И. В. Украинец*, А. А. Давиденко a , Е. В. Моспанова 6 , Л. В. Сидоренко, Е. Н. Свечникова

4-ГИДРОКСИХИНОЛОНЫ-2

176*. 4-R-2-ОКСО-1,2-ДИГИДРОХИНОЛИН-3-КАРБОНОВЫЕ КИСЛОТЫ. СИНТЕЗ, ФИЗИКО-ХИМИЧЕСКИЕ И БИОЛОГИЧЕСКИЕ СВОЙСТВА

Осуществлён синтез и проведён сравнительный анализ кислотных свойств большой группы 4-R-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот. Обсуждаются особенности регистрации спектров ЯМР полученных соединений, а также результаты изучения их анальгетической активности.

Ключевые слова: 4-R-2-оксо-1,2-дигидрохинолин-3-карбоновые кислоты, pKa, анальгетическая активность, гидролиз.

Даже беглый просмотр научной литературы и патентной документации, описывающей 4-гидроксихинолоны-2, обнаруживает чрезвычайно широкий спектр присущих этим соединениям биологических свойств. При этом в ряду производных 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот подавляющее число публикаций посвящено N-R-амидам и пролуктам их дальнейших химических превращений. Значительно реже исследуются сложные эфиры и практически отсутствуют сведения о самих кислотах. Такая ситуация становится вполне понятной, если принять во внимание разнообразный и хорошо апробированный арсенал высокоэффективных методов получения именно амидированных производных [2-8]. Далеко не последнюю роль играют также неограниченный выбор и доступность производимых химической промышленностью полупродуктов таких синтезов - первичных или вторичных алкил-, арили гетариламинов. Благодаря этому появляется реальная возможность целенаправленно менять свойства получаемых N-R-амидов в очень широких пределах и тем самым добиваться от них оптимальных характеристик, что особенно ценно при проведении работ по созданию новых биологически активных веществ.

Принципиально различных методов получения сложных эфиров 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот тоже известно достаточно много [2–6, 9–12]. Однако все они эффективны лишь в отношении низших алкиловых эфиров, в остальных же случаях приходится прибегать к специальным приёмам (например к высокотемпературной переэтерификации [9]), отличающимся, к сожалению, невысокими выходами.

^{*} Сообщение 175 см. [1].

И только для синтеза самих 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-706

карбоновых кислот практическое значение имеет всего лишь один путь – гидролиз сложных эфиров. К тому же, вариантов успешной реалиации этого, на первый взгляд, тривиального химического преобразования сложного эфира в кислоту существует совсем немного. Так, типичный для решения подобных задач щёлочной гидролиз в данном случае оказывается вообще неприемлемым. Как известно, сложные эфиры 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот проявляют необычно высокую реакционную способность по отношению к N-нуклеофилам и в то же время весьма устойчивы к действию гидроксидов щёлочных металлов за счёт образования инертных солей по группе 4-ОН [13]. Поэтому осуществить щёлочной гидролиз удаётся только после значительного увеличения продолжительности реакции, но при этом гидролиз неизменно сопровождается декарбоксилированием с образованием 3H-производных [3, 9].

Лучшие результаты даёт кислотный гидролиз — целевые продукты удаётся получить после кратковременного нагревания 3-этоксикарбонил-4-гидрокси-2-оксо-1,2-дигидрохинолинов в конц. НСІ. Образующиеся при этом кислоты выделяются из реакционной смеси в виде кристаллических осадков, что позволяет контролировать ход реакции визуально, однако этот метод сложно применять для больших загрузок.

Не совсем удачным представляется также и проводимое в атмосфере азота взаимодействие сложных эфиров хинолин-3-карбоновых кислот с анионом 4-метоксифенола [9]. Наиболее существенным недостатком этого варианта является использование большого избытка NaH для генерирования фенолят-аниона.

С учётом всех приведённых выше данных, наиболее подходящим методом получения 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот, по нашему мнению, можно признать гидролиз низших алкиловых эфиров, осуществляемый приблизительно 2.8 M раствором HCl в уксусной кислоте с низким содержанием воды (готовится смешением расчётных количеств уксусного ангидрида и конц. НС1) [2]. Простота выполнения эксперимента, доступность используемых реагентов, высокие выходы и чистота конечных продуктов позволяют рекомендовать этот метод как препаративный. Именно его мы и применили в синтезе 4-гидроксизамещённых кислот 1-19 (табл. 1). Единственным исключением в этой группе является 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-илуксусная кислота (20). В отличие от кислот 1-19 она значительно устойчивее к декарбоксилированию и для её получения особые условия уже не требуются [13]. Аналогичным образом, т. е. простым щёлочным гидролизом сложных эфиров соответствующих 2-оксо-1,2-дигидро- или изомерных им 4-оксо-1,4-дигидрохинолин-3-карбоновых кислот, получены также 4-Н-, 4-хлор-, 4-оксо-1,4-дигидро-, 4-амино- и 4-метилзамещённые производные (табл. 1). В случае 4-алкил- и 4-ариламинопроизводных 26 и 27 использована другая синтетическая схема - взаимодействие соответствующих алкиламинов или анилинов с 2-оксо-4-хлор-1,2-дигидрохинолин-3-карбоновыми кислотами [14].

