В. В. Довлатян, М. Г. Оганисян

ИССЛЕДОВАНИЯ В ОБЛАСТИ ФУНКЦИОНАЛЬНО ЗАМЕЩЕННЫХ АЗИНОВ

8*. СИНТЕЗ И ПРЕВРАЩЕНИЯ 2-АРИЛСУЛЬФАМИДО-4-МЕТОКСИ-6-МЕТИЛПИРИМИЛИНОВ

Действием арилсульфохлоридов на 2-амино-4-метокси-6-метилпиримидин в пиридине получены 2-арилсульфамидо-4-метокси-6-метилпиримидины, которые алкилируются по амидному фрагменту, а под действием гидразингидрата происходит нуклеофильное замещение метоксигруппы. Полученные при этом гидразинопиримидины переведены в азидопиримидины и N-пиримидинилдитиокарбазинаты. Калиевая соль дитиокарбазината 2-n-толуолсульфамидо-4-метокси-6-метилпиримидина с диметилсульфатом дает S-метилпроизводное, а с хлорацетонитрилом — тиазолидиниламинопиримидин. Хлорирование N-хлорсукцинимидом приводит к образованию исключительно 5-хлорпиримидинов.

Ключевые слова: азидопиримидины, 2-арилсульфамидопиримидины, дитиокарбазинаты, S-метилпроизводные, S-цианометилпроизводные.

Функционально замещенные пиримидины, используемые при производстве лекарственных средств и пестицидов, могут служить синтонами для получения новых физиологически активных веществ. В этой связи определенный интерес представляют 2-арилсульфамидо-4-метокси-6-метилпиримидины 2а-d, превращения которых описаны в настоящей работе.

Соединения **2a—d**, синтезированные взаимодействием 2-амино-4-метокси-6-метилпиримидина (1) с арилсулфохлоридами в пиридине и являющиеся NH-кислотами, со щелочью образуют соли, которые легко подвергаются N-алкилированию.

2a Ar = Ph; 2b Ar = p-MeC₆H₄; 2c Ar = p-ClC₆H₄; 2d Ar = o-ClC₆H₄; 3a Ar = Ph, R = Me; 3b Ar = p-MeC₆H₄, R = Me; 3c Ar = o-ClC₆H₄, R = Me; 3d Ar = Ph, R = CH₂COOMe; 3e Ar = p-MeC₆H₄, R = CH₂COOMe; 3f Ar = o-ClC₆H₄, R = CH₂COOMe

^{*} Сообщение 7 см. [1].

Соединения 2a-d, 3a-f весьма стабильны в среде водной или спиртовой щелочи даже при нагревании, что, по-видимому, объясняется стерическими факторами, обусловленными наличием объемной арилсульфонильной группы, создающей пространственные затруднения и препятствующей по этой причине разрыву связи S—N. Аналогичные N-алкил-N-ацетиламидопиримидины чрезвычайно легко дезацетилируются даже в разбавленной водной щелочи при комнатной температуре с образованием в N-алкилпроизводных [2].

Под действием щелочи в соединении **3d**, как и следовало ожидать, гидролизуется сложноэфирная группа, образуется водорастворимая соль, которая при подкислении переходит в свободную кислоту:

В качестве дезацилирующего средства для амидов и имидов иногда применяют гидразингидрат [3–5], однако при действии гидразина на соединения 2a—d получены соли гидразиния 5a—d, которые при нагревании превращаются в продукты нуклеофильного замещения гидразином метоксигруппы. Полученные таким образом 4-гидразинопиримидины 6a—d под действием азотистой кислоты образуют соответствующие азидопиримидины 7a—d, а под действием смеси сероуглерода и едкого кали или оксида цинка — N-пиримидинилдитиокарбазинаты калия 8a—d или цинка 9a—d.

