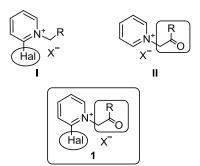


Циклизации солей Крёнке-Мукаямы

Евгений В. Бабаев¹*

¹ Московский государственный университет им. М. В. Ломоносова, Ленинские горы, 1, Москва 119991, Россия e-mail: babaev@org.chem.msu.ru


Поступило 2.07.2016 Принято после доработки 13.08.2016

Проведен обзор циклизаций 2-галоген-*N*-фенацилпиридиниевых солей (солей Крёнке–Мукаямы) и их аналогов. Систематизирована оригинальная научная литература по теме с середины 1950-х гг. до настоящего времени.

Ключевые слова: соли 2-галоген-*N*-фенацилпиридиния, соли Крёнке–Мукаямы, реакции с (би)нуклеофилами, реакции циклизации—раскрытия, реакции циклоприсоединения, реакции с электронуклеофилами.

Данный обзор посвящен циклизациям солей 2-галоген-N-фенацилпиридиния (рис. 1). Напомним, что соли 2-галогенпиридиния **I** (необычно легко теряющие атом галогена) нередко называют солями Мукаямы, а N-фенацилпиридиниевые соли **II** (легко образующие илиды) называют солями Крёнке. В солях Крёнке-Мукаямы 1^3 имеются обе функции — кетометиленовый фрагмент солей Крёнке и α -галоид солей Мукаямы.

Из-за наличия в солях Крёнке-Мукаямы **1** фрагмента $Hal-C=N^+-CH_2-C=O$, представляющего

Рисунок 1. Общие структуры пиридиниевых и 2-галогенпиридиниевых солей.

собой 1,4-биэлектрофильную цепь, возможна их циклизация в 5- и 6-членные циклы под действием 1,1- и 1,2-бинуклеофилов. Кроме того, метиленовая группа солей 1 обладает высокой СН-кислотностью и склонна к депротонированию, что приводит к замыканию оксазолиевого цикла. Вместе с тем электронуклеофильные частицы (1,2-амбифилы⁴) способны реагировать как с нуклеофильной группой CH_2 , так и с электрофильным α -положением пиридиниевого цикла, порождая многообразие азольных структур. Наконец, из-за отсутствия у атома азота в солях Крёнке—Мукаямы симметричного окружения (в отличие от солей Крёнке II), у образующихся илидов возможны два пути реакции с диполярофилом по двум α -положениям. Все это многообразие реакций и является предметом настоящего обзора.

Заметим, что реакционная способность солей Крёнке—Мукаямы ни разу не являлась предметом литературного обзора. Между тем за последнее десятилетие научной группой автора получен ряд принципиальных результатов в этой области. В этой связи упомянем наш предшествующий обзор, посвященный синтезу циклоиминиевых солей с уходящей α -группой, образованию из них бетаинилидов и оксазолиевых солей. Настоящий обзор восполняет указанный пробел, охватывая литературу с середины 1950-х гг. по настоящее время.

Реакции с 1,1-бинуклеофилами

В реакциях солей Крёнке—Мукаямы с бинуклеофильными частицами, как правило, первым реагирует электрофильный α -углеродный атом пиридинового цикла, а затем карбонильная группа. Под воздействием газообразного NH₃ из соли 1 был получен имидазо[1,2- α]-пиридин 2^6 (схема 1). Выход при использовании раствора аммиака в ДМФА был меньше (23%). (Здесь и далее — противоионом в солях 1 служит бромид.)

Схема 1

1 (R = Ph)
$$\frac{\text{(Hal = Br)}}{\text{Abs. EtOH, } \Delta, 5 \text{ h}}$$
 $\frac{\text{N}}{\text{Abs. EtOH, } \Delta, 5 \text{ h}}$ $\frac{\text{N}}{\text{N}}$ $\frac{\text{N}}{\text{N}}$

Под действием NH_2NHAc соль 1 превращалась в соль 1-ацетиламино-2-фенилимидазо[1,2-a]пиридин-1-ия 3, которая вступала в реакцию дезацилирования и последующего диазотирования с образованием имидазопиридина 2. Реакция с NH_2OH привела к N-окиси имидазо[1,2-a]пиридина 4 (необходимым условием реакции было отсутствие воды).

Взаимодействие солей Крёнке–Мукаямы с первичными аминами – алифатическими или ароматическими взаницей, что первоначально образующиеся бициклические полуаминали **5** (схема 2) способны далее дегидратироваться в соли имидазо[1,2-а]пиридиния **6**.

