

Синтез производных пирано[3,4-c][1,2,4]триазоло[4,3-a]пиридинов и 8-(пиразол-1-ил)пирано[3,4-c]пиридинов на основе перегруппировки пиридинового цикла

Ерванд Г. Пароникян¹, Шушаник Ш. Дашян¹*, Нуне С. Минасян², Грачя М. Степанян¹, Армен Г. Айвазян², Рафаел А. Тамазян²

Поступило 15.09.2016 Принято 3.11.2016

Разработан метод синтеза 8-гидразинпроизводных пирано[3,4-c] пиридинов на основе рециклизации пиридинового цикла. Синтезированы новые трициклические гетероциклические системы — пирано[3,4-c] пиридинов. [4,3-a] пиридины и [3,4-c] пиридины — на основе [3,4-c] пиридины — на основе [3,4-c] пиридинов. Рентгеноструктурным анализом показано наличие межмолекулярных водородных связей в [4,2-c] пиридино[3,4-c] пиридино[3,4-c] пиридино[3,4-c] пиридино[3,4-c] пиридино[3,4-c] пиридинов. Изучены антимикробная и противоопухолевая активность полученных соединений.

Ключевые слова: 8-(пиразол-1-ил)пирано[3,4-c]пиридины, пирано[3,4-c]пиридины, триазоло[4,3-a]пиридины, антимикробная и противоопухолевая активность, перегруппировка.

Пиранопиридины обладают антимикобактериальной, антимикробной, антигипертензивной и антиангиогенезной активностью. $^{1-4}$ По своей структуре пиранопиридины близки к хинолинам и бензопиранам, которые являются интермедиатами в синтезе биологически активных соединений. Известны производные пирано[3,4-c] пиридинов, выделенные из растений 5,6 и являющиеся составной частью некоторых алкалоидов. $^{7-9}$ За последние годы разработаны различные методы получения пирано[3,4-c] пиридинов. $^{10-12}$ Особый интерес представляет препарат MBX2319, который обладает антимикробной активностью (рис. 1). 13,14 Ранее нами были разработаны методы получения оксо-,

Me
$$S(CH_2)_2Ph$$
 Me $NHAr$ $NHAR$

Рисунок 1. Структуры соединений МВХ2319, 1 и 2.

¹ Институт тонкой органической химии им. А. Л. Мнджояна Научно-технологического центра органической и фармацевтической химии НАН Республики Армения, пр. Азатутян, 26, Ереван 0014, Армения; e-mail: shdashyan@gmail.com

² Центр исследования строения молекул Научно-технологического центра органической и фармацевтической химии НАН Республики Армения, пр. Азатутян, 26, Ереван 0014, Армения; e-mail: nunemin@gmail.com

Схема 1

$$\begin{array}{c} \text{CN} \\ \text{Me} \\ \text{S} \\ \text{EtOH, } 70^{\circ}\text{C} \\ \text{EtOH, } 70^{\circ}\text{C} \\ \text{EtOH, } 70^{\circ}\text{C} \\ \text{Me} \\ \text{O.5 h} \\ \text{O.5 h} \\ \text{Me} \\ \text{O.5 h} \\$$

тио- и аминопроизводных пирано[3,4-c]пиридинов, у которых также была выявлена биологическая активность. В работах 17,18 приводится методика синтеза диаминопроизводных пирано[3,4-c]пиридинов 1 (рис. 1), основанная на перегруппировке пиридинового цикла. В литературе описаны методы получения 1,2,4-триазоло[4,3-a]пиридинов из хлор-, амино- или гидразинзамещенных производных пиридинов. Производные этой гетероциклической системы проявляют антимикробную и нейролептическую активность. 22-24 Трициклические триазолопиранопиридины мало изучены, в литературе обнаружены лишь две работы по синтезу 1,2,4-триазоло[4,3-a]пирано[3,2-a]пиридина 2 (рис. 1), который обладает антигипертензивным действием. 25,26

Данная работа посвящена синтезу производных 8-гидразинопирано[3,4-*c*]пиридинов **6** и некоторым их превращениям, приведшим к получению новых представителей пирано[3,4-*c*][1,2,4]триазоло[4,3-*a*]пиридинов **7** и 8-(пиразол-1-ил)пирано[3,4-*c*]пиридинов **10**. Изучены антимикробная и противоопухолевая активность синтезированных соединений.

В качестве исходных соединений для синтеза 8-гидразинопирано[3,4-c]пиридинов $6\mathbf{a}-\mathbf{g}$ использовали 6-аминопирано[3,4-c]пиридинтионы $5\mathbf{a}-\mathbf{g}$, которые получены в две стадии: взаимодействием тиопирилиевой соли 3^{27} с замещенными анилинами и превращением выделенных иминосоединений $4\mathbf{a}-\mathbf{g}$ под действием EtONa в 6-аминопирано[3,4-c]пиридины $5\mathbf{a}-\mathbf{g}$ (схема 1). 17,18

При взаимодействии 6-аминопроизводных ${\bf 5a-g}$ с гидразингидратом происходит раскрытие пиридинового цикла и перегруппировка с выделением H_2S . В результате реакции получены 8-гидразинзамещенные пирано[3,4-c] пиридины ${\bf 6a-g}$ (схема 1). Механизм перегруппировки идентичен приведнному в работе. ¹⁷ Ранее нами описано получение соединения ${\bf 6a}$ кипячением соединения ${\bf 5a}$ в гидразингидрате. ²⁸ Использование ДМСО в качестве растворителя приводит к увеличению выходов продуктов и уменьшению продолжительности реакции.

В ИК спектрах соединений **6а–g** присутствуют полосы поглощения групп NH, NH₂ в области 3170–3385 см⁻¹ и группы С \equiv N в области 2200–2207 см⁻¹. В спектре ЯМР ¹Н сигналы протонов группы NH₂ наблюдаются при 4.11–4.20 м. д., групп NH при 7.55–7.87 (у атома C-8) и при 7.92–8.10 м. д. (у атома C-6).

Далее осуществлены некоторые превращения 8-гидразинопирано[3,4-*c*]пиридинов **6a–g** (схема 2). Взаимодействием последних с триэтилортоформиатом получены триазоло[4,3-*a*]пиридины **7a–g**, а с CS₂ в пиридине синтезированы 3-тиоксотриазоло[4,3-*a*]пиридины **8a–e**. Алкилированием соединений **8a–e** различными алкилгалогенидами получены соответствующие *S*-алкилзамещенные производные **9a–g**.

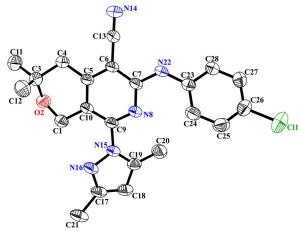
В ИК спектрах соединений **7а–g**, **8а–е** присутствуют полосы поглощения групп NH в области 3218–3371, групп $C \equiv N - B$ области 2202–2209 см⁻¹. В спектрах ЯМР ¹Н соединений **7b,c,f** сигналы протонов групп CH

Схема 2

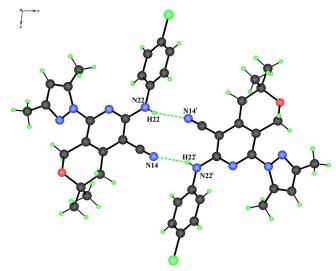
$$\begin{array}{c} \text{CN} \\ \text{Me} \\ \text{O} \\ \text{NHAr} \\ \text{NHAR$$

наблюдаются при 8.33–8.34 м. д. а в спектрах соединений **7a,d,e,g** сигналы протонов тех же самых групп СН смещены в более слабое поле – 9.05–9.22 м. д. В спектрах ЯМР ¹³С соединений **7b,c,f** и **7a,d,e,g** сигналы групп СН фиксируются при 153.3 и 133.9 м. д. соответственно. Сигналы протонов групп NН в спектрах ЯМР ¹Н соединений **7a–g** наблюдаются при 9.34–9.90 м. д., а в спектрах соединений **8a–e** сигналы протонов групп NН в положении 5 и 2 смещены в более слабое поле – 12.60–12.69 и 14.64–14.68 м. д. соответственно.

Взаимодействием 8-гидразинопирано[3,4-c]пиридинов **6а**–**g** с ацетилацетоном получены 8-пиразолилпирано[3,4-c]пиридины **10а**–**g** (схема 2).


Структуры соединений **10а–g** подтверждены ИК спектроскопией, спектроскопией ЯМР 1 Н и 13 С, а также рентгеноструктурным анализом (рис. 2).

Исследование РСА строения соединения **10g** показало, что его молекула состоит из пиранопиридинового бицикла, к положениям 6 (атом С-7) и 8 (атом С-9) которого присоединены *N*-арильный и пиразольный циклы соответственно. Согласно конформационным расчетам, у *N*-арильного, пиразольного и пиридинового циклов почти плоская конформация. Отклонение атомов от усредненных плоскостей не превышает 0.0094(1), 0.0009(1), 0.0110(1) Å соответственно. У дигидропиранового цикла конформация "полукресло", атомы С-1, С-4, С-5 и С-10 расположены в плоскости (максимальное отклонение 0.0004(1) Å), а атомы О-2 и С-3 отклонены от плоскости соответственно на 0.3289(1) и -0.44363(1) Å.


Анализ упаковки молекул в кристаллической решетке показал, что молекулы соединяются в димеры межмолекулярными водородными связями между $N(22)-H(22)\cdots N(14^i)$ и $N(14)\cdots H(22^i)-N(22^i)$ с длиной донорно-акцепторной связи 3.198(3) Å (рис. 3).