$$2\mathbf{a}-\mathbf{d} \xrightarrow{\mathrm{NH}_2\mathrm{NH}_2} \begin{bmatrix} \mathbf{ArSO_2N^-} & \mathbf{N^+H_3NH_2} \\ \mathbf{NH} & \mathbf{NH} \\ \mathbf{ArSO_2NH} \\ \mathbf{ArSO_2NH} \\ \mathbf{ArSO_2NH} \\ \mathbf{NH} & \mathbf{NH} \\ \mathbf{NH} & \mathbf{NH} \\ \mathbf{NH} & \mathbf{NH} \\ \mathbf{NH} & \mathbf{NH} \\ \mathbf{Sa-d} \end{bmatrix} \xrightarrow{\mathbf{ArSO_2NH}} \begin{bmatrix} \mathbf{ArSO_2NH} \\ \mathbf{ArSO_2NH} \\ \mathbf{NH} & \mathbf{NH} \\ \mathbf{NH} & \mathbf{NH} \\ \mathbf{Sa-d} \end{bmatrix} \xrightarrow{\mathbf{NH} \\ \mathbf{NH} & \mathbf{NH} \\ \mathbf{NH} & \mathbf$$

5-9 a Ar = Ph, b Ar = p-MeC₆H₄, c Ar = p-ClC₆H₄, d Ar = o-ClC₆H₄

Соединение **8b** под действием диметилсульфата образует S-метилдитиокарбазинат **10**, а с хлорацетонитрилом — вместо S-цианометилпроизводного **11** образуется продукт его внутримолекулярной гетероциклизации — тиазолидиниламинопиримидин **12**.

Учитывая, что некоторые галогенпиримидины (бромацил, тербацил, кастрикс и др.) являются высокоактивными пестицидами [6, 7], представляло определенный интерес получить продукты хлорирования соединений **2b**, **3b**, **e**. Применение для этой цели N-хлорсукцинимида, как и следовало ожидать, обеспечивает высокую региоселективность хлорирования и образование исключительно 5-хлорпроизводных **14** [8]:

$$\begin{array}{c|c} p\text{-MeC}_6H_4SO_2NCl & p\text{-MeC}_6H_4SO_2NH \\ \hline NOMe & NOMe & NOMe \\ \hline 13 & 14 & NOMe \\ \hline \end{array}$$

Предположение, что хлорирование соединений **2b** проходит через промежуточный хлорсульфамидопиримидин **13**, основано на том, что соединения **3b,e**, образование хлорамидов типа **13** из которых невозможно, в этих условиях не подвергаются хлорированию. Поэтому хлорпроизводные **15a,b** из N-алкилированных соединений **3b,e** получают реализацией альтернативного подхода к их синтезу — N-алкилированием соединений **14**:

14
$$\xrightarrow{\text{KOH, (MeO)}_2\text{SO}_2}$$
 $\xrightarrow{\text{NOH, CICH}_2\text{COOMe}}$ $\xrightarrow{\text{NOH, CICH}_2\text{COOMe}}$ $\xrightarrow{\text{NOH, CICH}_2\text{COOMe}}$ $\xrightarrow{\text{NOH, CICH}_2\text{COOMe}}$ $\xrightarrow{\text{NOH, CICH}_2\text{COOMe}}$