Схема 2

Hal = Cl, Br; R = Ar; R^1 = Alk, Ar *i*: MeCN, rt, 1 h or PrOH, rt, 24 h; *ii*: PPA, 100°C, 1 h; *iii*: NH₂R¹, Δ , 14 h

С α -аминокетонами соли **1** также образуют соли имидазо[1,2-a]пиридиния **7**, которые под действием кислот подвергаются ароматизации в соли пиридо-[2',1':2,3]имидазо[5,1-a]изохинолин-7-ия **8**¹² (схема 3).

Схема 3

1
$$\frac{NH_2CH_2COR}{Abs. EtOH, \Delta, 1.5 h}$$
 $\frac{H_2SO_4}{rt, 6 h}$ $\frac{H_2SO_4}{rt, 6 h}$

Действие аниона нитрометана¹⁴ на соль **1** приводит к замыканию пиррольного цикла с образованием 1-нитроиндолизина **9** (схема 4). Если рециклизации с участием нитрометана широко распространены, ¹⁵ то это – сравнительно редкий пример применения этого реагента для циклизаций.

Схема 4

Фосфорные 1,1-бинуклеофилы также используют в гетероциклическом синтезе обычно для рециклизаций, но редко вводят в двухкомпонентные циклизации. Новую гетероциклизацию солей 2-хлорпиридина под действием $P(SiMe_3)_3$ в сульфолане в инертной атмосфере нам удалось легко осуществить, ⁶ причем [1,3]азафосфоло[1,2-a]пиридины **10a**,**b** образуются не только более коротким путем, но и с более высокими выходами, чем описано в литературе ¹⁶ (схема 5).

Схема 5

О том, что соли 2-бромпиридиния 1 образуют с Na_2S пиридин-2-тионы 11 было известно давно. Брэдшер показал, что под действием сильных кислот такие тионы образуют соли тиазоло [3,2-a] пиридиния 13 с выходами 31–92% (схема 6). Позднее Крёнке доказал, что реакция протекает через стадию образования

Схема 6

1
$$\frac{Na_2S}{Hal} = CI, Br;$$
 $\frac{ii}{82-83\%}$ $\frac{ii}{82-83\%}$ $\frac{S}{N^{+}}$ $\frac{S}{Ar}$ $\frac{13}{85\%}$ $\frac{13}{31-92\%}$

i: concd. H₂SO₄, rt, 8 h; *ii*: HClO₄, EtOH, 50°C, 2 min; *iii*: H₂SO₄, HBr, 100°C, 2 h

гидратов **12**. Соединения **12** были протестированы на гипогликемическую активность, ²⁰ причем наиболее активными оказались 2-фенилпроизводные.

Таким образом, взаимодействие солей Крёнке—Мукаямы 1 с простейшими N-, S-, P- и С-бинуклеофилами (1,1-бинуклеофилами⁴) приводит к мостиковым азолопиридинам. Реакция нередко протекает через стадию стабильных гидратов, которые ароматизуются под действием кислот.

Реакции с 1,2-бинуклеофилами

В реакции соли Крёнке–Мукаямы 1 с гидразинами происходит образование триазинового цикла 14⁸ (схема 7).

Схема 7

Триазиниевая соль **14b** может быть получена как метилированием триазина **14a** (выход не указан), так и путем деметилирования соли **14c**. Триазин **14a** при кислом гидролизе превращается в 1-аминопроизводное имидазо[1,2-a]пиридиния **3a** (схема 8)⁸.

Схема 8

Примером образования 6-членного цикла служит и реакция соли 1 с литиевой солью циклопентадиена, ²¹ приводящая к циклопента[a]хинолизину 15 (схема 9). Процесс вполне аналогичен синтезу азуленов по Гафнеру. ²²

Схема 9

Таким образом, видно, что в реакциях с 1,2-бинуклеофилами как NN-, так и СС-типа 1,4-биэлектрофильный фрагмент солей Крёнке–Мукаямы замыкает 6-членные циклы.

Реакции с 1,2-амбифилами

Рассмотрим вначале процессы с вытеснением α-галоидного атома и конденсацией по группе CH_2 . Исторически первым примером такого рода явилась реакция солей 2-хлорпиридиния с малононитрилами в присутствии основания Хёнига²³ (схема 10). Вначале образуются 1,2-дигидропиридины 16, 17, которые гладко циклизуются в 2-аминоиндолизины 18, 19. При избытке основания фиксируется также образование 2-этоксиндолизинов 20 (табл. 1). Аналогичная реакция осуществлена в ряду солей 1-хлоризохинолиния,²⁴ что позволило получить пирроло[1,2-а]изохинолины в одну стадию.