Значения рKа в 80% водном диоксане и биологические свойства 4-R-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот 1–32

Сое- дине- ние*	Структурная формула	pKa ^{COOH} pKa ^{4-OH}		AЭ**	
1	2	3	4	5	
1	OH COOH	7.16 ± 0.03	13.53 ± 0.06	34.1	
2	OH COOH NO Me	7.49 ± 0.01	13.35 ± 0.08	28.6	
3 [15]	OH COOH N Et	7.53 ± 0.05	13.44 ± 0.05	13.9	
4 [16]	OH COOH All	7.30 ± 0.06	13.51 ± 0.10	14.4	
5	OH COOH N O Pr	7.61 ± 0.02	13.48 ± 0.03	7.8	
6	OH COOH N O Bn	7.15 ± 0.04	13.32 ± 0.08	17.2	
7	OH COOH N Ph	6.91 ± 0.02	13.24 ± 0.01	17.0	
8	OH COOH NO CH ₂ CH ₂ CONH ₂	7.06 ± 0.05	13.20 ± 0.06	77.3	
9	F OH COOH	6.87 ± 0.01	13.45 ± 0.11	10.4	
10	CI OH COOH	6.76 ± 0.05	13.25 ± 0.06	7.2	
11	CI NH COOH		Не растворима		
12	Br OH COOH	6.69 ± 0.02	13.31 ± 0.15	69.1	

Продолжение таблицы 1

1	2	3	4	5
13	I OH COOH	6.63 ± 0.05	13.46 ± 0.11	34.6
14	OH COOH	5.69 ± 0.08	13.20 ± 0.11	8.7
15	MeO OH COOH	7.68 ± 0.07	13.60 ± 0.10	10.4
16 [15]	MeO H OOH	7.20 ± 0.03	13.47 ± 0.06	17.1
17	OH COOH	7.61 ± 0.03	13.48 ± 0.04	8.7
18 [3]	OH COOH	7.32 ± 0.08	13.41 ± 0.03	15.9
19 [17]	Me OH COOH	8.25 ± 0.01	13.67 ± 0.02	54.9
20 [13]	OH OH	6.06 ± 0.05	11.65 ± 0.05	30.0
21 [18]	Cl	6.29 ± 0.05	-	8.7
22	Et COOH	8.74 ± 0.07	-	30.5
23	COOH	8.99 ± 0.01	-	21.2
24	Pr O COOH	10.92 ± 0.10	_	11.6
25 [19]	Pr NH ₂ COOH	pKa > 14	-	52.4
26 [14]	H BnNH COOH	pKa > 14	_	75.4
	A N. O			

Окончание таблицы 1

1	2	3	4	5
27 [14]	4-CIPhNH COOH NO Pr	10.48 ± 0.05	_	19.6
28 [20]	Me COOH	7.15 ± 0.01	_	36.7
29 [21]	Me COOH N O	7.10 ± 0.01	_	33.4
30 [22]	Me COOH NO All	6.95 ± 0.03	-	51.5
31 [21]	Me COOH	7.17 ± 0.03	-	15.6
32	Me COOH	7.70 ± 0.01	-	14.6
	Диклофенак	_	_	34.1
	Кеторолак	_	_	46.4
	Трамадол	-	_	57.2

^{*} В указанных литературных источниках приведены методики синтеза и спектры ЯМР 1 Н соответствующих хинолин-3-карбоновых кислот.

Представленные в табл. 1 хинолин-3-карбоновые кислоты являются бесцветными кристаллическими веществами. За исключением хинолин-3-илуксусной кислоты 20 все 4-гидроксизамещённые производные 1–19 плавятся с разложением (табл. 2). В растворе эти соединения ещё менее устойчивы и довольно быстро подвергаются декарбоксилированию даже при комнатной температуре [16]. Эту особенность необходимо обязательно учитывать при работе с растворами таких соединений, в частности при регистрации их спектров ЯМР ¹Н (табл. 3). Так, например, многие 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновые кислоты не очень хорошо растворимы в органических растворителях, в том числе в ДМСО. Однако для ускорения растворения образцов не следует использовать нагрев выше 50 °С. В противном случае в спектрах ЯМР ¹Н будут зафиксированы синглетные сигналы в области 5.5–5.8 м. д., обусловленные протонами Н-3 хинолонового ядра и свидетельствующие о присутствии в исследуемых растворах продуктов декарбоксилирования.