Характеристики соединений 3а-f, 15а,b

Соеди-	Ar	R	R'	Брутто- формула	<u>Найдено, %</u> Вычислено, %					Спектр ЯМР ¹ Н,	Т. пл.,	Вы-
нение	АГ	K			С	Н	N	S	Cl	δ, м. д. (CDCl ₃)	°C	%
3a	C ₆ H ₅	CH ₃	Н	C ₁₃ H ₁₅ N ₃ SO ₃	<u>53.17</u> 53.23	<u>5.22</u> 5.15	14.48 14.32	11.05 10.93		2.20 (3H,c,CH ₃); 3.62 (3H, c, NCH ₃); 3.62 (3H, c, OCH ₃); 6.03 (1H, c, CH); 7.25–8.06 (5H, м, С ₆ H ₅)	114–116	85
3b	p-CH ₃ C ₆ H ₄	CH ₃	Н	C ₁₄ H ₁₇ N ₃ SO ₃	<u>54.66</u> 54.70	<u>5.70</u> 5.57	13.54 13.67	10.36 10.43	_	2.20 (3H, c, CH ₃); 2.36 (3H, c, CH ₃); 3.56 (3H, c, NCH ₃); 3.62 (3H, c, OCH ₃); 6.10 (1H, c, CH); 7.23–8.23 (4H, м, C ₆ H ₄)	8991	68
3e	o-C1C ₆ H ₄	CH ₃	Н	C ₁₃ H ₁₄ N ₃ SO ₃ Cl	47.65 47.63	<u>4.43</u> 4.30	12.62 12.82	10.08 9.78	10.75 10.82	2.41 (3H, c, CH ₃); 3.60 (6H, c, NCH ₃ и OCH ₃); 5.90 (1H, c, CH); 7.22–8.53 (4H, м, С ₆ H ₄)	133–135	53
3d	C ₆ H ₅	CH ₂ COOCH ₃	Н	C ₁₅ H ₁₇ N ₃ SO ₅	<u>51.26</u> 51.27	<u>5.04</u> 4.88	12.25 11.96	9.07 9.13		2.2 (3H, с, СН ₃); 3.6 (3H, с, ОСН ₃); 3.73 (3H, с, ОСН ₃); 4.96 (2H, с, NСН ₂); 6.06 (1H, с, СН); 7.20–8.33 (5H, м, С ₆ Н ₅)	99–101	80
3e	p-CH ₃ C ₆ H ₄	CH₂COOCH₃	Н	C ₁₆ H ₁₉ N ₃ SO ₅	<u>52.73</u> 52.59	<u>5.27</u> 5.24	11.35 11.50	9.03 8.77		2.2 (3H, c, CH ₃); 2.38 (3H, c, CH ₃); 3.66 (3H, c, OCH ₃); 3.72 (3H, c, OCH ₃); 4.93 (2H, c, NCH ₂); 6.06 (1H, c, CH); 7.1–8.2 (4H, м, C ₆ H ₄)	128–130	75
3f	o-C1C₀H₄	CH₂COOCH₃	Н	C ₁₅ H ₁₆ N ₃ SO ₅ Cl	46.61 46.69	4.17 4.18	11.13 10.89	8.28 8.31	<u>9.42</u> 9.19	2.23 (3H, c, CH ₃); 3.6 (3H, c, OCH ₃); 3.7 (3H, c, OCH ₃); 4.93 (2H, c, N-CH ₂); 5.93 (1H, c, CH); 7.33–8.51 (4H, M, C ₆ H ₄)	141–143	68
15a	p-CH₃C ₆ H ₄	CH ₃	Cl	C ₁₄ H ₁₆ N ₃ SO ₃ Cl	<u>49.15</u> 49.19	4.77 4.72	12.17 12.29	<u>9.62</u> 9.38	10.55 10.37	2.36 (6H, c, 2CH ₃); 3.60 (3H, c, N-CH ₃); 3.83 (3H, c, OCH ₃); 7.16–8.22 (4H, м, С ₆ H ₄)	134–135	93
15b	p-CH ₃ C ₆ H ₄	CH ₂ COOCH ₃	Cl	C ₁₆ H ₁₈ N ₃ SO ₅ Cl	48.11 48.06	4.47 4.54	10.63 10.51	8.21 8.02	8.79 8.87	2.33 (3H, c, CH ₃); 2.4 (3H, c, CH ₃); 3.76 (6H, c, 2OCH ₃); 4.93 (2H, c, N-CH ₂); 7.23–8.20 (4H, м, С ₆ H ₄)	152–154	82