Схема 10

$$R^1$$
 XCH_2CN
 i - Pr_2NEt
 $PrOH$
 A , $2 h$
 R^1
 R^1
 XCH_2CN
 $PrOH$
 A , 1 - $3 h$
 R^1
 $R^$

Таблица 1. Выходы дигидропиридинов 16, 17 и индолизинов 18–20 в реакциях солей 2-хлорпиридиния с малононитрилами

Соеди- нение	X	R	\mathbb{R}^1	Выход, %
16a	CN	Ph	Н	95
16b	CN	Ph	Me	64
16c	CN	4-MeC_6H_4	H	93
16d	CN	Me	H	65
17a	CO_2Et	Ph	H	35
17b	CO_2Et	$4-MeC_6H_4$	H	86
17c	CO_2Et	Me	Me	37
17d	CO_2Et	4-BrC ₆ H ₄	H	42
18a		Ph	H	61
18b		Ph	Me	95
18c		4-MeC_6H_4	H	91
18d		Me	Н	92
19a		Ph	H	92
19b		4-MeC_6H_4	H	80
19c		Me	Me	40
19d		4-BrC ₆ H ₄	H	80
20a		Ph		14
20b		4-BrC ₆ H ₄		24

Реакции α -гетарилацетонитрилов **21a** (гетероцикл — 4-арилтиазол, выход 13-68%), 25 и **21b** (гетероцикл — бензимидазол (30-85%)) 26 с солями **1** протекают аналогичным образом, приводя к 3-замещенным индолизинам **22** (схема 11). Сходным образом (с конденсацией по группе CH_2CN) протекает реакция соли **1** с димером малононитрила **21c** (выход 55-68%) 3

 $R = OEt (55\%), Ph (53\%), 4-CIC_6H_4 (68\%), 4-MeOC_6H_4 (66\%)$

Производные индолизинов **23** образуются также при проведении реакции 2-бромпиридиниевых солей **1** с β -кетокислотами, β -дикарбонильными соединениями или диэтилмалонатом²⁷ (схема 12, табл. 2). В ходе

Таблица 2. Выходы индолизинов **23** в реакции 2-бромпиридиниевой соли **1** с β-дикарбонильными соединениями

R в 23	\mathbb{R}^1	\mathbb{R}^2	Выход, %
OEt	Me	Me	44
OEt	Ph	Me	63
OEt	$3-MeOC_6H_4$	Me	44
OEt	$3,4-Me_2C_6H_3$	Me	46
OEt	Me_2CH	Me	23
OEt	Me	Me_2CH	36
OEt	Ph	Me_2CH	33
OEt	$3-MeOC_6H_4$	Me_2CH	30
OEt	$3,4-Me_2C_6H_3$	Me_2CH	30
OEt	Me	Ph	53
OEt	Ph	Ph	47
Me	Me	OEt	13
Me	Me	Me_2CH	24
Me_2CH	Me_2CH	Me	36
Me_2CH	Me_2CH	Me_2CH	35
Me/Ph	Ph/Me	Ph	41*
$CH_2CMe_2CH_2$	OEt		11
OEt	OH	Me	40
OEt	OH	Me_2CH	41
OEt	OH	Ph	49

^{*} Смесь состава ~4:3.

исследования найдено, что кетокислоты реагируют с образованием производных индолизил-1-карбоновой кислоты, а малоновый эфир дает 2-гидроксииндолизины. Несимметричный β-дикетон образует смеси.

В 1999 г. испанские химики использовали реакцию 2-хлорпиридиниевой соли 1 с цианамидом для синтеза 2-аминоимидазо[1,2-a]пиридина 25, причем был выделен стабильный интермедиат 24^{28} (схема 13).

Биологически активные аналоги имидазопиридина с 2-(N-метилкарбамоил)-1-фенилвинильной группой в положении 6 образуются с выходами 30–50%. ²⁹ Аналогичная реакция с КСNO приводит в случае той же соли³⁰ к образованию смеси имидазо[1,2-a]пиридина и N-фенацилпиридин-2-она.