^{**} АЭ – анальгетический эффект (повышение порога болевой чувствительности, %).

 $\begin{tabular}{ll} $T\ a\ f\ \pi\ u\ q\ a\ 2 \end{tabular} \begin{tabular}{ll} $X\ apak \ tepuc tuku\ heko topu x 4-R-2-0 k co-1,2-дигидрохинолин-3-карбоновых\ кислот \end{tabular}$

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %		Т. пл., °С*	Выход,	
ПСПИС	формула	С	Н	N		70
1	$C_{10}H_7NO_4$	58.68 58.54	3.56 3.44	6.75 6.83	_	93
2	$C_{11}H_9NO_4$	60.37 60.28	4.22 4.14	6.50 6.39	187 (разл.)	88
5	$C_{13}H_{13}NO_4$	63.02 63.15	5.41 5.30	5.78 5.66	154 (разл.)	85
6	$C_{17}H_{13}NO_4$	69.24 69.15	4.36 4.44	4.61 4.74	216 (разл.)	90
7	$C_{16}H_{11}NO_4$	68.25 68.33	4.05 3.94	5.10 4.98	193 (разл.)	94
8	$C_{13}H_{12}N_2O_5$	<u>56.41</u> 56.52	4.29 4.38	10.02 10.14	179 (разл.)	96
9	$C_{10}H_6FNO_4$	<u>53.73</u> 53.82	2.83 2.71	6.35 6.28	_	86
10	$C_{10}H_6CINO_4$	<u>50.22</u> 50.13	2.65 2.52	<u>5.94</u> 5.85	_	93
11	$C_{10}H_6CINO_4$	<u>50.20</u> 50.13	2.66 2.52	<u>5.92</u> 5.85	_	91
12	$C_{10}H_6BrNO_4$	<u>42.13</u> 42.28	2.02 2.13	<u>5.06</u> 4.93	_	87
13	$C_{10}H_6INO_4$	36.36 36.28	1.95 1.83	4.10 4.23	_	90
14	$C_{10}H_5Br_2NO_4$	32.98 33.09	1.27 1.39	3.77 3.86	257 (разл.)	96
15	$C_{12}H_{11}NO_6$	54.46 54.34	4.31 4.18	5.42 5.28	_	95
17	$C_{13}H_{11}NO_4$	63.74 63.67	4.63 4.52	5.84 5.71	141 (разл.)	86
22	$C_{10}H_7NO_3$	63.60 63.49	3.85 3.73	7.33 7.40	335–337	93
23	$C_{13}H_{13}NO_3$	67.41 67.52	<u>5.60</u> 5.67	<u>5.94</u> 6.06	156–158	90
24	$C_{13}H_{13}NO_3$	67.44 67.52	<u>5.58</u> 5.67	<u>5.91</u> 6.06	149–151	92
32	$C_{12}H_9NO_5$	58.38 58.30	3.79 3.67	<u>5.54</u> 5.67	300–302	95

^{*} При определении температур плавления в запаянном с обоих концов капилляре зафиксировать визуально момент разложения кислот 1, 9–13 и 15 не удаётся.