Все синтезированные соединения исследовали на антимикробную активность методом диффузии в агар. 29 В опытах использовали грамположительные стафилококки (Staphylococcus aureus 209p, 1) и грамотрицательные палочки (Shigella flexneri 6858, Escherichia coli 0-55), контрольный препарат - фуразолидон. 30 Исследования показали, что соединения 7a.b.d. 9a.c-f. 10a.b.e.f проявляют слабую активность в отношении всех использованных штаммов (д 14-18 мм, табл. 1). Исключение составляют пиразолсодержащие соединения 10а, b, e, f, которые оказывают такую же активность только против грамотрицательных штаммов. Указанные вещества по активности заметно уступают фуразолидону (d 24–25 мм). ³⁰

Противоопухолевую активность соединений **7b,d**, **9d,e** и **10b** изучали на прививаемой опухоли мышей — саркоме $180.^{31}$ При изучении острой токсичности испытуемых соединений установлено, что их ЛД₁₀₀ колеблется в пределах 2000-2250 мг/кг, а МПД — 1000-1200 мг/кг. Химиотерапевтические опыты показали, что вещества **7b,d** проявляют слабую противоопухолевую активность, угнетая рост саркомы 180 на 35.5-45.0% (p 0.05), а остальные соединения лишены активности.

Рисунок 2. Строение молекулы **10g** в представлении атомов эллипсоидами анизотропных тепловых колебаний с 50% вероятностью.

Рисунок 3. Димерная пара молекулы **10g** образованная с помощью межмолекулярных водородных связей, код симметрии (i = 1 - x; 1 - y; 1 - z). Водородные связи показаны пунктирами.

Таблица 1. Антимикробная активность соединений 7a,b,d, 9a,c-f, 10a,b,e,f

Соединение	Диаметр зон ингибирования роста, мм			
	S. aureus		Sh. dysenteriae	E. coli
	209p	1	flexneri 6858	0–55
7a	15	14	14	16
7b	16	14	14	14
7d	14	14	16	15
9a	16	17	14	18
9c	15	14	15	14
9d	14	14	16	15
9e	14	15	14	16
9f	17	18	16	14
10a	0	0	14	15
10b	0	0	15	15
10e	0	0	14	16
10f	0	0	14	14
Фуразолидон	25	24	24	24

Таким образом, в ходе исследования из 6-аминопирано [3,4-c] пиридинов на основе рециклизации пиридинового цикла разработан эффективный метод получения 8-гидразинопирано [3,4-c] пиридинов. Последние явились исходными соединенями для синтеза новых трициклических гетероциклических систем, содержащих пирано [3,4-c] пиридиновый цикл. Строение синтезированных соединений было доказано с помощью рентгеноструктурного анализа. Изучение их биологической активности позволило выделить соединения, оказывающие слабую антимикробную и противоопухолевую активность.

Экспериментальная часть

ИК спектры зарегистрированы на спектрометре Nicolet Avatar 330 FT-IR в вазелиновом масле. Спектры ЯМР 1 Н и 13 С зарегистрированы на приборе Mercury 300 Vx (300 и 75 МГц соответственно) в ДМСО- d_{σ} - CCl₄, 1:3, внутренний стандарт ТМС. При отнесении сигналов в спектрах ЯМР 1 Н и 13 С по необходимости использованы методы DEPT, 1 Н– 1 Н NOESY (время смешения 1 с) или 1 Н– 13 С НМQС. Элементный анализ выполнен на приборе Euro EA 3000. Температуры плавления определены на микронагревательном столике Boetius.

Соединения **4**, **5 а**–**f** синтезированы по ранее опубликованной методике. 17,18

6-Амино-3,3-диметил-8-[(4-хлорфенил)имино]-4,8-дигидро-1H,3H-тиопирано[3,4-c]пиран-5-карбо**нитрил (4g)**. Смесь 3.78 г (10 ммоль) соединения **3** и 2.54 г (20 ммоль) 4-хлоранилина в 20 мл абс. EtOH выдерживают при 70 °C в течение 1.5 ч, затем охлаждают до комнатной температуры и выливают в холодную воду. Полученные кристаллы отфильтровывают, промывают водой, сушат и перекристаллизовывают из ЕtOH. Выход 2.80 г (81%), желтые кристаллы, т. пл. 119–120 °С. ИК спектр, v, см⁻¹: 1660 (C=N), 2190 (CN), 3202, 3305 (NH₂). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.29 (6H, c, 2CH₃); 2.40 (2H, τ , J = 1.8, 4-CH₂); 4.39 (2H, τ , $J = 1.8, 1-\text{CH}_2$; 6.76–6.81 (2H, M, H Ar); 7.30–7.36 (2H, м, H Ar); 7.62 (2H, уш. с, NH₂). Спектр ЯМР ¹³С, δ, м. д.: 26.0 (2CH₃); 39.2 (CH₂); 60.0 (OCH₂); 68.9; 76.5 (C-5); 114.2 (CN); 115.6; 121.3 (2CH Ar); 128.0; 129.1 (2CH Ar); 138.7; 148.7; 150.6; 160.0. Найдено, %: С 59.12; Н 4.63; N 12.22; S 9.18. C₁₇H₁₆ClN₃OS. Вычислено, %: С 59.04; H 4.66; N 12.15; S 9.27.

 уш. с, NH₂); 7.12–7.18 (2H, м, H Ar); 7.53–7.59 (2H, м, H Ar). Спектр ЯМР 13 С, δ , м. д.: 25.9 (2CH₃); 37.4 (CH₂); 61.5 (OCH₂); 68.7; 78.7 (C-5); 115.1 (CN); 122.5; 129.9 (2CH Ar); 130.2 (2CH Ar); 134.2; 136.3; 141.9; 154.0; 177.9. Найдено, %: С 59.15; H 4.62; N 12.23; S 9.34. С₁₇H₁₆ClN₃OS. Вычислено, %: С 59.04; H 4.66; N 12.15; S 9.27.

Синтез N-арил-8-гидразино-3,3-диметил-3,4-дигидро-1H-пирано[3,4-c]пиридин-5-карбонитрилов 6а-g (общая методика). Смесь 10 ммоль соединения 5а-g и 10 мл гидразингидрата в 10 мл ДМСО кипятят в течение 12 ч. Реакционную смесь охлаждают до комнатной температуры, полученные кристаллы отфильтровывают, промывают H_2O , сушат и перекристаллизовывают из диоксана.

6-Анилино-8-гидразино-3,3-диметил-3,4-дигидро- 1*Н***-пирано**[**3,4-***c*] пиридин-5-карбонитрил (**6a**). Выход 2.41 г (78%), светло-желтые кристаллы, т. пл. 229–230 °С. ИК спектр, v, см $^{-1}$: 2202 (CN), 3172, 3338, 3382 (NH, NH₂). Спектр ЯМР 1 Н, δ , м. д. (*J*, Γ ц): 1.26 (6H, c, 2CH₃); 2.55 (2H, c, 4-CH₂); 4.12 (2H, уш. c, NH₂); 4.32 (2H, c, 1-CH₂); 6.88–6.95 (1H, м, H Ar); 7.18–7.27 (2H, м, H Ar); 7.58–7.64 (2H, м, H Ar); 7.83 (1H, уш. c, NH); 8.10 (1H, уш. c, NH). Спектр ЯМР 13 С, δ , м. д.: 25.9 (2CH₃); 37.5 (CH₂); 57.8 (OCH₂); 68.9; 78.9 (C-5); 103.8; 116.8 (CN); 120.4 (2CH Ar); 121.3 (CH Ar); 127.6 (2CH Ar); 140.0; 144.0; 155.1; 155.2. Найдено, %: C 66.08; H 6.15; N 22.58. C_{17} H₁₉N₅O. Вычислено, %: C 66.00; H 6.19; N 22.64.

8-Гидразино-3,3-диметил-6-(4-метилфенил)амино-3,4-дигидро-1*H***-пирано[3,4-с]пиридин-5-карбонитрил (6b)**. Выход 2.43 г (75%), белые кристаллы, т. пл. 227–229 °С. ИК спектр, v, см $^{-1}$: 2202 (CN), 3200, 3315, 3382 (NH, NH₂). Спектр ЯМР 1 Н, δ , м. д. (*J*, Γ ц): 1.26 (6H, c, 2CH₃); 2.30 (3H, c, C₆H₄C $_{13}$); 2.54 (2H, c, 4-CH₂); 4.11 (2H, уш. c, NH₂); 4.31 (2H, c, 1-CH₂); 7.00–7.05 (2H, м, H Ar); 7.45–7.49 (2H, м, H Ar); 7.80 (1H, уш. c, NH); 7.95 (1H, уш. c, NH). Спектр ЯМР 13 С, δ , м. д.: 20.3 (CH₃); 25.8 (2CH₃); 37.5 (CH₂); 57.8 (OCH₂); 68.8; 78.5 (C-5); 103.4; 116.8 (CN); 120.7 (2CH Ar); 128.1 (2CH Ar); 130.3; 137.2; 144.0; 155.1; 155.2. Найдено, %: C 66.78; H 6.52; N 21.74. C_{18} H₂₁N₃O. Вычислено; %: C 66.85; H 6.55; N 21.66.

