трициклических продуктов, содержащих только группы CN (структуры $\mathbf{D} + \mathbf{E}(\mathbf{E}') + \mathbf{I}(\mathbf{I}')$) и трициклических структур, включающих фрагмент CO_2Et ($\mathbf{H}(\mathbf{H'})$ и $\mathbf{K}(\mathbf{K'})$) от 3% (спектр № 1) до 12–13%* (спектр № 4). Такая ситуация предполагает протекание одновременно нескольких вторичных взаимодействий: взаимодействие соединений 3 и 2а, приводящее к образованию структур D + E(E'); взаимодействие соединений 3 и 4а с образованием структур Н(Н') и взаимодействие соединений 1 и 4а, приводящее к образованию структур K(K'). Последняя реакция должна протекать с отщеплением спирта, однако, в спектрах данной реакционной массы его сигналы не были зафиксированы. Это позволяет предположить, что вклад структур K(K') невелик и образовавшийся этанол сразу же включается в реакцию 1 + 2a.

В случае реакции **1** + **2b** ситуация иная. Из анализа спектров № 1-№ 4 следует, что уже в начале реакции относительное содержание цианокумарина **3** максимально (30%). Через 50 мин после начала реакции содержание этого вещества уменьшается в два раза (до 15%). Параллельно в анализируемом растворе идет значительное увеличение концентрации соединений, содержащих только группы СN: дигидропирановых производных **D** и **F** и трициклических структур **E**, общее суммарное количество которых за 50 мин возрастает от 6 до 20%. За этот же период времени концентрация моногидразида малонового эфира **4b** уменьшается только на 4%. Таким образом, в ходе второго этапа реакции **1** + **2b** цианокумарин **3** в основном реагирует с исходным **2b** и гидразином, выделяющимся в ходе данной реакции. Именно поэтому вклад трициклических структур типа **H**(**H**'), которые могут образовываться при взаимодействии соединений **3** и **4a**, достаточно мал.

Параллельно, в ходе этого же второго этапа реакции происходит небольшое постепенное симбатное уменьшение содержания соединений 1 и 4b. Естественно предположить, что исходное 1 взаимодействует с гидразидом 4b, в результате чего образуются дигидропирановые соединения, содержащие фрагменты CO_2Et (структуры J(J')), и далее при отщеплении молекулы этилового спирта идет образование трициклических структур K(K'), включающих в себя группу CO_2Et . Действительно,

^{*} Суммарное содержание промежуточных структур с одним или двумя фрагментами $CO_2Et(\mathbf{A}(\mathbf{A'}) + \mathbf{B} + \mathbf{C} + \mathbf{G} + \mathbf{J} + \mathbf{L})$ составляет 4.5% в спектре № 1. В ходе реакции их общая концентрация уменьшается до 3%.

согласно данным табл. 2, в растворе 1 + 2b в спектрах № 2-№4

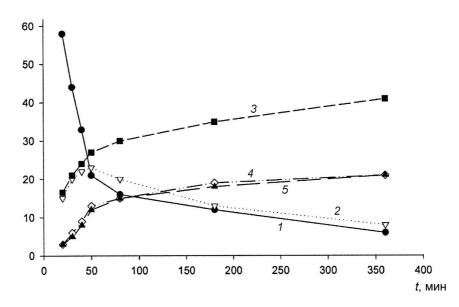
фиксируется постепенное увеличение концентрации трициклических соединений $\mathbf{K}(\mathbf{K'})$ от 2 до 8%. Суммарное содержание дигидро- пирановых соединений с фрагментом $\mathrm{CO_2Et}$ не превышает 1–2%. В анали- зируемых спектрах за первые 50 мин реакции не было зафиксировано наличие этилового спирта, что, по-видимому, связано с тем, что небольшое его количество, выделяющееся в результате реакции $\mathbf{1} + \mathbf{4b} \rightarrow \mathbf{J}(\mathbf{J'}) \rightarrow \mathbf{K}(\mathbf{K'})$, сразу же включается в цепь превращений, имеющих место в данной реакционной смеси.