Взаимодействие KSCN с солями 1 приводит к 2-аминопроизводным тиазоло[3,2-а]пиридиния 27^{31,32} (схема 14). Заметим, что это — новый способ синтеза тиазолов по типу CNC+CS. Эта реакция в чем-то уникальна, поскольку ион SCN⁻ вытесняет два галогенид-иона (Cl⁻ и Br⁻), образуя соли 27, состав которых был определен методом анионной хроматографии. Действием ангидридов кислот одна из солей 27 была превращена в мезочонные производные 28a,b. Ряд солей 27 был испытан на пестицидную активность³² и было выявлено, что соли 27 проявляют умеренную гербицидную активность и подавляют всхожесть семян.

Соединения **16**, **17**, **24** (схемы 10, 13) – дигидропиридиновые интермедиаты реакции с вытеснением α-галогена – были выделены из реакционных смесей. Хотя интермедиат **26** выделить не удалось, его образование не вызывает сомнений из-за высокой нуклео-

фильности роданид-иона. Однако в случае близкородственной реакции соли 1 с 4-метилбензоилизотиоцианатом (схема 15), приводящей к продукту 28с того же класса мезоионных соединений, интермедиат 29 выглядит более предпочтительно, 6,33 поскольку нуклеофильность изотиоцианогруппы резко снижена и проявляется, напротив, электрофильность *sp*-гибридного атома углерода.

Схема 15

Илиды, полученные из солей 1, реагируют аналогично с сероуглеродом, 34 образуя несколько иные мезоионные соединения 30 (схема 16). Реакция вероятно протекает через аддукт 31 между CS_2 и метиленовой группой. Заметим, что именно так реагируют с сероуглеродом обычные соли Крёнке. 35

В случае синтеза соединений **30** при использовании триэтиламина температуру приходится поддерживать ниже –45 °C (схема 15), поскольку при более высоких температурах образующийся илид **32** легко подвергается внутримолекулярной циклизации в соль оксазоло[3,2-*a*]пиридиния **33**⁵ (схема 17). Однако при температуре ниже –45 °C илиды 2-галогенпиридиния не удается ввести в реакции с электрофилами (Е⁺), типичные для илидов Крёнке (алкилирование, ацилирование, пикрилирование²).

Схема 17

С более реакционноспособными солями арилдиазония удается осуществить азосочетание по группе CH_2 , образующиеся гидразоны **34** гладко замыкают триазолиевый цикл, образуя соли [1,2,4]триазоло[4,3-a]-пиридин-1-ия **35**a—h³⁶ (схема 18, табл. 3).

Схема 18

Таблица 3. Выходы солей [1,2,4]триазоло-[4,3-*a*]пиридин-1-ия **35a**-h

Соединение	Ar	Ar^1	Выход, %
35a	4-ClC ₆ H ₄	Ph	63
35b	$4-ClC_6H_4$	4-BrC ₆ H ₄	92
35c	$4-NO_2C_6H_4$	4-MeC_6H_4	62
35d	$4-NO_2C_6H_4$	4-MeC ₆ H ₄ CO	86
35e	$4-CH_3C_6H_4$	4-BrC ₆ H ₄	70
35f	4-ClC ₆ H ₄	4-MeC_6H_4	95
35g	$4-ClC_6H_4$	4-MeC ₆ H ₄ CO	74
35h	$4-NO_2C_6H_4$	4-BrC ₆ H ₄	77

Отдельно следует упомянуть реакции солей 1 с гомологами пиридина. В ходе реакции происходит нуклеофильное замещение галогена гетероатомом пиридина, сопровождаемое нуклеофильной атакой илидного атома углерода по α-положению присоединенного гетероцикла 36 с образованием дигидроструктуры 37 (схема 19). После окисления кислородом воздуха образуется 37 ароматический трицикл 38.

Как нами было показано, ³⁸ образующиеся соли **38** являются полезными интермедиатами в синтезе формил-производных бензимидазо[1,2-*a*] пиридинов **40**. Реакция протекает через стадию раскрытой формы **39** (схема 20).

Таким образом, реакции солей Крёнке—Мукаямы с реагентами, содержащими по соседству электрофильный и нуклеофильный центры, протекает с образованием пятичленного цикла — катионоидного, мезоионного или ковалентного. Очередность стадий определяется выраженностью нуклеофильного харак-

 $R = Me (43\%), p-BrC_6H_4 (93\%)$

тера реагента (СН-кислоты, роданид, цианамид, пиридин атакуют α -положение соли) или его электрофильностью (соль диазония, сероуглерод, ароилизотиоцианат реагируют по группе CH_2).