8-Гидразино-3,3-диметил-6-(3-метилфенил)амино-3,4-дигидро-1*H***-пирано[3,4-с]пиридин-5-карбонитрил** (**6c**). Выход 2.52 г (78%), белые кристаллы, т. пл. 254–255 °C. ИК спектр, v, см⁻¹: 2200 (CN), 3203, 3327, 3385 (NH, NH₂). Спектр ЯМР ¹H, δ , м. д. (*J*, Γ ц): 1.26 (6H, c, 2CH₃); 2.32 (3H, c, CH₃); 2.55 (2H, т, J = 1.5, 4-CH₂); 4.18 (2H, уш. c, NH₂); 4.32 (2H, т, J = 1.5, 1-CH₂); 6.71–6.75 (1H, м, H Ar); 7.09 (1H, т, J = 7.7 H Ar); 7.40–7.45 (2H, м, H Ar); 7.85 (1H, уш. c, NH); 7.95 (1H, уш. c, NH). Спектр ЯМР ¹³С, δ , м. д.: 21.0 (CH₃); 25.8 (2CH₃); 37.4 (CH₂); 57.7 (OCH₂); 68.8; 78.8 (C-5); 103.7; 116.7 (CN); 117.5 (CH Ar); 120.9 (CH Ar); 122.1 (CH Ar); 127.5 (CH Ar); 136.7; 139.8; 143.9; 155.0; 155.1. Найдено, %: C 66.93; H 6.58; N 21.57. C₁₈H₂₁N₅O. Вычислено, %: C 66.85; H 6.55; N 21.66.

8-Гидразино-3,3-диметил-6-(4-метоксифенил)амино-3,4-дигидро-1H-пирано[3,4-c]пиридин-5-карбонитрил (6d).

Выход 2.68 г (79%), белые кристаллы, т. пл. 228–230 °С. ИК спектр, v, см $^{-1}$: 2205 (CN), 3208, 3327, 3380 (NH, NH $_2$). Спектр ЯМР 1 Н, δ , м. д. (J, Гц): 1.25 (6H, c, 2CH $_3$); 2.52 (2H, c, 4-CH $_2$); 3.75 (3H, c, OCH $_3$); 4.19 (2H, уш. c, NH $_2$); 4.29 (2H, c, 1-CH $_2$); 6.75–6.82 (2H, м, H Ar); 7.45–7.51 (2H, м, H Ar); 7.80 (1H, уш. c, NH); 8.01 (1H, уш. c, NH). Спектр ЯМР 13 С, δ , м. д.: 25.9 (2CH $_3$); 37.5 (CH $_2$); 54.7 (OCH $_3$); 57.8 (OCH $_2$); 68.9; 77.9 (C-5); 103.4; 113.0 (2CH Ar); 117.0 (CN); 122.6 (2CH Ar); 132.9; 144.0; 154.5; 155.1; 155.6. Найдено, %: C 63.79; H 6.28; N 20.59. С $_{18}$ Н $_{21}$ N $_5$ О $_2$. Вычислено, %: C 63.70; H 6.24; N 20.64.

8-Гидразино-3,3-диметил-6-(3-метоксифенил)амино-3,4-дигидро-1H-пирано[3,4-c]пиридин-5-карбонитрил (6е). Выход 2.55 г (75%), желтые кристаллы, т. пл. 217-218 °C. ИК спектр, v, см⁻¹: 2207 (CN), 3180, 3315, 3382 (NH, NH₂). Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.27 (6H, c, 2CH₃); 2.55 (2H, c, 4-CH₂); 3.77 (3H, c, OCH₃); 4.19 (2H, уш. c, NH₂); 4.32 (2H, c, 1-CH₂); 6.46 (1H, д. д. д, J = 8.0, J = 2.5, J = 1.0, H Ar); 7.09 (1H, T, J = 8.0, H Ar); 7.17 (1H, д. д. д. J = 8.0, J = 1.8, J = 1.0, H Ar); 7.35 (1H, д. д, J = 2.5, J = 1.8, H Ar); 7.87 (1H, yiii. c, NH); 8.00 (1H, уш. c, NH). Спектр ЯМР ¹³С, δ, м. д.: 25.9 (2СН₃); 37.5 (CH₂); 54.4 (OCH₃); 57.8 (OCH₂); 68.8; 79.0 (C-5); 103.8; 105.6 (CH Ar); 107.3 (CH Ar); 112.5 (CH Ar); 116.7 (CN); 128.2 (CH Ar); 141.2; 143.9; 155.0; 155.1; 159.1. Найдено, %: С 63.64; Н 6.21; N 20.69. C₁₈H₂₁N₅O₂. Вычислено, %: С 63.70; Н 6.24; N 20.64.

8-Гидразино-6-(2-метоксифенил)амино-3,3-диметил-3,4-дигидро-1*H***-пирано[3,4-с]пиридин-5-карбонитрил (6f)**. Выход 2.44 г (72%), белые кристаллы, т. пл. 235–236 °C. ИК спектр, v, см⁻¹: 2206 (CN), 3180, 3320, 3380 (NH, NH₂). Спектр ЯМР ¹H, δ , м. д. (*J*, Γ ц): 1.26 (6H, c, 2CH₃); 2.55 (2H, c, 4-CH₂); 3.96 (3H, c, OCH₃); 4.20 (2H, уш. c, NH₂); 4.33 (2H, c, 1-CH₂); 6.87–6.95 (3H, м, H Ar); 7.55 (1H, уш. c, NH); 7.92 (1H, уш. c, NH); 8.44–8.50 (1H, м, H Ar). Спектр ЯМР ¹³С, δ , м. д.: 25.8 (2CH₃); 37.4 (CH₂); 54.4 (OCH₃); 57.8 (OCH₂); 68.8; 78.9 (C-5); 103.4; 109.5 (CH Ar); 116.5 (CN); 118.7 (CH Ar); 120.2 (CH Ar); 120.9 (CH Ar); 128.8; 143.6; 147.5; 154.8; 155.5. Найдено, %: C 63.77; H 6.21; N 20.58. $C_{18}H_{21}N_5O_2$. Вычислено, %: C 63.70; H 6.24; N 20.64.

8-Гидразино-3,3-диметил-6-(4-хлорфенил)амино-3,4-дигидро-1*H*-пирано[3,4-*c*]пиридин-5-карбонитрил (**6g**). Выход 2.37 г (69%), белые кристаллы, т. пл. 226–227 °C. ИК спектр, v, см⁻¹: 2206 (CN), 3180, 3320, 3380, (NH, NH₂). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.25 (6H, с, 2CH₃); 2.55 (2H, с, 4-CH₂); 4.15 (2H, уш. с, NH₂); 4.31 (2H, с, 1-CH₂); 7.16–7.21 (2H, м, H Ar); 7.62–7.68 (2H, м, H Ar); 7.86 (1H, уш. с, NH); 8.37 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ, м. д.: 25.8 (2CH₃); 37.4 (CH₂); 57.7 (ОСН₂); 68.8; 79.1 (C-5); 104.1; 116.6 (CN); 121.8 (2CH Ar); 125.4; 127.4 (2CH Ar); 138.8; 144.1; 154.8; 155.1. Найдено, %: C 59.46; H 5.24; N 20.31. C₁₇H₁₈ClN₅O. Вычислено, %: C 59.39; H 5.28; N 20.37.

Синтез *N*-арил-8,8-диметил-7,10-дигидро-8*H*-пирано-[3,4-*c*][1,2,4]триазоло[4,3-*a*]пиридин-6-карбонитрилов 7а—g (общая методика). Смесь 5 ммоль соединения 6а—g и 40 мл триэтоксиметана кипятят в течение 8 ч. После охлаждения полученные кристаллы отфильтровывают,

промывают EtOH, сушат и перекристаллизовывают из EtOH-CHCl₃, 1:1.

5-Анилино-8,8-диметил-7,10-дигидро-8*Н*-пирано-[3,4-*c*][1,2,4]триазоло[4,3-*a*]пиридин-6-карбонитрил (7а). Выход 1.13 г (71%), белые кристаллы, т. пл. 266–267 °C. ИК спектр, v, см⁻¹: 1629 (С=N), 2203 (СN), 3370 (NH). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.34 (6H, с, 2CH₃); 2.60 (2H, с, 7-CH₂); 4.86 (2H, с, 10-CH₂); 7.10–7.20 (3H, м, H Ar); 7.32–7.41 (2H, м, H Ar); 9.09 (1H, с, 3-CH); 9.85 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ, м. д.: 25.9 (2CH₃); 36.6 (CH₂); 57.9 (ОСH₂); 69.8; 83.1 (С-6); 112.0; 113.5 (CN); 121.6 (2CH Ar); 124.3 (CH Ar); 128.6 (2CH Ar); 131.7; 133.9 (CH); 138.1; 140.6; 145.7. Найдено, %: С 67.78; H 5.33; N 21.86. C₁₈H₁₇N₅O. Вычислено, %: С 67.70; H 5.37; N 21.93.

8,8-Диметил-5-(4-метилфенил)амино-7,10-дигидро- 8*Н*-пирано[3,4-c][1,2,4]триазоло[4,3-а]пиридин-6-карбонитрил (7b). Выход 1.33 г (80%), белые кристаллы, т. пл. 235–236 °С. ИК спектр, v, см⁻¹: 1630 (С=N), 2205 (СN), 3365 (NH). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.32 (6H, c, 2CH₃); 2.41 (3H, c, C₆H₄C<u>H₃</u>); 2.62 (2H, c, 7-CH₂); 4.81 (2H, c, 10-CH₂); 7.12–7.21 (4H, м, H Ar); 8.33 (1H, c, 3-CH); 9.74 (1H, уш. с, NH); Спектр ЯМР ¹³С, δ, м. д.: 20.6 (СН₃); 25.9 (2CH₃); 36.9 (СН₂); 57.8 (ОСН₂); 69.8; 79.5 (С-6); 110.3; 113.2 (CN); 124.5 (2CH Ar); 128.8 (2CH Ar); 134.3; 134.8; 136.0; 143.3; 147.6; 153.3 (СН). Найдено, %: С 68.37; H 5.77; N 21.08. С₁₉H₁₉N₅O. Вычислено, %: С 68.45; H 5.74; N 21.01.

