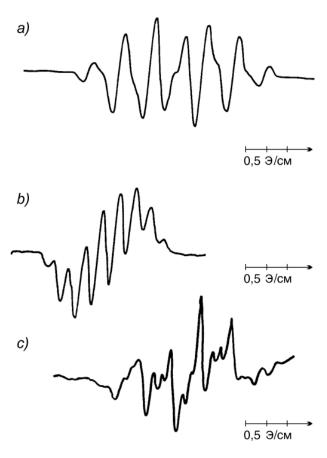
Т. И. Прокофьева, В. Б. Вольева, А. И. Прокофьев, И. С. Белостоцкая, Н. Л. Комиссаров, В. В. Ершов

СИНТЕЗ ГЕТЕРОЦИКЛИЧЕСКИХ ПРОИЗВОДНЫХ 3,6-ди-трет-БУТИЛ-о-БЕНЗОХИНОНА КАТАЛИТИЧЕСКОЙ ДЕГИДРОКОНДЕНСАЦИЕЙ С ЭТИЛЕНГЛИКОЛЕМ, ГЛИЦЕРИНОМ, ДИЭТАНОЛАМИНОМ

Осуществлена катализируемая MnO_2 -NаOH дегидроконденсация 3,6-ди*трет*-бутил-о-бензохинона с этиленгликолем, глицерином и его хлоргидрином, диэтаноламином в среде спирт-ДМФА с образованием 7,10-ди*трет*-бутил-2,5-диоксабицикло[4.4.0]дека-1,6-диен-8,9-диона, его 4-гидроксиметил- и 4-хлорметилзамещенных производных и 7,10-ди-*трет*-бутил-5-(β -гидроксиэтил)-2-окса-5-азабицикло[4.4.0]дека-1,6-диен-8,9-диона.

Ключевые слова: двуокись марганца, 3,6-ди-*mpem*-бутил-*o*-бензохинон, 7,10-ди-*mpem*-бутил-5-(β-гидроксиэтил)-2-окса-5-азабицикло[4.4.0]дека-1,6-диен-8,9-дион, производные 2,5-диоксабицикло[4.4.0]дека-1,6-диен-8,9-диона, каталитическая дегидроконденсация.

3,6-Ди-*трет*-бутил-*о*-бензохинон (1) и редокссопряженный 3,6-ди-*трет*-бутилпирокатехин (2) получили распространение в качестве моделей исследования фундаментальных проблем твердофазной и структурной химии, радиоспектроскопии, катализа, медицинской биологии (см., например, [1, 2]). В значительной мере это обусловлено редокс-активностью пары 1, 2, легкостью электронных переходов в триаде хинон-семихинон-пирокатехин, координирующей способностью *о*-карбонильных (гидроксильных) групп, относительной простотой регистрации и идентификации производных. Введение заместителей в по-


ложения 4 и 5 кольца расширяет диапазон возможностей применения пары. В частности, среди амино- и алкоксизамещенных производных хинона обнаружены биологически активные соединения и комплексоны специального назначения [3].

Алкоксилирование хинона **1** низшими спиртами осуществляется как спонтанный окислительно-восстановительный процесс с участием атмосферного кислорода:

Скорость такого автоалкоксилирования чрезвычайно мала, однако процесс можно катализировать низковалентными ионами переходных металлов. Мы получили алкоксизамещенные производные хинона при его взаимодействии с метанолом и этанолом в присутствии $MnOAc_2$ [4]. Применимость данного метода, сочетающего использование спирта в качестве реагента и растворителя, ограничена плохой растворимостью хинона 1 в большинстве высших и замещенных спиртов. Исследование алкоксилирования в бинарных смесях спирт—растворитель с различными катализаторами (ацетаты и галогениды Mn, Co, Fe, Cu) показало, что

наилучшие результаты достигаются в среде спирт—ДМФА с использованием двойного катализатора MnO_2 —NаOH. При взаимодействии хинона **1** с этиленгликолем, глицерином, хлоргидрином глицерина и диэтаноламином впервые получены 4,5-дизамещенные гетероциклические производные хинона **1**: 7,10-ди-*трет*-бутил-2,5-диоксабицикло-[4.4.0]де-ка-1,6-диен-8,9-дион (**3**), 4-гидроксиметил-7,10-ди-*трет*-бутил-2,5-диоксабицикло[4.4.0]дека-1,6-диен-8,9-дион (**4**), 4-хлорметил-7,10-ди-*трет*-бутил-2,5-диоксабицикло[4.4.0]дека-1,6-диен-8,9-дион (**5**) и 5-(β -гидроксиэтил)-7,10-ди-*трет*-бутил-2-окса-5-азабицикло[4.4.0]дека-1,6-диен-8,9-дион (**6**).