Характеристики соединений 6а-d и 7а-d

Соеди-	Аг	R	Бругго-	<u>Найдено, %</u> Вычислено, %					ИК спектр, см-1	Спектр ЯМР 1Н, б, м. д.	Т. пл., °С	Вы-
нение			формула	С	Н	N	S	C1		Растворитель		ход,%
6a	C ₆ H ₅	NHNH ₂	C ₁₁ H ₁₃ N ₅ SO ₂	<u>47.27</u> 47.30	4.83 4.69	25.01 25.07	11,35 11.48	_	1530, 1600 (C=C, C=N); 3200 (NH); 3520, 3600 (NH ₂)		234–236	98
6b	p-CH₃C ₆ H ₄	NHNH ₂	C ₁₂ H ₁₅ N ₅ SO ₂	<u>49.24</u> 49.13	<u>5.16</u> 5.15	23.74 23.87	11.13 10.93		1520, 1600 (C=C, C=N); 3150 (NH); 3500, 3570 (NH ₂)	·	. 265–267	99
6 c	p-ClC ₆ H ₄	NHNH ₂	C ₁₁ H ₁₂ N ₅ SO ₂ Cl	<u>42.14</u> 42.11	3.78 3.85	22.51 22.32	10.52 10.22	11.18 11.30	1530, 1605 (C=C, C=N); 3180 (NH); 3530, 3600 (NH ₂)		242–244	97
6d	o-ClC ₆ H ₄	NHNH ₂	C ₁₁ H ₁₂ N ₅ SO ₂ Cl	<u>41.94</u> 42.11	3.83 3.85	22.44 22.32	10.41 10.22	11.26 11.30	1530, 1600 (C=C, C=N); 3180 NH); 3520, 3605 (NH ₂)		255–257	83
7a	C ₆ H ₅	N ₃	C ₁₁ H ₁₀ N ₆ SO ₂	<u>45.53</u> 45.51	3.65 3.47	29.17 28.95	11.13 11.04		1520, 1600 (C=C, C=N); 2140 (-N=N ⁺ =N ⁻); 3100 (NH)	2.23 (3H, c, CH ₃); 6.20 (1H, c, CH); 7.32–8.1 (6H, м, C ₆ H ₅ и NH). CD ₃ OD	155–157	88
7b	<i>p</i> -CH₃C ₆ H ₄	N ₃	C ₁₂ H ₁₂ N ₆ SO ₂	<u>47.12</u> 47.36	3.82 3.97	27.68 27.62	10.23 10.54		1510, 1600 (C=C, C=N); 2140 (-N=N ⁺ =N'); 3080 (NH)	2.33 (3H, c, CH ₃); 2.36 (3H, c, CH ₃); 6.2 (1H, c, CH); 7.0 (1H, ш. c, NH); 7.22–8.13 (4H, м, C ₆ H ₄). CDCl ₃ .	126–128	71
7 c	p-ClC ₆ H ₄	N ₃	C ₁₁ H ₉ N ₆ SO ₂ Cl	40.73 40.68	2.71 2.79	25.84 25.88	9.65 9.87	11.12 10.92	1520, 1605 (C=C, C=N); 2150 (-N=N ⁺ =N ⁻); 3100 (NH)	2.50 (3H, c, CH ₃); 5.96 (1H, c, CH); 7.23–8.1 (5H, м, C ₆ H ₄ и NH). CDCl ₃ .	164166	62
7d	o-ClC ₆ H ₄	N ₃	C ₁₁ H ₉ N ₆ SO ₂ Cl	40.82 40.68	2.74 2.79	26.03 25.88	9.85 9.87	10.83 10.92	1520, 1600 C=C, C=N); 2130 (-N=N ⁺ =N ⁻); 3110 (NH)	2.30 (3H, с ,CH ₃); 6.0 (1H, с, CH); 7.26–8.5(5H, м, С ₆ H ₄ и NH). CDCl ₃ .	153–155	93