Особенности реакций солей N-карбоксиметилпиридиния

Соли Крёнке–Мукаямы **41**, содержащие фрагмент уксусной кислоты у атома азота, также способны образовывать илиды, обладающие, однако, своей спецификой. Например, соль **41a** легко реагирует с цианамидом²⁸ и нитрилами³⁹ (схема 21) с образованием аминогетероциклов **42**, **43**, однако ее реакции с первичными аминами и KSCN приводят к смолообразным продуктам.

Аномально протекают реакции солей **41** с реагентами, содержащими серу. Так, в реакции соли **41b** с Na_2S , наряду с ожидаемым тионом **44**, образуется индолизин **45**, ⁴⁰ вероятно, за счет димеризации исходной соли с промежуточным образованием диэфира **46** (схема 22).

В реакции той же соли 41b с CS_2 не наблюдается никаких следов ожидаемого мезоионного гетероцикла 47 (ср. со схемой 16), вместо этого образуется мезоионный метид 48 (схема 23). Вероятнее всего реакция протекает через стадию димера 49 (включающего фрагмент CS_2). По-видимому, высокая реакционная способность 2-галоидзамещенных солей N-карбалкоксиметилпиридиния приводит к указанным аномальным результатам.

Реакции с алкенами с вытеснением галогена

Описан ряд процессов, в которых соли Крёнке—Мукаямы вступают в реакции циклоприсоединения ожидаемым образом, то есть акцепторная часть молекулы алкена (диена) присоединяется к илидному центру, а донорная часть вытесняет атом галогена. Примером может служить изображенное на схеме 24 присоединение нитроалкенов 50 и бутадиенов 51^{42,43} с образованием дигидроиндолизинов 52, 53.

Схема 24

1,1-Дицианзамещенные алкены — этоксивинильные 54⁴⁴ и арилиденовые производные 55⁴⁵ — реагируют с илидами солей Крёнке-Мукаямы с диссоциацией двойной связи, образуя продукты "амбифильного" замещения 56 и 57 соответственно (схема 25). Причиной такого протекания реакции, напоминающего метатезис алкенов, является образование интермедиата 58. Между тем проведение реакции арилиденовых производных малоно-

динитрила с илидами солей Крёнке–Мукаямы при ультразвуковом облучении (100 к Γ ц) позволило получить 1-цианиндолизины **59**. 46

Недавно было показано, что взаимодействие солей Крёнке—Мукаямы 1, 41 с (этоксиметилиден)циануксусным эфиром 60 гладко приводит к 1-цианоиндолизинам 61^{47} (схема 26), поскольку одна из сложноэфирных групп в ходе реакции гидролизуется, а затем элиминируется.

Циклоприсоединение с сохранением галогена

Известен ряд реакций с диполярофилами, в ходе которых атом галогена в солях Крёнке—Мукаямы 1 сохраняется. Прежде всего, это взаимодействие илида из соли 2-бромпиридиния 1^{48} с этилакрилатом и акрилонитрилом (схема 27), приводящее к 5-броминдолизинам 62a, b.

Кроме того, описана похожая реакция илидов 2-галогенпиридиния 1 с эфиром ацетилендикарбоновой кислоты $^{49-51}$ (схема 28). В ходе этой реакции выделены 5-галогениндолизины 63а,b (охарактеризованные PCA), которые при стоянии или действии оксида алюминия превращались в тетрациклы 64а—с.

Таким образом, полярные алкены реагируют с илидами солей Крёнке-Мукаямы региоселективно, но не вполне ожидаемым образом. В большинстве случаев образуются производные дигидроиндолизина, способные ароматизоваться при наличии в алкене уходящей группы (циановой или алкоксильной). В ряде случаев, однако, в конечной молекуле индолизина содержится атом галогена.

Циклизации и раскрытия солей

При действии MeONa на 2-бромпиридиниевую соль 1 образуется наряду с *N*-фенацилпиридин-2-оном **65** также соответствующий кетал **66**⁵² (схема 29). Аналогичный состав смеси образуется при действии MeONa на соль оксазоло[3,2-*a*]-пиридиния **67**. Из этого следует, что соль Крёнке–Мукаямы подвергается тандемному превращению при действии метилата натрия.