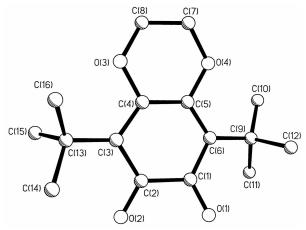
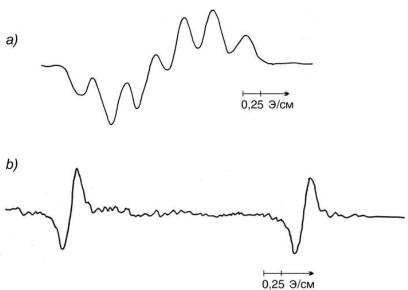

В химии хинонов одним из методов структурной идентификации является ЭПР анализ парамагнитных соединений, образующихся при одноэлектронном восстановлении — семихинонов или семихинолятов. Соответствующие хинону $\bf 3$ семихинон и дейтеросемихинон получены непосредственно в резонаторе ЭПР спектрометра при облучении УФ светом растворов хинона в толуоле с небольшой добавкой $\bf H_2O$ ($\bf D_2O$). Спектр ЭПР семихинона (рис. $\bf 1a$) отвечает взаимодействию неспаренного электрона с протоном гидроксильной группы и четырьмя метиленовыми

Рис. 1. ЭПР спектры продуктов одноэлектронного восстановления хинона **3**: a – семихинона; b – семихинолята Na ; c – дейтеросемихинона

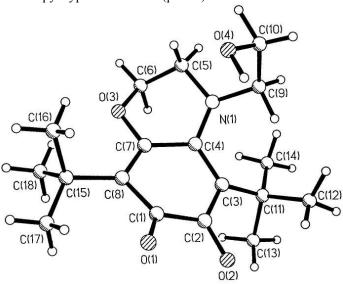
протонами гетероциклического фрагмента с параметрами $a_{\rm H}^{\rm CH_2}=0.65$ и $a_{\rm H}^{\rm OH}=1.4$ Э. Спектр дейтеросемихинона (рис. 1c) характеризуется константой $a_{\rm D}^{\rm OD}=0.2$ Э. При восстановлении хинона 3 металлическим натрием в ТГФ наблюдается спектр семихинолята (рис. 1b), соответствующий взаимодействию неспаренного электрона с четырьмя метиленовыми протонами и ядром 23 Na (J=3/2), $a_{\rm H}^{\rm CH_2}=a_{\rm Na}=0.35$ Э.

Идентификация хинона 3 подтверждена также данными рентгеноструктурного анализа (рис. 2).



 $\it Puc.~2$. Молекулярная структура 7,10-ди- $\it mpem$ -бутил-2,5-диоксабицикло[4.4.0]дека-1,6-диен-8,9-диона **3**

Метод ЭПР оказался особенно полезным при идентификации структуры дегидроаддукта хинона 1 с глицерином, существующего в форме ортохинона 4а (красный) лишь в расплаве и в присутствии оснований, а в обычных условиях имеющего структуру трициклического изомера 4b (белый). Криптохинонная структура, обусловливающая термо-и рН-хромные свойства трицикла 4b, подтверждена ЭПР анализом семихинолятов, образующихся при его восстановлении натрием и амальгамой таллия, спектрально идентичных семихинолятам, полученным из хинона 5 в аналогичных условиях:


Наблюдаемые спектры натриевых семихинолятов соответствуют взаимодействию неспаренного электрона с двумя экваториальными протонами гетероцикла и ядром ²³Na ($a_{\text{Na}} = a_{\text{H}} = 0.45$ Э, рис. 3a). В спектрах семихинолятов таллия наблюдается дублет от ядра ¹⁹⁹Tl ($a_{\text{Tl}} = 27.2$ Э, $g_{\text{iso}} = 1.9327$, рис. 3b). Структурная идентификация дегидроад-

дуктов **4** и **5** подтверждена данными ЯМР 1 Н. Интересной особенностью хинона **5** является неэквивалентность протонов хлорметильной группы, свидетельствующая о затрудненности ее свободного вращения.

Рис. 3. ЭПР спектры продуктов восстановления соединений **4** и **5**: a – Na в ТГФ; b – амальгамой таллия в ТГФ

Идентификация o-хинона $\mathbf{6}$ основана на данных спектра ЯМР 1 Н и рентгеноструктурного анализа (рис. 4).