Характеристики соединений 8а-d и 9а-d

Соеди- нение	Ar	Катион	Брутто- формула		Найдено, % Вычислено, %					
			формула	C	Н	N	S	Cl		
8a	C ₆ H ₅	К	$C_{12}H_{12}N_5S_3O_2K$	36.57 36.63	3.15 3.07	17.84 17.80	24.28 24.45		394	
8b	<i>p</i> -CH ₃ C ₆ H ₄	К	$C_{13}H_{14}N_5S_3O_2K$	38.25 38.32	3.49 3.46	17.30 17.19	23.53 23.61		408	
8c	p-CIC ₆ H ₄	К	$C_{12}H_{11}N_5S_3O_2CIK$	33.54 33.69	2.78 2.59	16.43 16.37	22.61 22.48	8.43 8.29	428	
8d	o-ClC ₆ H ₄	К	C ₁₂ H ₁₁ N ₅ S ₃ O ₂ CIK	33.59 33.68	2.64 2.59	16.27 16.37	22.62 22.48	8.34 8.29	428	
9a	C ₆ H ₅	Zn	$C_{24}H_{24}N_{10}S_6O_4Zn$	37.36 37.23	3.30 3.12	18.35 18.09	24.67 24.85		774	
9b	<i>p</i> -CH ₃ C ₆ H ₄	Zn	$C_{26}H_{28}N_{10}S_6O_4Zn$	38.86 38.92	3.48 3.52	17.55 17.46	23.82 23.98		802	
9c	p-ClC ₆ H ₄	Zn	$C_{24}H_{22}N_{10}S_6O_4Cl_2Zn$	34.22 34.19	2.57 2.63	16.68 16.61	22.75 22.82	8.34 8.41	843	
9d	o-ClC ₆ H ₄	Zn	$C_{24}H_{22}N_{10}S_6O_4Cl_2Zn$	34.15 34.19	2.68 2.63	16.54 16.61	22.94 22.82	8.35 8.41	843	

Несмотря на наличие лабильных и чувствительных к окислителям группировок, соединения **7b**, **12** в аналогичных условиях также гладко хлорируются с образованием 5-хлорпроизводных **16a**,b.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н зарегистрированы на приборе Bruker AC-300, внутренный стандарт ТМС, ИК спектры — на приборе UR-20 в вазелиновом масле. Масс-спектры сняты на спектрометре МХ 1321А. Чистота полученных соединений установлена методом ТСХ на пластинках Silufol UV-254, системы растворителей: гексан—ацетон, 1:1 (или 1:2)*; метил-этилкетон—гексан, $5:1*^2$; проявление 2% AgNO₃ + 0.4% БФС +4% лимонной кислоты.

2-Бензосульфамидо-4-метокси-6-метилпиримидин (2а). Раствор 1.4 г (10 ммоль) пиримидина **1**, 1.8 г (10 ммоль) бензолсульфохлорида в 5 мл пиридина выдерживают 48 ч при 20 °C. Добавляют 10 мл воды, выпавший осадок отфильтровывают, несколько раз промывают водой, перекристаллизовывают из пропанола-2. Получают 1.55 г (55%) пиримидина **2а.** Т. пл. 172–174 °C; R_f^* 0.43. ИК спектр: 1510, 1620 (С=C, C=N); 3100 см⁻¹ (NH). Спектр ЯМР ¹H (ДМСО-d₆), δ , м. д.: 2.20 (3H, с, CH₃); 3.67 (3H, с, OCH₃); 6.12 (1H, с, CH); 7.53–7.93 (5H, м, C₆H₅); 12.20 (1H, ш. с, NH). Найдено, %: C 51.75; H 5.0; N 14.88; S 11.63. C_{12} H₁₃N₃O₃S . Вычислено, %: C 51.60; H 4.69; N 15.04; S 11.48.

2-*n***-Толуолсульфамидо-4-метокси-6-метилпиримидин (2b).** Получают аналогично соединению **2a** из 1.4 г (10 ммоль) пиримидина **1**, 1.9 г (10 ммоль) *п*-толуолсульфохлорида в 5 мл пиридина. Выход 1.5 г (51%). Т. пл. 173–175 °C; R_f 0.45. Спектр ЯМР ¹H (CDCI₃), δ , м. д.: 2.20 (3H, c, 6-CH₃); 2.36 (3H, c, CH₃); 3.60 (3H, c, OCH₃); 6.06 (1H, c, CH); 7.16–8.16 (4H, м, C_6H_4); 8.72 (1H, c, NH). Найдено, %: C 53.16; H 5.24; N 14.27; S 11.04. $C_{13}H_{15}N_3O_3S$. Вычислено, %: C 53.23; H 5.15; N 14.32; S 10.93.