Итак, из приведенных экспериментальных данных следует, что на первом этапе протекания исследуемой реакции соединений 1+2 цианокумарин 3 значительно быстрее образуется в случае использования в реакции N-изопропилиденцианацетилгидразина 2b. Второй этап реакции, включающий в себя взаимодействие образовавшегося цианокумарина 3 с соединениями 2a и 4a для реакции 1+2a, идет параллельно протеканию самой исходной реакции. В случае реакции 1+2b образовавшийся цианокумарин 3 начинает активно взаимодействовать с самим 2b, практически выводя его из реакции и тем самым блокируя ход первичного процесса 1+2b.

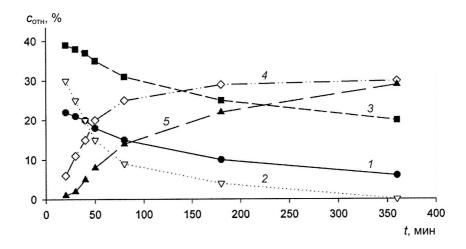
При дальнейшем протекании обеих реакций (от 1ч 20 мин до 6 ч) спектры ЯМР 1 Н фиксируют постепенное уменьшение концентраций исходного 3-этоксикарбонилкумарина 1 и продукта реакции цианокумарина 3 и параллельно увеличение содержания дигидропирановых производных и трициклических структур. Содержание моногидразида малонового эфира 4 значительно в обеих реакциях, однако, если в ходе реакции 1 + 2a все время идет нарастание содержания этого соединения (от 16.5 до 41%), то в случае реакции 1 + 2b его концентрация постепенно уменьшается от 39 до 20%.

Интересно сопоставить данные по относительной концентрации компонентов исследуемых реакций спустя 6 ч с момента их начала (спектр № 7, табл. 2). Для реакции соединений 1 + 2b содержание исходного 1 составляет ~6%, цианокумарин практически отсутствует в реакционной смеси, основными компонентами являются моногидразид малонового эфира (20%) и различные дигидропирановые и трицикли- ческие производные, причем суммарное содержание производных с двумя фрагментами CN достигает 30%, суммарное содержание трициклических структур с фрагментами CN и CO₂Et или с двумя группами CO₂Et составляет 29% и суммарное количество дигидропирановых производных с фрагментами CN и CO₂Et или с двумя группами CO₂Et не превышает 5%. Таким образом, к данному моменту времени в растворе реакции соединений 1 + 2b образующийся первоначально цианокумарин 3 практически полностью уже прореагировал, превратившись в дигидропирановые производные, которые затем трансформировались в трициклические структуры, и в растворе далее идут процессы, обусловленные взаимодействием исходного 3-этоксикарбонилкумарина 1 с моногидразидом малонового эфира, приводящим к дигидропирановому производному Ј. При отщеплении этилового спирта **J** превращается в трициклическое

соединение **К**. В спектре фиксируются сигналы этилового спирта (табл. 2); относительное содержание этанола к данному моменту возрастает до 10%.


В аналогичном спектре реакции соединений **1** + **2а** (спектр № 7) ситуация схожа, однако есть и отличие, которое заключается в том, что, хотя в спектре и присутствуют сигналы цианокумарина **3** (~8%), в ампуле наблюдается образование осадка, который после отделения и растворения в ДМСО-d₆ был охарактеризован как индивидуальный цианокумарин **3**. Таким образом, в ходе данной реакции, в отличие от реакции соединений **1** + **2b**, образующийся цианокумарин не полностью вступает в дальнейшие превращения. Содержание моногидразида малонового эфира очень велико (41%), суммарное количество дигидропирановых и трициклических производных с двумя группами СN (21%) близко суммарному количеству аналогичных соединений, включающих группы CN и CO₂Et или две группы CO₂Et (21% трициклических структур и 3% дигидропирановых структур). Сигналы этилового спирта в спектре отсутствуют.

Все сказанное выше об особенностях протекания реакций 1+2a, в наглядно проиллюстрировано графиками зависимости относительных концентраций компонентов реакций от времени протекания реакции (использованы данные табл. 2; рис. 1-для реакции 1+2a, рис. 2-для реакции 1+2b.