Схема 29

В реакции солей Крёнке-Мукаямы 1 со вторичными алифатическими аминами происходит образование

оксазолил-2-бутадиенов **68**^{53–55} (схема 30). Исходя из наблюдения, что аналогичные диены **68** образуются из бициклических солей **69**, был предложен механизм этого необычного превращения:

Схема 30

$$\begin{array}{c} X \\ NHR_2 \\ \hline MeCN, \Delta, 3h \\ 80-90\% \\ \end{array}$$

$$X = Br, Cl; R^1 = Ph, 4-NO_2ClC_6H_4$$

$$\begin{bmatrix} X \\ R^1 \\ \hline \\ R^1 \\ \end{bmatrix}$$

$$\begin{array}{c} NHR_2 \\ R^1 \\ \hline \\ \end{array}$$

$$\begin{array}{c} NHR_2 \\ R^1 \\ \hline \\ \end{array}$$

Вышеописанная реакция идет и с 2-MeS-замещенными солями **70**, а также протекает на твердой фазе (при замене группы CH_3 на фрагмент смолы Меррифильда) 56,57 (схема 31).

Схема 31

В заключении остановимся на реакционной способности 6-СН₃-гомологов солей Крёнке–Мукаямы **71**. Еще со времен Чичибабина считалось⁵⁸ (схема 32), что подобные соли служат предшественниками 5-галогениндолизинов **72**. Мы показали, ⁵⁹ что соли **71** в

Схема 32

момент получения подвергаются циклизации в соли оксазолопиридиния **73** (выходы ~10%), а молекула HHal остается в составе солей исходных галоидпиридинов **74**. В результате соли **71** и индолизины **72** невозможно выделить.

Синтез 5-замещенных индолизинов **75** с хорошими выходами (60–90%) оказывается возможен, если вводить в реакцию с нуклеофилами гомологичные оксазолопиридины **73** (схема **33**, см. обзоры^{60,61}).

Схема 33

Nu = OR, NR_2 ; $R_1 = Alk$, R = Ar

Таким образом, реакционная способность солей Крёнке—Мукаямы отличается от родственных солей Крёнке (из-за активного галогена в α -положении), а также от солей Мукаямы (из-за активной N-фенацильной группы). В результате соли Крёнке—Мукаямы способны к весьма разнообразным трансформациям: надстройке различной природы (катионной, мезоионной и нейтральной) 5-членных циклов, надстройке 6-членных циклов, а также к конверсии пиридинового цикла.

Список литературы

- (a) Mukaiyama, T. Angew. Chem., Int. Ed. 1979, 18, 707.
 (b) Mukaiyama, T. Challenges in Synthetic Organic Chemistry; Oxford University Press: Oxford, 1990, 226 p.
- (a) Kröhnke, F. Angew. Chem., Int. Ed. 1963, 2, 225.
 (b) Litvinov, V. P.; Shestopalov, A. M. Russ. J. Org. Chem. 1997, 33, 903. [Журн. орган. химии 1997, 33, 975.]
 (c) Zugravescu, I.; Petrovanu, M. N-Ylid Chemistry; Mc Graw-Hill, New York, 1976.
- Tverdokhleb, N. M.; Khoroshilov, G. E.; Dotsenko V. V. Tetrahedron Lett. 2014, 55, 6593.
- 4. Babaev, E. V. Chem. Heterocycl. Compd. **1993**, 29, 796. [Химия гетероцикл. соединений **1993**, 937.]
- 5. Babaev, E. V. Review J. Chem. **2011**, 1, 161. [Обзорн. журн. химии **2011**, 1, 168.]
- 6. Бабаев, Е. В. Дис. докт. хим. наук; Москва, 2007.
- Kröhnke, F.; Kickhöfen, B.; Thoma C. Chem. Ber. 1955, 88(7), 1117.
- 8. Bradsher, C. K.; Brandau, R. D.; Boliek, J. E.; Hough, T. L. *J. Org. Chem.* **1969**, *34*, 2129.
- 9. Hand, E. S.; Paudler, W.W. J. Org. Chem. 1978, 43, 658.
- Bellani, P.; Clavenna, G.; Sosio A. Farmaco, Ed. Sci. 1984, 39, 846.
- Demchenko, A. M.; Chumakov, V. A.; Nazarenko, K. G.; Krasovskii, A. N.; Pirozhenko, V. V.; Lozinskii, M. O. Chem.