2-(4-Хлорбензолсульфамидо)-4-метокси-6-метилпиримидин (2с). Получают аналогично соединению **2а** из 1.4 г (10 ммоль) пиримидина **1**, 2.1 г (10 ммоль) 4-хлорбензолсульфохлорида в 5 мл пиридина. Выход 1.35 г (43%). Т. пл. 158–160 °C; R_f 0,52. Спектр ЯМР 1 H (CDCl₃), δ , м. д.: 2.20 (3H, c, CH₃); 3.71 (3H, c, OCH₃); 5.93 (1H, c, CH); 7.16–8.10 (5H, м, C₆H₄ и NH). Найдено, %: С 45.88; H 3.82; N 13.12; S 9.96; Cl 11.43. $C_{12}H_{12}N_3SO_3Cl$. Вычислено, %: С 45.94; H 3.85; N 13.39; S 10.22; Cl 11.30.

2-(2-Хлорбензолсульфамидо)-4-метокси-6-метилпиримидин (2d). Получен по методике [9], но мы получили аналогично соединению **2a**. Выход 1.5 г (49%). Т. пл. 208–210 °C. Спектр ЯМР 1 H (CDCl₃), δ , м. д.: 2.46 (3H, c, CH₃); 3.03 (3H, c, OCH₃); 5.93 (1H, c, CH); 7.23 (1H, c, NH); 7.25–8.50 (4H, м, C₆H₄). Найдено, %: С 45.75; H 3.90; N 13.08; S 10.0; Cl 11.17. $C_{12}H_{12}SO_3N_3Cl$. Вычислено, %: С 45.94; H 3.85; N 13.39; S 10.22; Cl 11.30.

2-и-Толуолсульфамидо-4-метокси-5-хлор-6-метилпиримидин (**14**). Смесь 2.9 г (10 ммоль) пиримидина **2b**, 1.3 г (10 ммоль) N-хлорсукцинимида в 10 мл хлороформа нагревают 3—4 ч при 55—60 °C. Растворитель упаривают, осадок промывают теплой водой и перекристаллизовывают из этанола. Получают 3.2 г (97%) хлорпиримидина **14.** Т. пл. 162—1524

163 °С; R_f 0.5. Спектр ЯМР ¹H (CDCl₃), δ , м. д.: 2.33 (3H, c, CH₃); 2.36 (3H, c, CH₃); 3.80 (3H, c, OCH₃); 7.06–8.0 (4H, м, C₆H₄); 8.66 (1H, ш. c, NH). Найдено, %: С 47.57; H 4.35; N 12.67; S 9.84; Cl 11.04 $C_{13}H_{14}N_3SO_3Cl$. Вычислено, %: С 47.63; H 4.30; N 12.82; S 9.78; Cl 10.82.

Метилирование соединений 2a,b,d и 14. К суспензии 10 ммоль калиевой соли пиримидина 2 (или 14) в 10–15 мл ацетона, полученной из 0.7 г (10 ммоль) КОН и 10 ммоль пиримидина, при 20 °С добавляют по каплям 1.5 г (12 ммоль) диметилсульфата. Полученную смесь нагревают 3–4 ч при 50–55 °С. После упаривания растворителя остаток перекристаллизовывают из этанола (соединения 3a,c; 15a) или из смеси этанол—вода, 2:1 (соединение 3b) (табл. 1).