Рис. 4. Молекулярная структура 7,10-ди-*трет*-бутил-2-окса-5-азабицикло[4.4.0]дека-1,6-диен-8,9-диона **6**

Таблица 1 Длины связей (d) в структуре 3

Связь	d, Å	Связь	d, Å
O(1)-C(1)	1.20(1)	O(1')-C(1')	1.22(2)
O(2)-C(2)	1.23(1)	O(2')-C(2')	1.20(2)
O(3)-C(4)	1.36(2)	O(3')-C(4')	1.36(1)
O(3)-C(8)	1.42(2)	O(3')-C(7')	1.40(2)
O(4)-C(5)	1.34(1)	O(4')–C(5')	1.35(1)
O(4)-C(7)	1.41(2)	O(4')-C(8')	1.45(2)
C(1)-C(6)	1.45(2)	C(1')-C(6')	1.43(2)
C(1)-C(2)	1.53(2)	C(1')-C(2')	1.51(2)
C(2)-C(3)	1.47(2)	C(2')–C(3')	1.49(2)
C(3)-C(4)	1.37(2)	C(3')-C(4')	1.36(2)
C(3)-C(13)	1.51(2)	C(3')-C(9')	1.59(2)
C(4)-C(5)	1.47(2)	C(4')–C(5')	1.49(2)
C(5)-C(6)	1.35(2)	C(5')-C(6')	1.35(2)
C(6)-C(9)	1.51(2)	C(6')-C(13')	1.52(2)
C(7)-C(8)	1.38(2)	C(7')-C(8')	1.44(2)
C(9)-C(10)	1.51(2)	C(9')-C(12')	1.46(2)
C(9)-C(12)	1.52(2)	C(9')-C(11')	1.50(2)
C(9)-C(11)	1.53(2)	C(9')–C(10') 1.53	
C(13)-C(15)	1.50(2)	C(13')-C(15') 1.42(2)	
C(13)-C(16)	1.52(2)	C(13')-C(16') 1.49(2)	
C(13)-C(14)	1.54(2)	C(13')–C(14') 1.55(2)	

 $\begin{tabular}{ll} T а блица & 2 \\ \begin{tabular}{ll} B алентные углы (\pmb{\omega}) в структуре 3 \\ \end{tabular}$

Угол	<i>ю</i> , град.	Угол	<i>ю</i> , град.
1	2	3	4
C(4)-O(3)-C(8)	120(1)	C(4')-O(3')-C(8')	119(1)
C(5)-O(4)-C(7)	120(1)	C(5')-O(4')-C(8')	121(1)
O(1)-C(1)-C(6)	126(2)	O(1')-C(1')-C(6')	124(2)
O(1)-C(1)-C(2)	115(1)	O(1')-C(1')-C(2')	111(2)
C(6)-C(1)-C(2)	119(1)	C(6')–C(1')–C(2')	124(1)
O(2)-C(2)-C(3)	122(1)	O(2')-C(2')-C(3')	121(2)
O(2)-C(2)-C(1)	116(1)	O(2')-C(2')-C(1')	119(2)
C(3)–C(2)–C(1)	122(1)	C(3')-C(2')-C(1')	120(2)
C(4)–C(3)–C(2)	110(1)	C(4')-C(3')-C(2')	112(1)

Окончание таблицы 2

1	2	3	4
C(4)-C(3)-C(13)	126(1)	C(4')-C(3')-C(9')	125(1)
C(2)-C(3)-C(13)	124(1)	C(2')-C(3')-C(9')	122(2)
O(3)-C(4)-C(3)	116(2)	O(3')-C(4')-C(3')	118(1)
O(3)-C(4)-C(5)	117(1)	O(3')-C(4')-C(5')	118(1)
C(3)-C(4)-C(5)	127(1)	C(3')-C(4')-C(5')	125(1)
O(4)-C(5)-C(6)	117(1)	C(6')-C(5')-O(4')	117(1)
O(4)-C(5)-C(4)	118(1)	C(6')-C(5')-C(4')	127(2)
C(6)-C(5)-C(4)	124(1)	O(4')-C(5')-C(4')	117(1)
C(5)-C(6)-C(1)	115(2)	C(5')-C(6')-C(1')	111(1)
C(5)-C(6)-C(9)	126(1)	C(5')-C(6')-C(13')	125(1)
C(1)-C(6)-C(9)	119(1)	C(1')-C(6')-C(13')	123(1)
C(8)-C(7)-O(4)	115(1)	O(3')-C(7')-C(8')	114(2)
C(7)-C(8)-O(3)	112(1)	C(7')-C(8')-O(4')	107(2)
C(10)-C(9)-C(6)	114(1)	C(12')-C(9')-C(11')	104(2)
C(10)-C(9)-C(12)	111(2)	C(12')-C(9')-C(3')	110(2)
C(6)-C(9)-C(12)	108(1)	C(11')-C(9')-C(3')	112(1)
C(10)-C(9)-C(11)	105(2)	C(12')-C(9')-C(10')	109(2)
C(6)-C(9)-C(11)	111(1)	C(11')-C(9')-C(10')	106(2)
C(12)-C(9)-C(11)	108(1)	C(3')-C(9')-C(10')	115(2)
C(15)-C(13)-C(3)	109(1)	C(15')-C(13')-C(16')	111(2)
C(15)-C(13)-C(1)	109(2)	C(15')-C(13')-C(6')	111(1)
C(3)–C(13)–C(16)	113(1)	C(16')-C(13')-C(6')	115(1)
C(15)-C(13)-C(14)	109(2)	C(15')-C(13')-C(14')	110(2)
C(3)-C(13)-C(14)	111(1)	C(16')-C(13')-C(14')	101(2)
C(16)–C(13)–C(14)	106(2)	C(6')-C(13')-C(14')	109(1)