- Heterocycl. Compd. **1995**, 31, 567. [Химия гетероцикл. соединений **1995**, 644.]
- Bradsher, C. K.; Boliek, J. E.; Brandau, R. D. J. Org. Chem. 1970, 35, 2495.
- Bradsher, C. K.; Frazer, M. G.; Burnham, W. S. J. Heterocycl. Chem. 1972, 9, 177.
- Babaev, E. V.; Bozhenko, S. V.; Maiboroda, D. A. Russ. Chem. Bull. 1995, 44, 2203. [Изв. АН, Сер. хим. 1995, 2298.]
- 15. Babaev, E. V. *Chem. Heterocycl. Compd.* **1993**, *29*, 818. [Химия гетероцикл. соединений **1993**, 7, 962.]
- 16. Märkl, G.; Pflaum S. Tetrahedron Lett. 1987, 28, 1511.
- 17. Djerassi, C.; Pettit, G. R. J. Am. Chem. Soc. 1954, 76, 4470.
- 18. Bradsher, C. K.; Boliek, J. E. J. Org. Chem. 1967, 32, 2409.
- 19. Pauls, H.; Kröhnke, F. Chem. Ber. 1976, 109, 3653.
- Blank, B.; DiTullio, N. W.; Krog, A. J.; Saunders, H. L. J. Med. Chem. 1978, 21, 489.
- 21. (a) Gormay, P. V.; Rybakov, V. B.; Babaev, E. V. Eur. J. Org. Chem., 2010, 28, 5364. (b) Rybakov, V. B.; Gormay, P. V.; Babaev, E. V. Acta Crystallogr., Sect. E: Struct. Rep. Online 2010, E66, o2958. (c) Бабаев, Е. В.; Гормай П. В. Псевдоазулены; Lambert Academic Publ.: Saarbrucken, 2016, p. 80.
- (a) Ziegler, K.; Hafner, K. Angew. Chem. 1955, 67, 301.
 (b) Hafner, K.; Meinhardt, K.-P. Org. Synth. Coll. Vol. 1990, 7, 15.
- 23. Pauls, H.; Kröhnke, F. Chem. Ber. 1977, 110, 1294.
- Fujita, R.; Watanabe, N.; Tomisawa, H. Heterocycles 2001, 55, 435.
- 25. Хорошилов, Г. Е.; Демчак, И. В. Вісн. Харків. нац. унів., Хімія **2007**, (770), 210.
- 26. Khoroshilov, G. E.; Saraeva, T. A.; Kuznetsov K. Yu. *Chem. Heterocycl. Compd.* **2008**, 44, 895. [Химия гетероцикл. соединений **2008**, 1109.]
- 27. Nugent, R. A.; Murphy, M. J. Org. Chem. 1987, 52, 2206.
- 28. Vega, J. A.; Vaquero, J. J.; Alvarez-Builla, J.; Ezquerra, J.; Hamdouchi, C. *Tetrahedron* **1999**, *55*, 2317.
- Hamdouchi, C.; Ezquerra, J.; Vega, J. A.; Vaquero, J. J.;
 Alvarez-Builla, J.; Heinz, B. A. *Bioorg. Med. Chem. Lett.* 1999, 9(10), 1391.
- 30. Babaev, E. V.; Rybakov, V. B.; Zhukov, S. G.; Orlova, I. A. *Chem. Heterocycl. Compd.* **1999**, *35*, 479. [Химия гетероцикл. соединений **1999**, *4*, 542.]
- Babaev, E. V.; Bush, A. A.; Orlova, I. A.; Rybakov, V. B.;
 Zhukov, S. G. *Tetrahedron Lett.* 1999, 40, 7553.
- 32. Babaev, E. V.; Bush, A. A.; Orlova I. A.; Rybakov V. B.; Iwataki, I. *Russ. Chem. Bull.* **2005**, *54*, 231. [Изв. АН, Сер. хим. **2005**, 226.]
- 33. Бабаев, Е. В.; Буш, А. А. *Мезоионные системы ряда азоло* [3,2-а]пиридина. Lambert Academic Publ.: Saarbrucken, 2016, p. 87.
- Babaev, E. V.; Rybakov, V. B.; Orlova I. A.; Bush, A. A.; Maerle K. V.; Nasonov A. F. Russ. Chem. Bull. 2004, 53, 176. [U38. AH, Cep. xum. 2004, 170.]
- 35. Kröhnke, F.; Gerlach, K. Chem. Ber. 1962, 95, 1108.
- 36. Topchiy, M. A.; Babaev, E. V. *Chem. Heterocycl. Compd.* **2016**, *52*, 727. [Химия гетероцикл. соединений, **2016**, *52*, 727].