Соеди- нение	Химические сдвиги, δ , м. д. (J , Γ п)
1	15.83 (1H, уш. c, 4-ОН); 14.39 (1H, уш. c, СООН); 12.95 (1H, c, NH); 8.02 (1H, д, J = 8.0, H-5); 7.79 (1H, т, J = 7.5, H-7); 7.47 (1H, д, J = 8.4, H-8); 7.39 (1H, т, J = 7.7, H-6)
2	15.80 (1H, уш. c, 4-OH); 14.43 (1H, уш. c, COOH); 8.17 (1H, д, J = 8.0, H-5); 7.91 (1H, т, J = 7.7, H-7); 7.81 (1H, д, J = 8.4, H-8); 7.47 (1H, т, J = 7.5, H-6); 3.63 (3H, c, NCH ₃)
5	15.95 (1H, уш. c, 4-OH); 14.47 (1H, уш. c, COOH); 8.19 (1H, д, J = 8.1, H-5); 7.92 (1H, т, J = 7.8, H-7); 7.80 (1H, д, J = 8.3, H-8); 7.50 (1H, т, J = 7.5, H-6); 4.23 (2H, т, J = 7.1, NCH ₂); 1.55 (2H, м, NCH ₂ C <u>H</u> ₂); 0.91 (3H, т, J = 7.3, CH ₃)
6	15.77 (1H, уш. c, 4-OH); 14.53 (1H, уш. c, COOH); 8.18 (1H, д. д, J = 7.9 и J = 1.5, H-5); 7.81 (1H, т. д, J = 7.8 и J = 1.8, H-7); 7.60 (1H, д, J = 8.6, H-8); 7.46 (1H, т, J = 7.5, H-6); 7.33–7.18 (5H, м, C ₆ H ₅); 5.61 (2H, c, NCH ₂)
7	15.53 (1H, уш. c, 4-OH); 14.67 (1H, уш. c, COOH); 8.28 (1H, д. д, J = 7.9 и J = 1.3, H-5); 7.80 (1H, т. д, J = 7.9 и J = 1.5, H-7); 7.70–7.45 (6H, м, H-6 + C ₆ H ₅); 6.76 (1H, д, J = 8.6, H-8)
8	15.60 (1H, уш. c, 4-OH); 14.42 (1H, уш. c, COOH); 8.15 (1H, д. д, J = 8.1 и J = 1.4, H-5); 7.86 (1H, т. д, J = 7.7 и J = 1.6, H-7); 7.74 (1H, д, J = 8.3, H-8); 7.65 (1H, c, CONH); 7.43 (1H, т, J = 7.4, H-6); 7.18 (1H, c, CONH); 4.33 (2H, т, J = 7.7, NCH ₂); 2.36 (2H, т, J = 7.8, NCH ₂ C $\underline{\text{H}}_2$)
9	14.10 (1H, уш. c, 4-OH); 13.46 (1H, уш. c, COOH); 11.64 (1H, c, NH); 7.79–7.66 (2H, м, H-5,7); 7.51 (1H, д, <i>J</i> = 8.3, H-8)
10	14.00 (1H, уш. c, 4-OH); 13.12 (1H, уш. c, COOH); 11.69 (1H, c, NH); 8.02 (1H, c, H-5); 7.83 (1H, д, J = 8.6, H-7); 7.49 (1H, д, J = 8.6, H-8)
11	14.32 (1H, уш. c, 4-OH); 13.24 (1H, уш. c, COOH); 11.66 (1H, c, NH); 8.04 (1H, д, <i>J</i> = 8.6, H-5); 7.44 (1H, д, <i>J</i> = 1.6, H-8); 7.40 (1H, д. д, <i>J</i> = 8.6 и <i>J</i> = 1.6, H-6)
12	14.25 (1H, уш. c, 4-OH); 13.10 (1H, уш. c, COOH); 11.73 (1H, c, NH); 8.13 (1H, д, J = 1.7, H-5); 7.97 (1H, д. д, J = 8.5 и J = 1.7, H-7); 7.43 (1H, д, J = 8.5, H-8)
13	14.20 (1H, уш. c, 4-OH); 13.13 (1H, уш. c, COOH); 11.68 (1H, c, NH); 8.26 (1H, c, H-5); 8.07 (1H, д, <i>J</i> = 8.6, H-7); 7.28 (1H, д, <i>J</i> = 8.6, H-8)
14	14.00 (1H, уш. c, 4-OH); 13.02 (1H, уш. c, COOH); 10.39 (1H, c, NH); 8.32 (1H, д, <i>J</i> = 2.0, H-5); 8.13 (1H, д, <i>J</i> = 2.0, H-7)
15	14.36 (1H, уш. c, 4-OH); 12.61 (1H, уш. c, COOH); 11.11 (1H, c, NH); 7.23 (1H, c, H-5); 6.88 (1H, c, H-8); 3.86 (3H, c, OCH ₃); 3.82 (3H, c, OCH ₃)
17	15.86 (1H, ym. c, 1-OH); 14.41 (1H, ym. c, COOH); 7.96 (1H, π , J = 7.9, H-10); 7.65 (1H, π , J = 7.2, H-8); 7.35 (1H, π , J = 7.7, H-9); 4.10 (2H, π , J = 5.7, NCH ₂); 2.96 (2H, π , J = 5.9, 7-CH ₂); 2.03 (2H, π B, J = 5.7, 6-CH ₂)
22	14.74 (1H, c, COOH); 13.17 (1H, c, NH); 8.96 (1H, c, H-4); 8.03 (1H, д. д, J = 8.0 и J = 1.2, H-5); 7.76 (1H, т. д, J = 7.8 и J = 1.4, H-7); 7.49 (1H, д, J = 8.4, H-8); 7.38 (1H, т. д, J = 7.7 и J = 1.2, H-6)
23	14.54 (1H, c, COOH); 8.92 (1H, c, H-4); 8.08 (1H, д. д, $J=8.0$ и $J=1.3$, H-5); 7.86 (1H, т. д, $J=7.9$ и $J=1.3$, H-7); 7.77 (1H, д, $J=8.2$, H-8); 7.45 (1H, т. д, $J=7.3$ и $J=1.3$, H-6); 4.34 (2H, т, $J=7.6$, NCH ₂); 1.72 (2H, м, NCH ₂ C <u>H</u> ₂); 0.97 (3H, т, $J=7.4$, CH ₃)
24	14.33 (1H, c, COOH); 8.86 (1H, c, H-2); 8.35 (1H, д, J = 8.1, H-5); 7.93 (1H, д, J = 8.4, H-8); 7.84 (1H, т, J = 7.6, H-7); 7.53 (1H, т, J = 7.5, H-6); 4.44 (2H, т, J = 7.0, NCH ₂); 1.78 (2H, м, NCH ₂ C <u>H</u> ₂); 0.88 (3H, т, J = 7.4, CH ₃)
32	13.61 (2H, уш. c, COOH + NH); 7.40 (1H, c, H-5); 6.85 (1H, c, H-8); 6.14 (2H, c, OCH ₂ O); 2.65 (3H, c, 4-CH ₃)