8,8-Диметил-5-(3-метилфенил)амино-7,10-дигидро-8*Н*-пирано[3,4-*c*][1,2,4]триазоло[4,3-*a*]пиридин-6-карбонитрил (7с). Выход 1.22 г (73%), серые кристаллы, т. пл. 175–177 °С. ИК спектр, v, см⁻¹: 1628 (С=N), 2204 (СN), 3367 (NH). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.33 (6H, с, 2CH₃); 2.39 (3H, с, C₆H₄C<u>H₃</u>); 2.65 (2H, с, 7-CH₂); 4.82 (2H, с, 10-CH₂); 7.01–7.08 (3H, м, H Ar); 7.20–7.27 (1H, м, H Ar); 8.34 (1H, с, 3-CH); 9.78 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ, м. д.: 20.1 (СH₃); 25.9 (2CH₃); 36.9 (CH₂); 57.8 (ОСН₂); 69.8; 80.2 (С-6); 110.7; 113.2 (CN); 121.1 (CH Ar); 124.5 (CH Ar); 126.1 (CH Ar); 128.0 (CH Ar); 135.9; 136.9; 137.5; 143.0; 147.7; 153.3 (CH). Найдено, %: С 68.52; H 5.78; N 20.95. С₁₉H₁₉N₅O. Вычислено, %: С 68.45; H 5.74; N 21.01.

8,8-Диметил-5-(4-метоксифенил)амино-7,10-дигидро-8*H*-пирано[3,4-*c*][1,2,4]триазоло[4,3-*a*]пиридин-6-карбонитрил (7d). Выход 1.36 г (78%), белые кристаллы, т. пл. 143–145 °C. ИК спектр, v, см⁻¹: 1622 (C=N), 2205 (CN), 3367 (NH). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.32 (6H, с, 2CH₃); 2.54 (2H, с, 7-CH₂); 3.84 (3H, с, OCH₃); 4.82 (2H, с, 10-CH₂); 6.90–6.95 (2H, м, H Ar); 7.13–7.19 (2H, м, H Ar); 9.22 (1H, с, 3-CH); 9.70 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ, м. д.: 25.9 (2CH₃); 36.6 (CH₂); 54.8 (OCH₃); 57.9 (OCH₂); 69.8; 79.2 (C-6); 110.0; 113.6 (CN); 113.9 (2CH Ar); 125.7 (2CH Ar); 130.0; 132.2; 133.9 (CH); 142.1; 145.7; 157.5. Найдено, %: C 65.26; H 5.52; N 20.97. С₁₉H₁₉N₅O₂. Вычислено, %: C 65.32; H 5.48; N 21.04.

8,8-Диметил-5-(3-метоксифенил)амино-7,10-дигидро- 8*H*-пирано[3,4-c][1,2,4]триазоло[4,3-a]пиридин-6-карбонитрил (7e). Выход 1.45 г (83%), белые кристаллы,

т. пл. 210–212 °С. ИК спектр, v, см $^{-1}$: 1625 (C=N), 2205 (CN), 3362 (NH). Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.34 (6H, c, 2CH₃); 2.62 (2H, c, 7-CH₂); 3.80 (3H, c, OCH₃); 4.86 (2H, c, 10-CH₂); 6.64–6.72 (3H, м, H Ar); 7.20–7.27 (1H, м, H Ar); 9.05 (1H, c, 3-CH); 9.83 (1H, уш. c, NH). Спектр ЯМР 13 С, δ , м. д.: 25.9 (2CH₃); 36.6 (CH₂); 54.7 (OCH₃); 57.9 (OCH₂); 69.8; 83.8 (C-6); 107.3; 109.8 (CH Ar); 112.3 (CH Ar); 113.4 (CN); 113.6; 129.3 (CH Ar); 131.7; 133.9 (CH); 139.3; 140.4; 145.7; 159.8. Найдено, %: C 65.39; H 5.51; N 21.12. $C_{19}H_{19}N_5O_2$. Вычислено, %: C 65.32; H 5.48; N 21.04.

8,8-Диметил-5-(2-метоксифенил)амино-7,10-дигидро-8*H*-пирано[3,4-*c*][1,2,4]триазоло[4,3-*a*]пиридин-6-карбонитрил (7f). Выход 1.31 г (75%), желтые кристаллы, т. пл. 127–129 °С. ИК спектр, v, см⁻¹: 1626 (С=N), 2202 (СN), 3371 (NH). Спектр ЯМР ¹H, δ , м. д. (*J*, Γ ц): 1.32 (6H, c, 2CH₃); 2.61 (2H, c, 7-CH₂); 3.82 (3H, c, OCH₃); 4.81 (2H, c, 10-CH₂); 6.96 (1H, т. д, *J* = 7.5, *J* = 1.2, H Ar); 7.02 (1H, д. д, *J* = 8.3, *J* = 1.0, H Ar); 7.26–7.34 (2H, м, H Ar); 8.33 (1H, c, 3-CH); 9.34 (1H, уш. c, NH). Спектр ЯМР ¹³С, δ , м. д.: 25.9 (2CH₃); 36.9 (CH₂); 54.9 (OCH₃); 57.9 (OCH₂); 69.8; 78.6 (C-6); 109.6; 111.0 (CH Ar); 113.2 (CN); 119.8 (CH Ar); 124.2; 127.5 (CH Ar); 128.0 (CH Ar); 135.8; 142.9; 147.4; 153.3 (CH); 154.4. Найдено, %: C 65.24; H 5.44; N 20.10. C₁₉H₁₉N₅O₂. Вычислено, %: C 65.32; H 5.48; N 20.04.

8,8-Диметил-5-(4-хлорфенил)амино-7,10-дигидро-8*Н*-пирано[3,4-*c*][1,2,4]триазоло[4,3-*a*]пиридин-6-карбонитрил (7g). Выход 1.24 г (70%), белые кристаллы, т. пл. 277–278 °С. ИК спектр, v, см⁻¹: 1622 (С=N), 2204 (СN), 3368 (NH). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.34 (6H, с, 2CH₃); 2.61 (2H, с, 7-CH₂); 4.86 (2H, с, 10-CH₂); 7.10–7.16 (2H, м, H Ar); 7.31–7.36 (2H, м, H Ar); 9.12 (1H, с, 3-CH); 9.90 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ, м. д.: 25.9 (2CH₃); 36.6 (CH₂); 57.9 (ОСН₂); 69.8; 83.7 (С-6); 112.6; 113.6 (CN); 122.7 (2CH Ar); 128.6 (2CH Ar); 128.7; 131.7; 133.9 (CH); 137.1; 140.3; 145.7. Найдено, %: С 61.17; H 4.52; N 19.71. С₁₈H₁₆ClN₅O. Вычислено, %: С 61.10; H 4.56; N 19.79.

Синтез *N*-арил-8,8-диметил-3-тиоксо-2,3,7,10-тетрагидро-8*H*-пирано[3,4-c][1,2,4]триазоло[4,3-a]пиридин-6-карбонитрилов 8а-е (общая методика). Смесь 5 ммоль соединения 6а-е, 10 мл CS_2 и 20 мл пиридина кипятят в течение 15 ч. Растворитель удаляют при пониженном давлении и неочищенный продукт добавляют в раствор 0.28 г (5 ммоль) КОН в смеси 10 мл H_2O и 30 мл EtOH. Затем раствор подкисляют 10% H_2O и перекристаллы отфильтровывают, промывают H_2O и перекристаллизовывают из смеси EtOH— $CHCl_3$, 1:1.

5-Анилино-8,8-диметил-3-тиоксо-2,3,7,10-тетрагидро- 8*H*-пирано[3,4-c][1,2,4]триазоло[4,3-a]пиридин-6-карбонитрил (8a). Выход 1.55 г (88%), кристаллы кремового цвета, т. пл. 258–260 °C. ИК спектр, v, см $^{-1}$: 1180 (C=S), 2209 (CN), 3220 (NH), 3368 (NH). Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.29 (6H, c, 2CH₃); 2.42 (2H, c, 7-CH₂); 4.54 (2H, c, 10-CH₂); 7.25–7.08 (3H, м, H Ar); 7.21–7.32 (2H, м, H Ar); 12.69 (1H, уш. c, 5-NH); 14.68 (1H, уш. c, 2-NH). Спектр ЯМР 13 С, δ , м. д.: 25.8 (2CH₃); 36.5 (CH₂); 57.0 (OCH₂); 69.7; 76.4 (C-6); 108.9; 113.2 (CN); 124.4 (2CH

Аг); 126.3 (CH Ar); 128.6 (2CH Ar); 135.6 (2C); 144.2; 148.0; 160.0. Найдено, %: С 61.58; Н 4.85; N 19.87; S 9.06. $C_{18}H_{17}N_5OS$. Вычислено, %: С 61.52; Н 4.88; N 19.93; S 9.12.