N-Карбометоксиметилирование соединений 2a,b,d и 14. К раствору 10 ммоль калиевой соли пиримидина 2 (или 14) в 10 мл ДМФА добавляют 1.3 г (12 ммоль) метилового эфира хлоруксусной кислоты и 1.8 г (12 ммоль) иодистого натрия. При перемешивании смесь нагревают 5–6 ч при 55–60 °C. Охлаждают, добавляют 20 мл воды, выпавшие кристаллы отфильтровывают и перекристаллизовывают из этанола (соединения 3d–f, 15b) (табл. 1).

2-(N-Карбоксиметил)бензолсульфамидо-4-метокси-6-метилпиримидин (4). Смесь 3.5 г (10 ммоль) пиримидина **3d**, 0.8 г (20 ммоль) NaOH в 10 мл воды при перемешивании нагревают 3 ч при 65–70 °C. Охлаждают, нейтрализуют уксусной кислотой, осадок отфильтровывают, дважды промывают водой. Получают 3 г (89%) пиримидина **4.** Т. пл. 178–180 °C; R_f^{*2} 0.53. ИК спектр, см⁻¹: 1510, 1600 (С=C, C=N); 1710 (С=O); 3400 (ОН). Спектр ЯМР ¹H (CDCl₃), δ , м. д.: 2.20 (3H, c, CH₃); 3.61 (3H, c, OCH₃); 4.82 (2H, c, CH₂); 6.20 (1H, c, CH); 7.43–8.26 (5H, м, C₆H₅); 11.60 (1H, пл. c, OH). Найдено, %: С 49.9; H 4.52; N 12.08; S 9.75. $C_{14}H_{15}N_3O_5S$. Вычислено, %: С 49.84; H 4.48; N 12.46; S 9.50.

2-Арилсульфамидо-**4-**гидразино-**6-**метилпиримидины (**6a–d**). Смесь 10 ммоль пиримидина **2**, 1 мл конц. гидразингидрата в 15 мл сухого диоксана нагревают при перемешивании 6-7 ч при 100-110 °C. После охлаждения осадок отфильтровывают, дважды промывают водой (табл. 2).

2-Арилсульфамидо-4-азидо-6-метилпиримидины (7а-d). Растворяют 10 ммоль пиримидина 6 в растворе 1 мл конц. НСl в 10 мл воды, при перемешивании и при 0–5 °C по каплям добавляют раствор 1 г (15 ммоль) NaNO₂ в 5 мл воды. Продолжают перемешивание еще 4–5 ч при 20 °C. Выпавшие кристаллы отфильтровывают, промывают холодной водой (табл. 2).

N-(2-Арилсульфамидо-6-метилпиримидинил-4)дитиокарбазинаты калия (8a-d) и цинка (9a-d). К раствору 10 ммоль пиримидина 6, 0.7 г (10 ммоль) КОН или 0.8 г (10 ммоль) ZnO в 10 мл спирта при перемешивании и при 65-70 °C по каплям добавляют 0.9 г (20 ммоль) CS₂. Продолжают перемешивание в этих условиях 6-8 ч. Охлаждают, отфильтровывают, промывают этанолом (табл. 3).

Метилирование дитиокарбазината 8b (10). К раствору 4 г (10 ммоль) дитиокарбазината калия 8b в 7 мл ДМФА добавляют по каплям 1.5 г (12 ммоль) диметилсульфата. Полученную смесь нагревают 4–5 ч при 60–65 °C. Охлаждают, добавляют 20 мл воды. Выпавшие кристаллы отфильтровывают, промывают водой. Получают 3.5 г (91%) соединения 10. Т. пл. 85 °C (разл.). Спектр ЯМР ¹H (CDCl₃), δ , м. д.: 2.31 (3H, с, CH₃); 2.42 (3H, с, CH₃); 2.60 (3H, с, SCH₃); 6.42 (1H, с, CH); 7.23–7.83 (4H, м, C₆H₄). Найдено, %: C 43.77; H 4.50; N 18.27; S 24.87. $C_{14}H_{17}N_{5}O_{2}S_{3}$. Вычислено, %: C 43.85; H 4.47; N 18.26; S 25.08.