Из оставшихся соединений **21–32** схожие предосторожности не будут лишними и в работе с 4-аминозамещёнными кислотами **25–27**. Они несколько устойчивее 4-гидроксианалогов и без каких-либо заметных изменений выдерживают длительное кипячение в этаноле, но, например, в кипящем ДМФА точно так же декарбоксилируются очень легко [14].

Определённые методом потенциометрического титрования константы ионизации синтезированных нами соединений показывают, что незамещённые в положении 4 2-оксо-1,2-дигидрохинолин-3-карбоновые кислоты 22 и 23 проявляют довольно слабые кислотные свойства, хотя и в 100 раз более выраженные, чем у 4-оксо-1,4-дигидроизомера 24 (табл. 1). Введение в молекулу 4-гидроксигруппы (кислота 1) закономерно усиливает кислотность карбоксильной группы. Все последующие структурные модификации, проводимые в ряду 4-гидроксизамещённых хинолин-3карбоновых кислот, в основном сопровождаются вполне ожидаемыми эффектами. В частности, насыщенные углеводородные радикалы с различной длиной цепи при атоме азота (кислоты 2, 3, 5) тем больше ослабляют диссоциацию по группе СООН, чем длиннее эта цепь. Снижает кислотность и N-аллильный заместитель (кислота 4), хотя и не так интенсивно, как пропильный, что можно объяснить эффектом гиперконъюгации. И, наоборот, обладающее электроноакцепторными свойствами N-фенильное ядро (кислота 7) вызывает заметное усиление диссоциации по обеим ионогенным группам, которое при переходе к N-бензилзамещённой кислоте 6 полностью устраняется изолирующим метиленовым звеном. В то же время, активирующее влияние карбамоильной группы (кислота 8) не в состоянии подавить даже более длинная этиленовая разделяющая цепочка.

Атомы галогенов в положении 6 хинолонового ядра (кислоты 9–13) повышают кислотные свойства группы СООН в соответствии со значениями σ -констант этих заместителей: pKa (I) < pKa (Br) < pKa (Cl) < pKa

Интересно сравнить константы диссоциации (рKа) по карбоксильной группе трициклических пирроло- и пиридо[3,2,1-i]хинолинкарбоновых кислот **16** и **17** и их ациклических аналогов с тем же числом атомов углерода в N-алкильном заместителе, т. е. N-этил- и N-пропилзамещённых производных **3** и **5** соответственно. Если с формированием меньшего по размеру пиррольного цикла реакционная способность карбоксильной группы увеличивается, то переход от пропильного производного **5** к пиридохинолону **17** на неё совершенно не влияет.

Гидрирование бензольной части хинолонового ядра (кислота 19) сопровождается примерно 10-кратным снижением кислотности группы СООН, но не оказывает существенного влияния на группу 4-ОН. Следует подчеркнуть, что в целом группа 4-ОН в изученном ряду кислот 1–19 малочувствительна к влиянию как природы, так и положения заместителей в хинолоновом цикле.

внимание аномально высокая кислотность обоих реакционных центров в 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-илуксусной кислоте (20) по сравнению с её низшим гомологом 1. Как оказалось, метиленовый мостик, изолирующий карбоксильную группу от хинолонового ядра, не только не снижает, а, наоборот, более чем на порядок усиливает кислотность по группе СООН (Δ рKa = 1.1) и почти на 2 порядка по группе 4-ОН (Δ рKa = 1.88).