- 37. Pauls, H.; Kröhnke, F. Chem. Ber. 1976, 109, 3646.
- 38. Babaev, E. V.; Tikhomirov, G. A. Chem. Heterocycl. Compd. **2005**, 41, 119. [Химия гетероцикл. соединений **2005**, 135.]
- 39. Khoroshilov, G. E.; Tverdokhleb, N. M.; Brovarets, V. S.; Babaev, E. V. *Tetrahedron* **2013**, *69*, 4353.
- 40. Babaev, E. V.; Smirnov, G. A.; Rybakov, V. B. *Chem. Heterocycl. Compd.* **2005**, 41, 1071. [Химия гетероцикл. соединений **2005**, 1250.]
- 41. Rybakov, V. B.; Bush, A. A.; Troyanov, S. I.; Babaev, E. V.; Kemnitz, E. *Acta Crystallogr.*, *Sect. E: Struct. Rep. Online* **2006**, *E62*, o1673.
- 42. Khoroshilov, G. E.; Demchak, I. V. *Chem. Heterocycl. Compd.* **2008**, 44, 109. [Химия гетероцикл. соединений **2008**, 130.]
- 43. Хорошилов, Г. Е.; Демчак, И. В.; Броварец, В. С.; Русанов Э. Б. *Журн. орган. фарм. химии* **2009**, *7*(1), 48.
- Aitov, I. A.; Nesterov, V. N.; Sharanin, Yu. A.;
 Struchkov, Yu. T. Russ. Chem. Bull. 1996, 45, 417. [Изв. АН,
 Сер. хим. 1996, 434.]
- 45. Tverdokhleb, N. M.; Khoroshilov, G. E.; Zubatyuk, R. I.; Shishkin, O. V. Chem. Heterocycl. Compd. 2013, 49, 720. [Химия гетероцикл. соединений 2013, 772.]
- 46. Abaszadeh, M.; Seifi, M. Org. Biomol. Chem. 2014, 12, 7859.
- 47. Ponomarenko, D. A.; Khoroshilov, G. E.; Krasnikov, D. A. *Chem. Heterocycl. Compd.* **2015**, *51*, 560. [Химия гетероцикл. соединений **2015**, *51*, 560.]
- 48. Shen, Y.-M.; Lv, P.-C.; Chen, W.; Liu, P.-G.; Zhang, M.-Z.; Zhu, H.-L. Eur. J. Med. Chem. 2010, 45, 3184.
- 49. Terent'ev, P. B.; Vinogradova, S. M.; Kost, A. N. *Chem. Heterocycl. Compd.* **1980**, *16*, 506. [Химия гетероцикл. соединений **1980**, 651.]
- 50. Babaev, E. V.; Pasichnichenko, K. Yu.; Rybakov, V. B.; Zhukov, S. G. *Chem. Heterocycl. Compd.* **2000**, *36*, 1192. [Химия гетероцикл. соединений **2000**, 1378.]
- 51. Rybakov, V. B.; Babaev, E. V.; Pasichnichenko, K. Yu. Crystallogr. Repts. 2002, 47, 622. [Кристалгография 2002, 47, 678.]
- Babaev, E. V.; Bozhenko, S. V.; Maiboroda, D. A.; Rybakov, V. B.;
 Zhukov, S. G. *Bull. Soc. Chim. Belg.* 1997, 106, 631.
- 53. Babaev, E. V.; Tsisevich, A. A. Chem. Heterocycl. Compd. **1998**, 34, 254. [Химия гетероцикл. соединений **1998**, 278.]
- Babaev, E. V.; Tsisevich, A. A. J. Chem. Soc., Perkin Trans. 1 1999, 4, 399.
- 55. Rybakov, V. B.; Babaev, E. V.; Tsisevich, A. A.; Arakcheeva, A. V.; Schoenleber, A. Crystallogr. Repts. 2002, 47, 973. [Кристаллография 2002, 47, 1042.]
- 56. Babaev, E. V.; Nasonov, A. F. ARKIVOC 2001, (ii), 139.
- 57. Babaev, E. V. Russ. J. Gen. Chem. **2010**, 80, 2655. [Pocc. хим. экурн. **2009**, 53(5), 140.]
- 58. Tschitschibabin, A. DE Patent 464481.
- 59. Babaev, E. V.; Efimov, A. V.; Maiboroda, D. A. *Chem. Heterocycl. Compd.* **1995**, *31*, 962. [Химия гетероцикл. соединений **1995**, 1104.]
- Babaev, E. V.; Alifanov, V. L.; Efimov, A. V. Russ. Chem. Bull. 2008, 57, 845. [H36. AH, Cep. xum. 2008, 831.]
- 61. Babaev, E. V. Chem. Heterocycl. Compd. **2012**, 48, 59. [Химия гетероцикл. соединений **2012**, 64.]