Следует отметить, что в ходе данной реакции из цианокумарина возможно также образование и исходного 3-этоксикарбонилкумарина $\mathbf{1}$ [1], при этом будут отщепляться гидразин и производные циануксусной кислоты типа $\mathrm{CN-CD_2-CO_2X'}$ ($\mathrm{X'=H,D,CD_3}$) (из структуры \mathbf{G}). Нельзя исключить и вторичное образование цианокумарина, возможно, из соединения \mathbf{D} . Однако в спектрах, полученных спустя 6 ч после начала реакции, содержание исходного соединения $\mathbf{1}$ для обеих реакций мало, а в реакции с гидразидом $\mathbf{2b}$ наличие цианокумарина, как уже сообщалось выше, не фиксируется. Отсюда можно сделать вывод о том, что пути повторного образования соединений $\mathbf{1}$ и $\mathbf{3}$ не являются определяющими для данных реакций.

В спектрах, зарегистрированных спустя 1 сут после начала реакции, наблюдается существенное увеличение площади мультиплетных сигналов ароматических протонов в интервале 6.60–6.90 и 7.00–7.40 для реакции 1+2a и 7.00–7.40 м. д. для 1+2b, при этом происходит сглаживание формы мультиплетов. Это, по-видимому, связано с тем, что в обоих растворах интенсивно нарастают процессы димеризации, тримеризации и далее — полимеризации образующихся соединений, в которых могут участвовать как дигидропирановые производные, так и трициклические структуры.

Таким образом, исследование методом спектроскопии ЯМР ¹Н реакции Михаэля для 3-этоксикарбонилкумарина 1 с производными цианацетилгидразина **2а,b**, осуществленное непосредственно в ампуле для регистрации спектров, позволило проследить весь ход превращений исходных соединений и продуктов, образующихся из них. Параллельно были установлены как общие закономерности, так и различия между этими реакциями.

Рис. 1. Зависимость относительных концентраций компонентов реакции 1 + 2a от времени протекания реакции: I - 3-этоксикарбонилкумарин 1, 2 – цианокумарин 3, 3 – малоновый эфир 4a; 4 - D + E(E') + F + I(I'); <math>5 - H(H') + K(K')

Рис. 2. Зависимость относительных концентраций компонентов реакции 1+2b от времени протекания реакции: I-3-этоксикарбонилкумарин $1,\ 2$ — цианокумарин $3,\ 3$ — малоновый эфир $4b;\ 4-D+E(E')+F;\ 5-H(H')+K(K')$

В заключение следует остановиться на сопоставлении данных, полученных при изучении продуктов реакции Михаэля методом масс-спектрометрии [2] и спектроскопии ЯМР ¹Н. Существенно, что объекты, изученные этими методами, различались как по условиям получения, так и по условиям наблюдения, и поэтому не могли иметь совершенно одинаковый состав. Методом спектроскопии ЯМР ¹Н наблюдалась динамика последовательных превращений в реакционной смеси без выделения во время процесса каких-либо отдельных компонентов, причем реакция осуществлялась непосредственно в ампуле для съемки спектров.

В случае масс-спектрометрии исследовались продукты реакции, проведенной в лабораторных условиях и остановленной после выпадения осадка. При этом анализировали как выпавший осадок 3-цианокумарина, так и реакционную смесь, оставшуюся после отделения 3-цианокумарина и удаления растворителя.

Тем не менее, подавляющее большинство продуктов взаимодействия удалось идентифицировать обоими спектральными методами. В то же время ряд продуктов последующего превращения 3-цианокумарина удалось зарегистрировать только методами спектроскопии ЯМР ¹H, что, вероятно, связано с удалением 3-цианокумарина **3** из реакционной смеси, изучаемой методом масс-спектрометрии.

Важно отметить, что методом спектроскопии ЯМР 1 Н удалось однозначно доказать строение образующихся в процессе реакций 1+2a, в трициклических соединений. Показано, что эти структуры содержат только шестичленные конденсированные циклы и, следовательно, циклизация осуществляется только с участием амидного атома азота. Другой возможный в случае соединения 2a вариант циклизации с участием терминальной группы NH_2 и образованием диазепинового цикла не реализуется. В свое время сделать выбор между этими структурами на основании данных масс-спектрометрии не представлялось возможным в силу того, что обе структуры имеют одинаковую массу молекулярного иона и сходный характер фрагментации.