Как и следовало ожидать, атом хлора в положении 4 (кислота **21**) оказывает влияние, схожее с влиянием 4-гидроксильной группы, тогда как обладающая электронодонорными свойствами 4-аминогруппа (кислота **25**) настолько сильно уменьшает кислотность группы СООН, что её вообще не удалось определить методом потенциометрического титрования (предел измерения рKa \sim 14). Бензильный заместитель в 4-аминогруппе (кислота **26**) ситуации не меняет и только арильные фрагменты (например, 4-хлорфенильный в кислоте **27**) способствуют значительному усилению кислотной диссоциации карбоксила.

В то же время, 4-метильная группа проявила себя совершенно с неожиданной стороны, поскольку ее влияние оказалось равносильным введению гидроксила — кислоты **28** и **1** продемонстрировали одинаковые значения р*К*а. Причина этого феномена кроется, возможно, в однотипных системах внутримолекулярных водородных связей, образующихся в 4-метил- и 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислотах [21, 23] и [24, 25], соответственно:

В 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-илуксусной кислоте (20) формирование подобной системы внутримолекулярных водородных связей невозможно в принципе. Возможно, именно этот фактор в значительной степени ответственен за усиление кислотных свойств обоих реакционных центров кислоты 20, т. е. за лёгкость, с которой она теряет протоны групп 4-ОН и СООН.

Не совсем обычный эффект, которому трудно дать однозначное пояснение, зафиксирован при исследовании N-алкилзамещённых 4-метил-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот 29–31. В отличие от описанных выше 4-гидроксианалогов 3–5, в данном случае N-алкильные заместители либо вовсе не влияют на СООН-диссоциацию, либо (например, N-аллильное производное 30) аномально усиливают её. С другой стороны, аннелирование бензольного фрагмента хинолона с диоксоловым циклом (кислота 32) сопровождается вполне предсказуемым снижением кислотных свойств карбоксила.

Исследование анальгетической активности кислот 1–32 проводили на беспородных белых крысах-самцах на модели раздражения электрическим

током слизистой оболочки прямой кишки (см. экспериментальную часть). Полученные при этом экспериментальные данные свидетельствуют о том, что через 1 ч после внутрибрюшинного введения исследуемых соединений в дозе 20 мг/кг порог болевой чувствительности повышается у всех подопытных животных на 7.2—77.3% по сравнению с исходным уровнем (табл. 1). Другими словами, не смотря на значительные различия в силе оказываемого эффекта, все без исключения кислоты 1—32 проявляют обезболивающие свойства. Так, если первый представитель группы 4-гидроксипроизводных (кислота 1) не уступает в активности диклофенаку, то введение N-алкильных, бензильного или фенильного заместителей (кислоты 2—7) приводит к заметному спаду анальгетического действия. В то же время, карбамоилэтильное производное 8 превосходит по обезболивающему эффекту все использованные нами препараты сравнения, в том числе и наркотический анальгетик трамадол.

Модификация бензольной части 4-гидрокси-2-оксо-1,2-дигидрохинолинового ядра (кислоты 9–19) в большинстве случаев негативно отражается на биологических свойствах. Тем не менее, и в этом ряду обнаружены высокоактивные соединения. Например, 6-бром-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновая кислота (12) также оказалась более мощным анальгетическим средством, чем трамадол. А вот дополнительный атом брома в положении 8 (кислота 14) практически полностью лишает молекулу активности.

Заслуживают внимания 4-гидрокси-2-оксо-1,2,5,6,7,8-гексагидро- и 1-аллил-4-метил-2-оксо-1,2-дигидрохинолин-3-карбоновые кислоты (19 и 30 соответственно), которые превосходят по специфической активности ненаркотические анальгетики диклофенак и кеторолак [26] и лишь немного уступают трамадолу.

Однако наибольший интерес из всех синтезированных нами 4-R-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот 1–32, по нашему мнению, представляют 4-аминопроизводные 25 и особенно 26. Помимо высокой активности эти соединения являются очень слабыми кислотами, поэтому в отличие от диклофенака и кеторолака при их возможном медицинском применении не должно возникать каких-либо серьёзных осложнений со стороны желудочно-кишечного тракта.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н синтезированных соединений записывали на приборе Varian Mercury-VX-200 (200 МГц) в ДМСО- d_6 , внутренний стандарт ТМС. Исследование кислотно-основных равновесий проводили по методике [27], растворитель – 80% водный диоксан. Для приготовления смешанного растворителя применяли свежеперегнанный бидистиллят, освобожденный от CO_2 , и диоксан для УФ спектроскопии фирмы Labscan. Титрантом служил 0.01 М водный раствор КОН, свободный от CO_2 . Концентрация титруемых растворов составляла 0.5 ммоль π^{-1} в точке полунейтрализации. Потенциометрическое титрование осуществляли на

стационарном pH-метре SevenEasy S-20-K Mettler Toledo с использованием комбинированного электрода InLab 413 при 25 $^{\circ}$ C. Титрование для каждого

соединения проводили трижды. Точность полученных результатов оценивали методом математической статистики [28].