4-N-(2-Тиоксо-4-имино-1,3-тиазолидинил-3)-2-*п***-толуолсульфамидо-6-метилпиримидин (12). К раствору 4 г (10 ммоль) дитиокарбазината калия 8b** в 5 мл воды при перемешивании при 0–5 °C по каплям добавляют 0.9 г (12 ммоль) хлорацетонитрила. Через 30 мин продолжают перемешивание при 20 °C 4–5 ч. Выпавший осадок отфильтровывают, промывают холодной водой. Получают 4 г (99%) пиримидина **12**. Т. пл. 161–162 °C. ИК спектр, см⁻¹: 1520, 1600 (C=C, C=N); 3200 (NH). Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д.: 2.36 (3H, c, CH₃); 2.40 (3H, c, CH₃); 3.56 (2H, c, CH₂); 4.22 (2H, c, 2NH); 6.70 (1H, c, CH); 7.33–8.0 (4H, м, C₆H₄). Найдено, %: С 44.34; Н 4.15; N 20.76; S 23.58. С₁₅H₁₆N₆O₂S₃. Вычислено, %: С 44.10; Н 3.95; N 20.57; S 23.55.

Хлорирование соединений 7b и 12. Получают аналогично соединению **14** из 10 ммоль соединения **7b** (или **12**), 1.3 г (10 ммоль) N-хлорсукцинимида в 10 мл хлороформа.

Соединение 16а, выход 2.9 г (96%). Т. пл. 191–193 °С. Спектр ЯМР ¹Н (CDCl₃), δ , м. д.: 2.4 (3H, c, CH₃); 2.43 (3H, c, CH₃); 7.2–8.16 (4H, м, C₆H₄). Найдено, %: С 42.51; Н 3.29; N 24.67; S 9.61; Cl 10.35. $C_{12}H_{11}N_6SO_2Cl$. Вычислено, %: С 42.54; Н 3.27; N 24.81; S 9.46; Cl 10.46.

Соединение 16b, выход 2.5 г (56%). Т. пл. 176—178 °C; R_s^{*2} 0.68. Спектр ЯМР ¹H (CDCl₃), δ , м. д.: 2.06 (3H, c, CH₃); 2.16 (3H, c, CH₃); 4.26 (2H, c, CH₂); 7.40 (3H, c, 3NH); 7.03—8.60 (4H, м, C₆H₄). Найдено, %: С 40.57; H 3.33; N 19.14; S 21.57; Cl 7.93. $C_{15}H_{15}N_6S_3O_2Cl$. Вычислено, %: С 40.67; H 3.41; N 18.97; S 21.71; Cl 8.00.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. В. Довлатян, К. А. Элиазян, В. А. Пивазян, ХГС, 1667 (1997).
- В. В. Довлатян, Н. Х. Хачатрян, Т. А. Гомкцян, К. А. Элиазян, В. А. Пивазян, Пат. РА 339; Пром. собственность, Бюл., № 1, 27 (1997).
- 3. H. R. Ing, H. F. Manske, J. Chem. Soc., 2348 (1926).
- 4. Л. Смит, О. Эмерсон, Синтез органических препаратов, ИЛ, Москва, 1953, Сб. 4, 105.
- 5. J. C. Sheehan, W. A. Bolhofer, J. Am. Chem. Soc., 72, 2786 (1950).
- 6. K. N. Mahdi, M. S. Arafa, N. T. Nasr, Int. Pest. Contr., 13, 23 (1971).
- 7. Н. Н. Мельников, Химия и технология пестицидов, Химия, Москва, 1974, 646.
- 8. T. Nishiwaki, Tetrahedron, 22, 2401 (1966).
- E. R. Gesing, H. I. Santel, R. R. Schmidt, H. Strang, Eur. Pat. 372226: Chem. Abstr., 113, 212021 (1991).

Армянская сельскохозяйственная академия, Ереван 375009 e-mail: agacad@arminco.com hov mara@hragir.aua.am

Поступило в редакцию 24.09.99