Интересным фактом представляется также отсутствие в реакционных смесях продуктов дегидрирования трициклических структур, которые были зарегистрированы в масс-спектрах. Это свидетельствует о том, что либо, как отмечалось ранее [2], появление этих соединений обусловлено легкостью ароматизации трициклов при нагревании образцов в условиях регистрации масс-спектров, либо связано с ароматизацией в результате окислительных процессов при длительном хранении упаренных реакционных смесей.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н записаны на спектрометре Varian Unity+400 (400 МГц), внутенний стандарт ТМС. Масс-спектры записаны на хромато-масс-спектрометре Finnigan SSQ-710 при непосредственном вводе образца в источник ионов. Энергия ионизирующих электронов 70 эВ, температура ионного источника 150 °С. ИК спектры в вазелиновом масле получены на приборе Perkin–Elmer 457.

4-(3-Амино-5-оксо-4,5-дигидро-1H-пиразолил-4)-3-этоксикарбонил-3,4-дигидрокумарин (5). К смеси 0.5 г (2.3 ммоль) 3-этоксикарбонилкумарина **1** и 0.20 г (2.4 ммоль) 3-амино-5-оксо-4,5-дигидропиразола в 20 мл метанола прибавляют 2 капли пиперидина и перемешивают 24 ч при ~20 °C. Образовавшийся раствор упаривают в вакууме при температуре не выше 30 °C, остаток обрабатывают водой и образовавшийся осадок отфильтровывают. Получают 0.6 г (69%) светложелтого мелкокристаллического вещества, спекающегося при 117–120 °C и далее не плавящегося до 300 °C (из этанола). ИК спектр, v, см⁻¹: 2720 (N–H); 1710, 1680–1650 (C=O, C=N). Спектр ЯМР ¹H (ДМСО- d_6), δ , м. д. (J, Γ ц): 1.13 (3H, т, 3J = 7.2, C<u>H</u>3CH2); 3.56 (1H, д, 3J 4,4' = 2.1, H-4'); 4.07 (2H, κ , 3J = 7.2, CH3CH2); 4.71 (1H, д, 3J 4,4' = 2.1, H-4); 6.60–7.00 (4H, м, CH аром.); 10.36 (1H, с, OH енол);

11.40 (3H, уш. с, NH₂ + NH) (енольная форма). Спектр ЯМР 1 Н (ацетон-d₆), δ , м. д. (J, Γ ц): 1.18 (3H, т, 3J = 7.2, CH₃CH₂); 3.31 (1H, c, H-3); 3.76 (1H, д, $^3J_{4,4'}$ = 2.2, H-4'); 4.13 (2H, κ , 3J = 7.2, CH₃CH₂); 4.87 (1H, д, $^3J_{4,4'}$ = 2.2, H-4); 6.70–7.10 (4H, м, CH аром.); 9.52 (1H, сильно уш. сигнал, NH); протоны группы NH₂ быстро обмени- ваются с водой растворителя и образуют общий сильно уширенный сигнал при 3.00 м. д. (кето-форма). Масс-спектр (ЭУ, 70 эВ), m/z (I_{отн}, 9): 317 [М] $^+$ (100). Найдено, 9 : С 56.64; H 4.92; N 13.18. C₁₅H₁₅N₃O₅. Вычислено, 9 : С 56.78; H 4.76; N 13.24.

Синтез соединений 7а, в описан в [1].

СПИСОК ЛИТЕРАТУРЫ

- 1. М. П. Немерюк, В. Д. Димитрова, О. С. Анисимова, А. Л. Седов, Н. П. Соловьева, В. Ф. Травень, *XTC*, 1502 (2005). [*Chem. Heterocycl. Comp.*, **41**, 1255 (2005)].
- 2. М. П. Немерюк, В. Д. Димитрова, О. С. Анисимова, А. Л. Седов, Н. П. Соловьева, В. Ф. Травень, *XГС*, 1652 (2003). [*Chem. Heterocycl. Comp.*, **39**, 1454 (2003)].
- 3. М. П. Немерюк, В. Д. Димитрова, А. Л. Седов, В. Ф. Травень, *XГС*, 1417 (1997). [*Chem. Heterocycl. Comp.*, **33**, 1234 (1997)].

Российский химико-технологический университет им. Д. И. Менделеева, Москва 125047, Россия e-mail: traven@muctr.edu.ru

 $^{\rm a}\Phi \Gamma {\it У}\Pi$ Центр по химии лекарственных средств ($\Phi \Gamma {\it У}\Pi$ ЦХЛС-ВНИХФИ), Москва 119815, Россия

e-mail: sedov-and@mail.ru

Поступило 05.10.2007 После переработки 04.12.2009