8,8-Диметил-5-(4-метилфенил)амино-3-тиоксо-2,3,7,10-тетрагидро-8*H*-пирано[3,4-*c*][1,2,4]триазоло-[4,3-*a*]пиридин-6-карбонитрил (8b). Выход 1.63 г (89%), желтые кристаллы, т. пл. 238–239 °С. ИК спектр, v, см⁻¹: 1200 (С=S), 2207 (СN), 3225 (NH), 3365 (NH). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.28 (6H, c, 2CH₃); 2.40 (2H, c, 7-CH₂); 2.41 (3H, c, C₆H₄C<u>H₃</u>); 4.57 (2H, c, 10-CH₂); 7.15–7.23 (4H, м, H Ar); 12.64 (1H, уш. c, 5-NH); 14.66 (1H, уш. c, 2-NH). Спектр ЯМР ¹³С, δ, м. д.: 20.6 (СН₃); 25.8 (2CH₃); 36.5 (СН₂); 57.0 (ОСН₂); 69.7; 75.8 (С-6); 108.5; 113.2 (СN); 124.7 (2CH Ar); 129.2 (2CH Ar); 132.9; 135.8; 135.9; 144.2; 148.3; 160.0. Найдено, %: С 62.51; H 5.27; N 19.09; S 8.71. С₁₉H₁₉N₅OS. Вычислено, %: С 62.44; H 5.24; N 19.16; S 8.77.

8,8-Диметил-5-(3-метилфенил)амино-3-тиоксо- 2,3,7,10-тетрагидро-8*H*-пирано[**3,4-***c*][**1,2,4**]триазоло-[**4,3-***a*]пиридин-6-карбонитрил (8c). Выход 1.61 г (88%), желтые кристаллы, т. пл. 247–249 °С. ИК спектр, v, см $^{-1}$: 1205 (C=S), 2206 (CN), 3225 (NH), 3363 (NH). Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.29 (6H, c, 2CH₃); 2.41 (3H, c, $C_6H_4CH_3$); 2.42 (2H, τ , J = 1.8, 7-CH₂); 4.54 (2H, τ , J = 1.6, 10-CH₂); 7.06–7.11 (3H, м, H Ar); 7.26–7.31 (1H, м, H Ar); 12.66 (1H, уш. c, 5-NH); 14.67 (1H, уш. c, 2-NH). Спектр ЯМР 13 С, δ , м. д.: 20.8 (CH₃); 25.8 (2CH₃); 36.5 (CH₂); 57.0 (OCH₂); 69.7; 76.2 (C-6); 108.7; 113.2 (CN); 121.5 (CH Ar); 124.9 (CH Ar); 127.1 (CH Ar); 128.3 (CH Ar); 135.4; 135.7; 138.1; 144.2; 148.0; 160.0. Найдено, %: C 62.50; H 5.21; N 19.24; S 8.81. $C_{19}H_{19}N_5$ OS. Вычислено, %: C 62.44; H 5.24; N 19.16; S 8.77.

8,8-Диметил-5-(4-метоксифенил)амино-3-тиоксо- 2,3,7,10-тетрагидро-8*H*-пирано[**3,4-c**][**1,2,4**]триазоло- [**4,3-а**]пиридин-6-карбонитрил (**8d**). Выход 1.47 г (77%), кристаллы кремового цвета, т. пл. 245–247 °С. ИК спектр, v, см $^{-1}$: 1205 (C=S), 2206 (CN), 3220 (NH), 3360 (NH). Спектр ЯМР 1 Н, δ , м. д. (*J*, Γ ц): 1.29 (6H, c, 2CH₃); 2.38 (2H, т, J = 1.7, 7-CH₂); 3.84 (3H, c, OCH₃); 4.51 (2H, т, J = 1.7, 10-CH₂); 6.90–6.95 (2H, м, H Ar); 7.21–7.26 (2H, м, H Ar); 12.60 (1H, уш. с, 5-NH); 14.64 (1H, уш. с, 2-NH). Спектр ЯМР 13 С, δ , м. д.: 25.8 (2CH₃); 36.5 (CH₂); 54.8 (OCH₃); 56.9 (OCH₂); 69.7; 75.0 (C-6); 107.9; 113.2 (CN); 113.9 (2CH Ar); 127.1 (2CH Ar); 128.1; 135.9; 144.2; 149.1; 158.3; 160.0. Найдено, %: C 59.76; H 5.05; N 18.28; S 8.47. C_{19} H₁₉N₅O₂S. Вычислено, %: C 59.82; H 5.02; N 18.36; S 8.41.

8,8-Диметил-5-(3-метоксифенил)амино-3-тиоксо- 2,3,7,10-тетрагидро-8*H*-пирано[**3,4-***c*][**1,2,4**]триазоло-[**4,3-***a*]пиридин-6-карбонитрил (**8e**). Выход 1.62 г (85%), коричневые кристаллы, т. пл. 265–267 °С. ИК спектр, v, см $^{-1}$: 1203 (C=S), 2205 (CN), 3220 (NH), 3364 (NH). Спектр ЯМР 1 H, δ , м. д. (J, Γ ц): 1.29 (6H, c, 2CH₃); 2.43 (2H, т, J = 2.0, 7-CH₂); 3.83 (3H, c, OCH₃); 4.54 (2H, т, J = 2.0, 10-CH₂); 6.80–6.88 (3H, м, H Ar); 7.29 (1H, д. д, J = 8.8, J = 7.9, H Ar); 12.65 (1H, c, 5-NH); 14.68 (1H, уш. c, 2-NH). Спектр ЯМР 13 С, δ , м. д.: 25.8 (2CH₃); 36.5 (CH₂); 54.7 (OCH₃); 57.0 (OCH₂); 69.7; 76.7 (C-6); 108.9

(CH Ar); 110.2; 112.3 (CH Ar); 113.2 (CN); 116.5 (CH Ar); 129.2 (CH Ar); 135.7; 136.7; 144.2; 147.9; 159.6; 160.0. Найдено, %: C 59.88; H 5.06; N 18.42; S 8.34. $C_{19}H_{19}N_5O_2S$. Вычислено, %: C 59.82; H 5.02; N 18.36; S 8.41.

Алкилирование пиранотриазолотионов 8а–g (общая методика). К раствору 112 мг (2 ммоль) КОН в смеси 2 мл H_2O и 12 мл EtOH добавляют 2 ммоль соединения 8а–g. После полного растворения при охлаждении добавляют 2 ммоль соответствующего алкилгалогенида и реакционную смесь перемешивают при комнатной температуре в течение 12 ч. Полученные кристаллы отфильтровывают, промывают H_2O , сушат и перекристаллизовывают из смеси $EtOH-CHCl_3$, 2:1.

2-[(5-Анилино-8,8-диметил-6-циано-7,10-дигидро-8*H*-пирано[3,4-*c*][1,2,4]триазоло[4,3-*a*]пиридин-3-ил)сульфанил]-*N*-фенилацетамид (9а). Выход 0.76 г (78%), белые кристаллы, т. пл. 210-211 °С. ИК спектр, v, cм⁻¹: 1670 (C=O), 2226 (CN), 3308 (NH). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.35 (6H, c, 2CH₃); 2.63 (2H, т, J = 1.8, 7-CH₂); 4.17 (2H, c, SCH₂); 4.84 (2H, T, J = 1.8, 10-CH₂); 6.93–7.03 (4H, M, H Ar); 7.19–7.31 (4H, M, H Ar); 7.51–7.56 (2H, м, H Ar); 9.58 (1H, уш. с, NH); 10.17 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ , м. д.: 25.8 (2CH₃); 36.3 (CH₂); 39.2 (SCH₂); 57.7 (OCH₂); 69.8; 92.6 (C-6); 113.0; 116.4 (CN); 117.3 (2CH Ar); 118.9 (2CH Ar); 121.7 (CH Ar); 122.9 (CH Ar); 128.0 (2CH Ar); 128.7 (2CH Ar); 131.7; 138.4; 141.2; 141.3; 142.4; 148.4; 165.3. Найдено, %: С 64.51; Н 4.95; N 17.43; S 6.57. С₂₆H₂₄N₆O₂S. Вычислено, %: С 64.44; H 4.99; N 17.34; S 6.62.

2-[(5-Анилино-8,8-диметил-6-циано-7,10-дигидро-8*H*-пирано[3,4-*c*][1,2,4]триазоло[4,3-*a*]пиридин-3-ил)сульфанил]-N-(4-этоксифенил)ацетамид (9b). Выход 0.85 г (80%), кристаллы кремового цвета, т. пл. 228-229 °С. ИК спектр, v, см⁻¹: 1675 (С=О), 2226 (CN), 3306 (NH). Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.34 (6H, с, $2CH_3$); 1.37 (3H, T, J = 7.0, OCH_2CH_3); 2.63 (2H, T, $J = 1.8, 7 - \text{CH}_2$; 3.97 (2H, κ , $J = 7.0, \text{OCH}_2\text{CH}_3$); 4.13 (2H, c, SCH₂); 4.84 (2H, τ , J = 1.8, 10-CH₂); 6.72–6.78 (2H, M, H Ar); 6.94–7.02 (3H, M, H Ar); 7.24–7.31 (2H, M, H Ar); 7.39-7.45 (2H, M, H Ar); 9.64 (1H, c, NH); 10.02 (1H, c, NH). Спектр ЯМР ¹³С, б, м. д.: 14.4 (CH₃); 25.9 (2CH₃); 36.3 (CH₂); 39.3 (SCH₂); 57.7 (OCH₂); 62.6 (OCH₂); 69.8; 92.2 (C-6); 113.0; 113.7 (2CH Ar); 116.2 (CN); 117.4 (2CH Ar); 120.4 (2CH Ar); 121.8 (CH Ar); 128.7 (2CH Ar); 131.3; 131.8; 141.1; 141.3; 142.3; 148.4; 154.5; 164.8. Найдено, %: С 63.56; Н 5.31; N 15.97; S 6.14. C₂₈H₂₈N₆O₃S. Вычислено, %: С 63.62; H 5.34; N 15.90; S 6.07.