Исходные этиловые эфиры 1R-4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоновых кислот получали по методикам работ [29, 6]; сложные эфиры замещённых в бензольной части молекулы хинолин-3-карбоновых кислот — по методике работы [11], этиловый эфир 1-гидрокси-3-оксо-6,7-дигидро-3H,5H-пиридо[3,2,1-*ij*]-хинолин-2-карбоновой кислоты — [6]; синтез этиловых эфиров 1R-2-оксо-1,2-дигидро- и 4-оксо-1-пропил-1,4-дигидрохинолин-3-карбоновых кислот, а также их гидролиз до кислот 22–24 осуществляли по известным методикам [18, 30]; этиловый эфир 8-метил-6-оксо-5,6-дигидро[1,3]диоксоло[4,5-g]хинолин-7-карбоновой кислоты получали из соответствующего 2-аминоацетофенона фирмы Aldrich и далее превращали в кислоту 32 по описанной ранее методике [20].

Анальгетическую активность синтезированных соединений изучали на модели раздражения электрическим током слизистой оболочки прямой кишки крыс [31]. Беспородных белых крыс-самцов (по 6 животных на каждое исследуемое вещество) помещают в тесные клетки с полом в виде медной пластинки, служащей электродом. Второй электрод вводят в прямую кишку и фиксируют к хвосту. Определяют порог болевой чувствительности, за который принимают наименьшую силу электрического тока, вызывающую болевые ощущения у животных и проявляющуюся писком и/или отдергиванием лапок от пола. Исследуемые кислоты 1–32 вводили внутрибрюшинно в дозе 20 мг/кг в виде тонкой водной суспензии, стабилизированной твином-80. Препараты сравнения кеторолак (10 мг/кг) и трамадол (25 мг/кг) вводили внутрибрюшинно, а диклофенак (10 мг/кг) перорально в виде водных растворов. Сравнивали исходные показатели порога болевой чувствительности и его изменения через 1 ч после введения тестируемых веществ.

СПИСОК ЛИТЕРАТУРЫ

- 1. И. В. Украинец, Н. Л. Березнякова, Янян Лю, А. В. Туров, ХГС, 569 (2010).
- 2. S. Jönsson, G. Andersson, T. Fex, T. Fristedt, G. Hedlund, K. Jansson, L. Abramo, I. Fritzson, O. Pekarski, A. Runström, H. Sandin, I. Thuvesson, A. Björk, *J. Med. Chem.*, 47, 2075 (2004).
- 3. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, О. В. Шишкин, А. В. Туров, *XTC*, 1391 (2006). [*Chem. Heterocycl. Comp.*, **42**, 1208 (2006)].
- 4. J. H. M. Lange, P. C. Verveer, S. J. M. Osnabrug, G. M. Visser, *Tetrahedron Lett.*, **42**, 1367 (2001).
- 5. X. Collin, J. M. Robert, M. Duflos, G. Wielgosz, G. Le Baut, C. Robin-Dubigeon, N. Grimaud, F. Lang, J. Y. Petit, *J. Pharm. Pharmacol.*, **53**, 417 (2001).
- 6. A. Kutyrev, T. Kappe, J. Heterocycl. Chem., 34, 969 (1997).
- 7. T. Kappe, C. Nuebling, K. Westphalen, U. Kardorff, W. Deyn, M. Gerber, H. Walter, DE 4138820 (1993); http://ep.espacenet.com
- 8. I. V. Ukrainets, P. A. Bezugly, S. G. Taran, O. V. Gorokhova, A. V. Turov, *Tetrahedron Lett.*, **36**, 7747 (1995).
- M. Rowley, P. D. Leeson, G. I. Stevenson, A. M. Moseley, I. Stansfield, I. Sanderson, L. Robinson, R. Baker, J. A. Kemp, G. R. Marshall, A. C. Foster, S. Grimwood, M. D. Tricklebank, K. L. Saywell, *J. Med. Chem.*, 36, 3386 (1993).
- 10. И. В. Украинец, О. Л. Каменецкая, С. Г. Таран, И. Ю. Петухова, Л. Н. Воронина, *XГС*, 104 (2001). [*Chem. Heterocycl. Comp.*, **37**, 100 (2001)].
- 11. И. В. Украинец, Л. В. Сидоренко, Л. А. Петрушова, О. В. Горохова, *XГС*, 71 (2006). [*Chem. Heterocycl. Comp.*, **42**, 64 (2006)].
- 12. R. T. Coutts, D. G. Wibberley, J. Chem. Soc., 2518 (1962). 716