Длины связей (d) в структуре 6

Таблица 3

Связь	d, Å	Связь	d, Å
N(1)-C(4)	1.360 (6)	C(3)–C(11)	1.545 (6)
N(1)-C(5)	1.462 (6)	C(4)-C(7)	1.494 (6)
N(1)-C(9)	1.482 (6)	C(5)–C(6)	1.477 (7)
O(1)-C(1)	1.218 (6)	C(7)-C(8)	1.343 (6)
O(2)-C(2)	1.251 (6)	C(8)-C(15)	1.535 (7)
O(3)-C(7)	1.357 (5)	C(9)-C(10)	1.511 (8)
O(3)-C(6)	1.433 (6)	C(11)-C(14)	1.526 (7)
O(4)-C(10)	1.383 (6)	C(11)-C(12)	1.547 (7)
C(1)-C(8)	1.451 (7)	C(11)-C(13)	1.556 (7)
C(1)-C(2)	1.517 (7)	C(15)-C(17)	1.461 (8)
C(2)–C(3)	1.417 (6)	C(15)-C(18)	1.505 (8)
C(3)-C(4)	1.396 (3)	C(15)-C(16)	1.533 (9)

Таблица 4 Валентные углы (*@*) в структуре 6

Угол	<i>ю</i> , град.	Угол	ω, град.
C(4)-N(1)-C(5)	120.4 (4)	C(8)-C(7)-C(4)	125.1 (4)
C(4)-N(1)-C(9)	120.8 (4)	O(3)-C(7)-C(4)	116.1 (4)
C(5)-N(1)-C(9)	116.1 (4)	C(3)–C(8)–C(1)	112.0 (5)
C(7)-O(3)-C(6)	117.3 (4)	C(7)–C(8)–C(15)	123.5 (4)
O(1)-C(1)-C(8)	123.9 (5)	C(1)-C(8)-C(15)	124.4 (5)
O(1)-C(1)-C(2)	116.7 (4)	N(1)-C(9)-C(10)	111.6 (4)
C(8)-C(1)-C(2)	119.4 (5)	O(4)-C(10)-C(9)	114.0 (5)
O(2)-C(2)-C(3)	123.7 (5)	C(14)-C(11)-C(3)	114.0 (4)
O(2)-C(2)-C(1)	114.7 (5)	C(14)-C(11)-C(12)	110.1 (4)
C(3)-C(2)-C(1)	121.5 (4)	C(3)–C(11)–C(12)	111.4 (4)
C(4)-C(3)-C(2)	112.5 (4)	C(14)-C(11)-C(13)	105.5 (4)
C(4)-C(3)-C(11)	127.6 (4)	C(3)-C(11)-C(13)	108.0 (4)
C(2)-C(3)-C(11)	119.8 (4)	C(12)-C(11)-C(13)	107.4 (4)
N(1)-C(4)-C(3)	124.6 (5)	C(17)-C(15)-C(18)	109.0 (7)
N(1)-C(4)-C(7)	115.7 (4)	C(17)-C(15)-C(16)	106.9 (8)
C(3)-C(4)-C(7)	119.7 (5)	C(18)-C(15)-C(16)	107.2 (5)
N(1)-C(5)-C(6)	109.0 (4)	C(17)-C(15)-C(8)	113.0 (5)
O(3)-C(6)-C(5)	107.4 (5)	C(18)-C(15)-C(8)	112.5 (5)
C(8)-C(7)-O(3)	118.7 (4)	C(16)-C(15)-C(8)	107.9 (5)
	•	•	•