8,8-Диметил-3-(3-метилбутил)сульфанил-5-(4-метилфенил)амино-7,10-дигидро-8*H*-пирано[3,4-*c*][1,2,4]три-азоло[4,3-*a*]пиридин-6-карбонитрил (9c). Выход 0.71 г (81%), белые кристаллы, т. пл. 183–184 °С. ИК спектр, v, см⁻¹: 2220 (CN), 3335 (NH). Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 0.90 (6H, д, J = 6.5, CH₂CH(C \underline{H} ₃)₂); 1.35 (6H, c, 8-C(CH₃)₂); 1.49–1.59 (2H, м, C \underline{H} ₂CH(CH₃)₂); 1.59–1.72 (1H, м, CH₂C \underline{H} (CH₃)₂); 2.32 (3H, c, C₆H₄C \underline{H} ₃); 2.62 (2H, \mathbf{T} , J = 1.8, 7-CH₂); 3.12–3.19 (2H, м, SCH₂); 4.85 (2H, \mathbf{T} , J = 1.8, 10-CH₂); 6.71–6.76 (2H, м, H Ar); 7.01–7.07 (2H, м, H Ar); 8.97 (1H, c, NH). Спектр ЯМР ¹³С, δ , м. д.: 20.2 (CH₃); 21.7 (2CH₃); 25.9 (2CH₃); 26.7 (CH₂); 31.9 (SCH₂);

36.3 (CH); 37.2 (CH₂); 57.8 (OCH₂); 69.8; 92.7 (C-6); 113.2 (CN); 116.7; 117.1 (2CH Ar); 129.2 (2CH Ar); 130.5; 130.9; 139.5; 141.5; 143.0; 148.2. Найдено, %: С 66.25; H 6.74; N 16.00; S 7.31. $C_{24}H_{29}N_5OS$. Вычислено, %: С 66.18; H 6.71; N 16.08; S 7.36.

2-{[6-Циано-8,8-диметил-5-(4-метилфенил)амино-7,10-дигидро-8*H*-пирано[3,4-*c*][1,2,4]триазоло[4,3-*a*]пиридин-3-ил]сульфанил}-N-(4-этоксифенил)ацетамид (9d). Выход 0.84 г (77%), белые кристаллы, т. пл. 199-200 °C. ИК спектр, v, см⁻¹: 2225 (CN), 3306 (NH). Спектр ЯМР ¹H, δ , м. д. (*J*, Γ ц): 1.34 (6H, c, 2CH₃); 1.37 $(3H, T, J = 7.0, OCH_2CH_3); 2.34 (3H, c, C_6H_4CH_3); 2.60$ (2H, c, 7-CH₂); 3.97 (2H, κ , J = 7.0, OCH₂CH₃); 4.11 (2H, c, SCH₂); 4.83 (2H, c, 10-CH₂); 6.71-6.77 (2H, M, H Ar); 6.88-6.94 (2H, M, H Ar); 7.01-7.11 (2H, M, H Ar); 7.38-7.44 (2H, м, H Ar); 9.60 (1H, уш. с, NH); 10.00 (1H, уш, с, NH). Спектр ЯМР ¹³С, б, м. д.: 14.4 (СН₃); 20.3 (CH₃); 25.9 (2CH₃); 36.4 (CH₂); 39.8 (SCH₂); 57.7 (OCH₂); 62.6 (OCH₂); 69.8; 90.1 (C-6); 113.1 (CN); 113.7 (2CH Ar); 115.1; 118.4 (2CH Ar); 120.3 (2CH Ar); 129.2 (2CH Ar); 131.3 (2C); 131.4; 132.1; 138.1; 141.9; 148.4; 154.5; 164.9. Найдено, %: C 64.12; H 5.54; N 15.56; S 5.99. С₂₉H₃₀N₆O₃S. Вычислено, %: С 64.19; Н 5.57; N 15.49: S 5.91.

2-{[6-Циано-8,8-диметил-5-(4-метилфенил)амино-7,10-дигидро-8*H*-пирано[3,4-*c*][1,2,4]триазоло[4,3-*a*]пиридин-3-ил]сульфанил}-N-(2,4-диметоксифенил)ацетамид (9е). Выход 0.84 г (75%), коричневые кристаллы, т. пл. 203–204 °C. ИК спектр, v, см⁻¹: 1670 (C=O), 2226 (CN), 3310 (NH). Спектр ЯМР ¹Н, б, м. д. (J, Γ_{II}) : 1.34 (6H, c, 2CH₃); 2.33 (3H, c, C₆H₄CH₃); 2.61 (2H, T, J = 1.6, 7-CH₂); 3.75 (3H, c, OCH₃); 3.81 (3H, c,OCH₃); 4.12 (2H, c, SCH₂); 4.85 (2H, τ , J = 1.6, 10-CH₂); 6.38 (1H, д. д, J = 8.8, J = 2.6, H Ar); 6.45 (1H, д, J = 2.6, H Ar); 6.84–6.89 (2H, M, H Ar); 7.04–7.09 (2H, M, H Ar); 7.83 (1H, д, J = 8.8, H Ar); 9.44 (1H, уш. c, NH); 9.50 (1H, уш. c, NH). Спектр ЯМР ¹³С, δ, м. д.: 20.3 (СН₃); 25.9 (2CH₃); 38.8 (CH₂); 39.8 (SCH₂); 54.7 (OCH₃); 55.1 (OCH₃); 57.8 (OCH₂); 69.8; 91.0 (C-6); 98.2; 103.4; 113.0 (CN); 115.6; 118.0 (2CH Ar); 120.3; 121.8 (CH Ar); 129.2 (2CH Ar); 131.1; 132.0 (CH Ar); 138.4 (CH Ar); 141.8; 142.3; 148.5; 150.1; 156.3; 165.3. Найдено, %: С 62.28; Н 5.44; N 15.10; S 5.69. С₂₉Н₃₀N₆O₄S. Вычислено, %: C 62.35; H 5.41; N 15.04; S 5.74.

8,8-Диметил-5-(3-метилфенил)амино-3-(2-морфолин-4-ил-2-оксоэтил)сульфанил-7,10-дигидро-8*H*-пирано-[3,4-c][1,2,4]триазоло[4,3-a]пиридин-6-карбонитрил (9f). Выход 0.81 г (82%), желтые кристаллы, т. пл. 194–196 °С. ИК спектр, v, см $^{-1}$: 1675 (C=O), 2225 (CN), 3330 (NH). Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.35 (6H, c, 2CH₃); 2.35 (3H, c, CH₃); 2.64 (2H, τ , J = 1.8, 7-CH₂); 3.49–3.62 (8H, м, N(CH₂)₂ и O(CH₂)₂); 4.26 (2H, c, SCH₂); 4.85 (2H, τ , J = 1.8, 10-CH₂); 6.75–6.84 (3H, м, H Ar); 7.12–7.19 (1H, м, H Ar); 9.94 (1H, уш. c, NH). Спектр ЯМР 13 С, δ , м. д.: 21.0 (CH₃); 25.9 (2CH₃); 36.4 (CH₂); 42.1 (CH₂); 45.5 (2CH₂); 57.7 (OCH₂); 65.7 (2CH₂); 69.8; 90.6 (C-6); 113.1 (CN); 115.0; 115.3; 118.4 (CH Ar); 123.0 (CH Ar); 128.5 (CH Ar); 132.1; 138.0 (CH Ar); 140.5; 141.5; 141.8; 148.3; 165.9. Найдено, %: C 60.88; H 5.70; N 17.12; S 6.45.

 $C_{25}H_{28}N_6O_3S$. Вычислено, %: С 60.96; Н 5.73; N 17.06; S 6.51.

8,8-Диметил-5-(3-метилфенил)амино-3-(метилсульфанил)-7,10-дигидро-8*H*-пирано[3,4-*c*][1,2,4]триазоло[4,3-а]пиридин-6-карбонитрил (9g). Выход 0.58 г (76%), белые кристаллы, т. пл. 187–189 °С. ИК спектр, v, cm⁻¹: 2224 (CN), 3332 (NH). Спектр ЯМР ¹H, δ, м. д. $(J, \Gamma_{\rm II})$: 1.36 (6H, c, 2CH₃); 2.31 (3H, c, C₆H₄C<u>H</u>₃); 2.64 (2H, T, J = 1.8, 7-CH₂); 2.65 (3H, c, SCH₃); 4.85 (2H, T,J = 1.8, 10-CH₂); 6.53 (1H, Δ , Δ , J = 7.7, J = 2.0, H Ar);6.60 (1H, д. д, J = 2.0, J = 1.5, H Ar); 6.72 (1H, д. д, J = 7.7, J = 1.5, H Ar); 7.08 (1H, T, J = 7.7, H Ar); 8.94 (1H, уш. c, NH). Спектр ЯМР ¹³С, δ, м. д.: 15.2 (СН₃); 21.0 (CH₃); 26.0 (2CH₃); 36.3 (CH₂); 57.8 (OCH₂); 69.8; 95.2 (C-6); 113.0 (CH Ar); 113.1 (CN); 116.5 (CH Ar); 117.9; 121.8 (CH Ar); 128.6 (CH Ar); 130.6; 138.1; 140.8; 142.6; 144.4; 148.4. Найдено, %: С 63.38; Н 5.54; N 18.52; S 8.37. С₂₀H₂₁N₅OS. Вычислено, %: С 63.30; H 5.58; N 18.46; S 8.45.