- 13. И. В. Украинец, С. Г. Таран, О. В. Горохова, О. Л. Кодолова, А. В. Туров, *XГС*, 928 (1997). [*Chem. Heterocycl. Comp.*, **33**, 811 (1997)].
- 14. И. В. Украинец, Л. В. Сидоренко, С. В. Слободзян, В. Б. Рыбаков, В. В. Чернышев, *XTC*, 1362 (2005). [*Chem. Heterocycl. Comp.*, **41**, 1158 (2005)].
- 15. И. В. Украинец, А. А. Ткач, Е. В. Моспанова, Е. Н. Свечникова, *XTC*, 1196 (2007). [*Chem. Heterocycl. Comp.*, **43**, 1014 (2007)].
- 16. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, С. В. Шишкина, А. В. Туров, *XГС*, 736 (2007). [*Chem. Heterocycl. Comp.*, **43**, 617 (2007)].
- 17. Е. В. Колесник, Дис. канд. фармац. наук, Харьков, 2009.
- 18. И. В. Украинец, С. Г. Таран, О. В. Горохова, Н. А. Марусенко, С. Н. Коваленко, А. В. Туров, Н. И. Филимонова, С. М. Ивков, *XTC*, 195 (1995). [*Chem. Heterocycl. Comp.*, **31**, 167 (1995)].
- 19. И. В. Украинец, П. А. Безуглый, Скаиф Никола, О. В. Горохова, Л. В. Сидоренко, *Журн. орг. фарм. хим.*, **2**, вып. 1, 39 (2004).
- 20. И. В. Украинец, Л. В. Сидоренко, О. В. Горохова, С. В. Шишкина, *XГС*, 887 (2006). [*Chem. Heterocycl. Comp.*, **42**, 776 (2006)].
- 21. И. В. Украинец, О. В. Горохова, Л. В. Сидоренко, Н. Л. Березнякова, *XГС*, 69 (2007). [*Chem. Heterocycl. Comp.*, **43**, 58 (2007)].
- 22. И. В. Украинец, Н. Л. Березнякова, В. А. Паршиков, А. В. Туров, *XIC*, 1496 (2007). [*Chem. Heterocycl. Comp.*, **43**, 1269 (2007)].
- 23. И. В. Украинец, Н. Л. Березнякова, В. А. Паршиков, В. Н. Кравченко, *XГС*, 78 (2008). [*Chem. Heterocycl. Comp.*, **44**, 64 (2008)].
- 24. S. V. Shishkina, O. V. Shishkin, I. V. Ukrainets, Abdel Naser Dakkah, L. V. Sidorenko, *Acta Crystallogr.*, **E58**, o254 (2002).
- 25. S. V. Shishkina, O. V. Shishkin, I. V. Ukrainets, E. V. Kolesnik, *Acta Crystallogr.*, **E61**, o1833 (2005).
- 26. М. Д. Машковский, *Лекарственные средства*, РИА Новая волна: издатель Умеренков, Москва, 2009, с. 162.
- 27. А. Альберт, Е. Сержент, Константы ионизации кислот и оснований, Химия, Москва, 1964.
- 28. Е. Н. Львовский, Статистические методы построения эмпирических формул, Высшая школа, Москва, 1988, с. 41.
- 29. И. В. Украинец, П. А. Безуглый, В. И. Трескач, А. В. Туров, С. В. Слободзян, *XTC*, 636 (1992). [*Chem. Heterocycl. Comp.*, **28**, 534 (1992)].
- 30. B. Riegel, G. R. Lappin, B. H. Adelson, C. G. Albisetti, R. M. Dodson, R. H. Baker, J. Am. Chem. Soc., 68, 1264 (1946).
- 31. Л. Н. Сернов, В. В. Гацура, Элементы экспериментальной фармакологии, ППП Типография "Наука", Москва, 2000, с. 41.

Национальный фармацевтический университет, Харьков 61002, Украина e-mail: uiv@kharkov.ua Поступило 13.05.2009

^aВинницкий национальный медицинский университет им. Н. И. Пирогова, Винница 21018, Украина e-mail: almusel@mail.ru

⁶Институт химических технологий восточно-украинского национального университета им. Владимира Даля, Рубежное 93003, Украина e-mail: mospanov@rune.lg.ua