Таблица 5 Характеристики 7,10-ди-трет-бутил-2,5-диоксабицикло[4.4.0]дека-1,6-диен-8,9-дионов (3–5) и 7,10-ди-трет-бутил-5-(β-гидроксиэтил)-2-окса-5-азабицикло[4.4.0]дека-1,6-диен-8,9-диона (6)

Соеди-	Брутто-	Т. пл., ℃	, ,	ено, % лено, %	Спектр ЯМР 1Н, СDСl3, δ, м. д.
нение	формула		C	Н	
3	C ₁₆ H ₂₂ O ₄	173-174	69,20 69,06	8,01 7,89	1,29 (9H, s, CMe ₃); 4,35 (2H, s, CH ₂ O)
4	C ₁₇ H ₂₄ O ₅	169-170	66,11 66,23	7,75 7,79	1,36 (9H, s, CMe ₃); 4,09 (4H, уш. сигн., <i>J</i> = 2,8 Гц, 2CH ₂ O); 4,64 (1H, т, <i>J</i> = 2,8 Гц, CH); 7,65 (1H, c, OH)
5	C ₁₆ H ₂₃ ClO ₄	186-187	62,43 62,38	7,15 7,03	1,3 and 1,32 (9H, c, CMe ₃); 3,74 (1H, д. д, $J = 11,5$ и 6,5 Γ ц, 2CH ₂ Cl); 3,78(1H, д. д, $J = 11,5$ и 5,5 Γ ц, 2CH ₂ Cl); 4,24 (1H, д. д, $J = 8,2$ и 11,6 Γ ц, CH ₂ O); 4,44 (1H, д. д, $J = 3,1$ и 11,6 Γ ц, CH ₂ O); 4,61 (1H, м, CH)
6	C ₁₈ H ₂₇ NO ₄	187-188	67,11 67,29	8,33 8,41	1,28 и 1,30 (9H, c, CMe ₃); 3,6 (4H, уш. c, 2CH ₂ N); 3.85 (4H, т. <i>J</i> = 6.1 Гц. 2CH ₂ O)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н регистрировали на приборе Bruker WM-400, растворитель CDCl₃. Спектры ЭПР обескислороженных образцов в ТГФ или толуоле регистрировали на спектрометре Varian E-12A. ТСХ реакционных смесей осуществляли на пластинках Silufol UV-254 в системе гексан—эфир, 4:1. РСА выполнен в соавторстве с О. В. Шишкиным и Е. В. Соломович (ИНЭОС РАН). На рис. 2 и 4 приведены молекулярные структуры хинонов 3 и 6, в табл. 1–4 – значения длин связей и валентных углов. Более подробно результаты РСА будут приведены отдельно. Синтез гетероциклических дегидроаддуктов 3,6-ди-*трет*-бутил-о-бензохинона (1) этиленгликолем, глицерином, хлоргидрином глицерина и диэтаноламином проводят по общей методике: к раствору 1.1 г (5 ммоль) хинона 1 в 50 мл ДМФА добавляют 5–6 мл спирта, 0.02 г (0.5 ммоль) NаОН и 0.05 г (0.5 ммоль) МпО₂, перемешивают 8–10 ч до исчезновения исходного хинона (контроль ТСХ). Раствор декантируют, разбавляют водой, экстрагируют хлороформом. Выходы хинонов 3–6 65–70 %, характеристики приведены в табл. 5.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 96–03–33253a).

СПИСОК ЛИТЕРАТУРЫ

- 1. В. Б. Вольева, А. И. Прокофьев, В. А. Жорин, Т. И. Прокофьева, И. С. Белостоцкая, Н. Л. Комиссарова, А. Ю. Кармилов, В. В. Ершов, *Хим. физика*, **15**, 16 (1996).
- М. И. Кабачник, Н. Н. Бубнов, С. П. Солодовников, А. И. Прокофьев, *Успехи химии*, 53, 487 (1984).
- R. R. Rakhimov, N. N. Benetis, A. Lund, J. S. Hwang, A. I. Prokof'ev, Y. S. Lebedev, *Chem. Phys. Lett.*, 255, 156 (1996).
- 4. В. Б. Вольева, И. А. Новикова, Е. В. Иванова, В. В. Ершов, *Изв. АН СССР. Сер. хим.*, 1, 215 (1986).

Институт биохимической физики им. Н. М. Эмануэля РАН, Москва 117977, Россия e-mail: chembio.chph.ras.ru chembio@glasnet.ru

Поступило в редакцию 13.01.99