Получение соединений 10а-g (общая методика). Смесь 2 ммоль соединения 6а-g и 0.40 г (4 ммоль) пентан-2,4-диона в 15 мл абс. ЕtOH кипятят в течение 10 ч. После охлаждения полученные кристаллы отфильтровывают, промывают EtOH, сушат и перекристаллизовывают из EtOH.

6-Анилино-8-(3,5-диметил-1*Н***-пиразол-1-ил)-3,3-диметил-3,4-дигидро-1***Н***-пирано[3,4-***с***]пиридин-5-карбонитрил (10а). Выход 0.62 г (83%), белые кристаллы, т. пл. 161–162 °С. ИК спектр, v, см⁻¹: 2215 (СN), 3340 (NH). Спектр ЯМР ¹H, δ, м. д. (***J***, Гц): 1.35 (6H, с, 3-C(CH₃)₂); 2.18 (3H, c, CH₃); 2.20 (3H, c, CH₃); 2.81 (2H, c, 4-CH₂); 4.67 (2H, c, 1-CH₂); 5.88 (1H, c, =CH); 6.96-7.06 (1H, м, H Ar); 7.19–7.29 (2H, м, H Ar); 7.40–7.50 (2H, м, H Ar); 8.85 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ, м. д.: 12.7 (CH₃); 13.0 (CH₃); 26.2 (2CH₃); 38.4 (CH₂); 59.5 (OCH₂); 68.7; 90.7 (C-5); 107.6 (CH); 114.3; 114.6; 122.2 (2CH Ar); 122.7; 127.6 (2CH Ar); 139.1; 140.9; 148.1; 148.2; 151.3; 153.9. Найдено, %: С 70.76; H 6.24; N 18.67. C₂₂H₂₃N₅O. Вычислено, %: С 70.76; H 6.21; N 18.75.**

8-(3,5-Диметил-1*H*-пиразол-1-ил)-3,3-диметил-6-(4-метилфенил)амино-3,4-дигидро-1*H*-пирано[3,4-*c*]-пиридин-5-карбонитрил (10b). Выход 0.64 г (82%), белые кристаллы, т. пл. 132–134 °C. ИК спектр, v, см⁻¹: 2210 (CN), 3348 (NH). Спектр ЯМР ¹H, δ , м. д. (*J*, Γ п): 1.34 (6H, c, 3-C(CH₃)₂); 2.17 (3H, д, J = 0.8, CH₃); 2.19 (3H, c, CH₃); 2.32 (3H, c, CH₃); 2.79 (2H, c, 4-CH₂); 4.65 (2H, c, 1-CH₂); 5.87 (1H, к, J = 0.8, =CH); 7.01–7.06 (2H, м, H Ar); 7.28–7.32 (2H, м, H Ar); 8.70 (1H, уш. c, NH). Спектр ЯМР ¹³С, δ , м. д.: 12.7 (CH₃); 13.0 (CH₃); 20.3 (CH₃); 26.2 (2CH₃); 38.4 (CH₂); 59.4 (OCH₂); 68.7; 90.3 (C-5); 107.6 (CH); 113.8; 114.6; 122.5 (2CH Ar); 128.2 (2CH Ar); 131.9; 136.4; 140.9; 148.1; 148.3; 151.2; 154.1. Найдено, %: С 71.22; H 6.47; N 18.13. C₂₃H₂₅N₅O. Вычислено, %: С 71.29; H 6.50; N 18.07.

8-(3,5-Диметил-1*H*-пиразол-1-ил)-**3,3-диметил-6-(3-метилфенил)амино-3,4-дигидро-1***H*-пирано[**3,4-***c*]-пиридин-**5-карбонитрил** (**10c**). Выход 0.61 г (79%), желтые кристаллы, т. пл. 194–196 °C. ИК спектр, v, см⁻¹:

2218 (CN), 3344 (NH). Спектр ЯМР 1 H, δ , м. д. (J, Γ ц): 1.35 (6H, c, 3-C(CH₃)₂); 2.20 (3H, c, CH₃); 2.22 (3H, д, J = 0.8, CH₃); 2.31 (3H, c, CCH₃); 2.80 (2H, c, 4-CH₂); 4.67 (2H, c, 1-CH₂); 5.88 (1H, к, J = 0.8, =CH); 6.80–6.84 (1H, м, H Ar); 7.08–7.14 (1H, м, H Ar); 7.21–7.27 (2H, м, H Ar); 8.71 (1H, уш. с, NH). Спектр ЯМР 13 С, δ , м. д.: 12.7 (CH₃); 13.0 (CH₃); 20.8 (CH₃); 26.2 (2CH₃); 38.4 (CH₂); 59.4 (OCH₂); 68.7; 90.7 (C-5); 107.6 (CH); 114.2; 114.6; 119.3 (CH Ar); 122.8 (CH Ar); 123.6 (CH Ar); 127.5 (CH Ar); 136.8; 138.9; 140.9; 148.2; 148.3; 151.2; 154.0. Найдено, %: C 71.35; H 6.47; N 18.16. C₂₃H₂₅N₅O. Вычислено, %: C 71.29; H 6.50; N 18.07.

8-(3,5-Диметил-1*H*-пиразол-1-ил)-6-(4-метоксифенил)амино-3,3-диметил-3,4-дигидро-1*H*-пирано-[3,4-*c*]пиридин-5-карбонитрил (10d). Выход 0.65 г (80%), желтые кристаллы, т. пл. 160–162 °С. ИК спектр, v, см⁻¹: 2211 (CN), 3341 (NH). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.34 (6H, c, 3-C(CH₃)₂); 2.13 (3H, c, CH₃); 2.19 (3H, c, CH₃); 2.78 (2H, c, 4-CH₂); 3.77 (3H, c, OCH₃); 4.64 (2H, c, 1-CH₂); 5.86 (1H, c, =CH); 6.76–6.83 (2H, м, H Ar); 7.27–7.32 (2H, м, H Ar); 8.64 (1H, уш. c, NH). Спектр ЯМР ¹³С, δ, м. д.: 12.7 (CH₃); 13.1 (CH₃); 26.2 (2CH₃); 38.5 (CH₂); 54.6 (OCH₃); 59.5 (OCH₂); 68.7; 89.7 (C-5); 107.6 (CH); 113.0 (2CH Ar); 113.4; 114.7; 124.7 (2CH Ar); 131.7; 141.0; 148.1; 148.4; 151.1; 154.6; 155.7. Найдено, %: C 68.54; H 6.21; N 17.42. C₂₃H₂₅N₃O₂. Вычислено, %: C 68.47; H 6.25; N 17.36.

8-(3,5-Диметил-1*H*-пиразол-1-ил)-6-(3-метоксифенил)амино-3,3-диметил-3,4-дигидро-1*H*-пирано-[3,4-*c*]пиридин-5-карбонитрил (10e). Выход 0.59 г (73%), кристаллы кремового цвета, т. пл. 124-126 °C. ИК спектр. v. см⁻¹: 2212 (CN), 3346 (NH), Спектр ЯМР ¹H. δ, м. д. (*J*, Гц): 1.35 (6H, c, 3-C(CH₃)₂); 2.20 (3H, c, CH₃); 2.24 (3H, д, J = 0.8, CH₃); 2.80 (2H, c, 4-CH₂); 3.73 (3H, c, OCH₃); 4.67 (2H, c, 1-CH₂); 5.90 (1H, κ , J = 0.8, =CH); 6.52-6.56 (1H, M, H Ar); 7.04-7.14 (3H, M, H Ar); 8.81 (1H, уш. с, NH). Спектр ЯМР ¹³С δ, м. д.: 12.7 (СН₃); 13.0 (CH₃); 26.2 (2CH₃); 38.4 (CH₂); 54.3 (OCH₃); 59.4 (OCH₂); 68.7; 90.9 (C-5); 107.5 (CH); 107.6 (CH Ar); 108.3 (CH Ar); 114.1 (CH Ar); 114.4; 114.5; 128.2 (CH Ar); 140.2; 140.9; 148.1; 148.2; 151.3; 153.7; 159.1. Найдено, %: С 68.41; Н 6.28; N 17.43. C₂₃H₂₅N₅O₂. Вычислено. %: С 68.47: Н 6.25: N 17.36.

8-(3,5-Диметил-1*H*-пиразол-1-ил)-6-(2-метоксифенил)амино-3,3-диметил-3,4-дигидро-1*H*-пирано-[3,4-c]пиридин-5-карбонитрил (10f). Выход 0.60 г (74%), белые кристаллы, т. пл. 188–190 °С. ИК спектр, v, cм⁻¹: 2214 (CN), 3347 (NH). Спектр ЯМР ¹H, δ, м. д. (J, Гц): 1.35 (6H, c, 3-C(CH₃)₂); 2.21 (3H, c, CH₃); 2.25 (3H, c, CH₃); 2.82 (2H, c, 4-CH₂); 3.92 (3H, c, OCH₃); 4.66 (2H, c, 1-CH₂); 5.93 (1H, c, =CH); 6.84-7.06 (3H, M, H Ar); 7.90 (1H, уш. c, NH); 7.94 (1H, д. д, J = 8.0, J = 1.3, H Ar). Спектр ЯМР ¹³С, δ , м. д.: 12.4 (CH₃); 13.0 (CH₃); 26.1 (2CH₃); 38.3 (CH₂); 55.3 (OCH₃); 59.4 (OCH₂); 68.7; 90.9 (C-5); 107.7 (CH); 110.1 (CH Ar); 114.3; 114.5; 119.9 (CH Ar); 121.0 (CH Ar); 123.3 (CH Ar); 127.6; 140.8; 148.2; 148.3; 149.4; 150.9; 153.4. Найдено, %: С 68.39; Н 6.28; N 17.44. С₂₃H₂₅N₅O₂. Вычислено, %: С 68.47; Н 6.25; N 17.36.

8-(3,5-Диметил-1*H*-пиразол-1-ил)-3,3-диметил-6-(4-хлорфенил)амино-3,4-дигидро-1*H*-пирано[3,4-c]-пиридин-5-карбонитрил (10g). Выход 0.65 г (80%), белые кристаллы, т. пл. 188–189 °С. ИК спектр, v, см⁻¹: 2217 (CN), 3362 (NH). Спектр ЯМР ¹H, δ , м. д. (J, Γ µ): 1.35 (6H, c, 3-C(CH₃)₂); 2.20 (6H, c, (CH₃)₂); 2.81 (2H, c, 4-CH₂); 4.66 (2H, c, 1-CH₂); 5.90 (1H, c, =CH); 7.18–7.24 (2H, м, H Ar); 7.46–7.52 (2H, м, H Ar); 9.05 (1H, уш. c, NH). Спектр ЯМР ¹³С, δ , м. д.: 12.7 (CH₃); 13.0 (CH₃); 26.1 (2CH₃); 38.4 (CH₂); 59.4 (OCH₂); 68.7; 91.1 (C-5); 107.8 (CH); 114.5; 114.8; 123.2 (2CH Ar); 127.1; 127.5 (2CH Ar); 138.0; 140.9; 148.1; 148.3; 151.5; 153.6. Найдено, %: C 64.85; H 5.41; N 17.23. $C_{22}H_{22}ClN_5O$. Вычислено, %: C 64.78; H 5.44; N 17.17.

Рентгеноструктурный анализ соединения 10g проведен на автодифрактометре Enraf-Nonius CAD-4 по стандартной процедуре (МоКа-излучение, графитовый монохроматор, $\theta/2\theta$ -сканирование). Структура расшифрована и уточнена с использованием пакета программ $SHELX^{31}$ в анизотропном приближении для неводородных атомов. Для анализа соединения 10g $(C_{22}H_{22}ClN_5O, M 407.9)$ использован красный игольчатый кристалл размером $0.38 \times 0.30 \times 0.26$ мм. При 295(2) К кристалл триклинный; пространственная группа $P2_1/c$; параметры элементарной ячейки: *a* 9.1118(18), *b* 9.5447(19), *c* 24.157(5) Å; α 90.0, β 96.01(3), γ 90.0°; Z 4; $d_{\text{выч}}$ 1.297 г/см³; μ 0.206 мм⁻¹. В интервале углов $1.7 < \theta < 30.0^{\circ}$ собрано 6495 отражений, из них независимых 6084 (R_{int} 0.078), в том числе 3380 с $I > 2\sigma(I)$. Окончательные параметры уточнения структуры: R_1 0.0563, wR_2 0.1640 (по отражениям с $I > 2\sigma(I)$) при факторе добротности S 1.01. Полные кристаллографические данные соединения 10g депонированы в Кембриджском банке структурных данных (депонент CCDC 1475355).

Исследование выполнено при финансовой поддержке ГКН МОН РА и РФФИ (РФ) в рамках совместной научной программы 15RF-027.

Список литературы

- (a) Kumar, R. R.; Perumal, S.; Menéndez, J. C.; Yogeeswari, P.; Sriram, D. Bioorg. Med. Chem. 2011, 19, 3444. (b) Abdel-Wadood, F. K.; Abdel-Monem, M. I.; Fahamy, A. M.; Geies, A. A. Z. Naturforsch., B: Anorg. Chem., Org. Chem., Biochem., Biophys., Biol. 2008, 63b, 303.
- Burrell, G.; Cassidy, F.; Evans, J. M.; Lightowler, D.; Stemp, G. J. Med. Chem. 1990, 33, 3023.
- Lee, S.; Chae. S. M.; Yi, K. Y.; Kim, N.; Oh, C. H. Bull. Korean Chem. Soc. 2005, 26, 619.
- Kwak, W.-J.; Kim, J.-H.; Ryu, K.-H.; Cho, Y.-B.; Jeon, S.-D.; Moon, C.-K. Biol. Pharm. Bull. 2005, 28, 750.
- 5. Natarajan, P. N.; Wan, A. S. C.; Zaman, V. Planta Med. 1974, 25, 258.
- Muñoz, M. A.; Carmona, C.; Hidalgo, J.; Balón, M.; López-Poveda, M. Heterocycles 1989, 29, 1343.

- 7. Yu, S.; Huang, Q.-Q.; Luo, Y.; Lu, W. J. Org. Chem. 2012, 77, 713.
- 8. Kametani, T.; Takeshita, M.; Ihara, M. Heterocycles 1976, 4, 247
- 9. Panda, B.; Sarkar, T. K. Tetrahedron Lett. 2008, 49, 6701.
- 10. Shao, B. Tetrahedron Lett. 2005, 46, 3423.
- Reddy, B. V. S.; Reddy, S. G.; Reddy, M. R.; Sridhar, B.; Bhadra, M. P. *Tetrahedron Lett.* 2014, 55, 4817.
- 12. Opperman, T. J.; Kwasny, S. M.; Kim, H.-S.; Nguyen, S. T.; Houseweart, C.; D'Souza, S.; Walker, G. C.; Peet, N. P.; Nikaido, H.; Bowlin, T. L. *Antimicob. Agents Chemother.* **2014**, *58*, 722.
- Nguyen, S. T.; Kwasny, S. M.; Ding, X.; Cardinale, S. C.; McCarthy, C. T.; Kim, H.-S.; Nikaido, H.; Peet, N. P.; Williams, J. D.; Bowlin, T. L.; Opperman, T. J. Bioorg. Med. Chem. 2015, 23, 2024.
- 14. Paronikyan, E. G.; Noravyan, A. S.; Dashyan, Sh. Sh.; Tamazyan, R. A.; Ayvazyan, A. G.; Panosyan, H. A. *Chem. Heterocycl. Compd.* **2013**, *49*, 1151. [Химия гетероцикл. соединений **2013**, 1237.]
- 15. Пароникян, Е. Г.; Акопян, Ш. Ф.; Норавян, А. С. *Хим.* журн. Армении **2009**, *62*, 140.
- Paronikyan, E. G.; Dashyan, Sh. Sh.; Noravyan, A. S.; Tamazyan, R. A.; Ayvazyan, A. G.; Panosyan, H. A. Tetrahedron 2015, 71, 2686.
- 17. Paronikyan, E. G.; Dashyan, Sh. Sh.; Dzhagatspanyan, I. A.; Paronikyan, R. G.; Nazaryan, I. M.; Akopyan, A. G.; Minasyan, N. S.; Ayvazyan, A. G.; Tamazyan, R. A.; Babaev, E. V. Russ. J. Bioorg. Chem. 2016, 42, 215. [Биоорган. химии 2016, 238.]
- Reichelt, A.; Falsey, J. R.; Rzasa, R. M.; Thiel, O. R.; Achmatowicz, M. M.; Larsen, R. D.; Zhang, D. *Org. Lett.* 2010. 12, 792.
- 19. Huntsman, E.; Balsells, J. Eur. J. Org. Chem. 2005, 2005, 3761.
- 20. Schmidt, M. A.; Qian, X. Tetrahedron Lett. 2013, 54, 5721.
- Sadana, A. K.; Mirza, Y.; Aneja, K. R.; Prakash, O. Eur. J. Med. Chem. 2003, 38, 533.
- Prakash, O.; Hussain, K.; Aneja, D. K.; Sharma, C.; Aneja, K. R. Org. Med. Chem. Lett. 2011, 1, 1.
- Pai, N. R.; Dubhashi, D. S.; Vishwasrao, S.; Pusalkar, D. J. Chem. Pharm. Res. 2010, 2, 506.
- Kumar, N. V.; Mashelkar, U. C. Heterocycl. Commun. 2007, 13, 211.
- Kumar, N. V.; Mashelkar, U. C. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2008, 47, 764.
- 26. Пароникян, Е. Г.; Мирзоян, Г. В.; Норавян, А. С. *Хим.* журн. Армении **1995**, 48, 132.
- 27. Paronikyan, E. G.; Mirzoyan, G. V.; Noravyan, A. S.; Vartanyan, S. A. *Chem. Heterocycl. Compd.* **1987**, *23*, 812. [Химия гетероцикл. соединений **1987**, 989.]
- 28. Руководство по проведению доклинических исследований лекарственных средств; Миронов, А. Н., Ред.; Медицина: Москва, 2012, ч. 1, с. 509.
- 29. Машковский, М. Д. Лекарственные средства; Новая волна: Москва, 2010, 16-е изд., с. 851.
- 30. Софьина, З. П.; Сыркин, А. В.; Голдин, А.; Кляйн, А. Экспериментальная оценка противоопухолевых препаратов в СССР и США; Медицина: Москва, 1980.
- 31. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Adv. 2015, A71, 3.