

Катализируемые переходными металлами реакции *C,C*- и *C,N*-циклоаминометилирования пиррола и индола

Внира Р. Ахметова^{1*}, Эльмира М. Бикбулатова¹, Наиль С. Ахмадиев¹, Наиля Ф. Галимзянова², Райхана В. Кунакова³, Асхат Г. Ибрагимов¹

¹ Институт нефтехимии и катализа РАН, пр. Октября, 141, Уфа 450075, Россия; e-mail: vnirara@mail.ru, ink@anrb.ru

² Уфимский институт биологии РАН,

пр. Октября, 69, Уфа 450054, Россия; e-mail: galnailya@yandex.ru

³ Уфимский государственный нефтяной технический университет, ул. Космонавтов, 1, Уфа 450062, Россия; e-mail: kunakova@anrb.ru

Поступило 31.01.2018 Принято 28.05.2018

R = n-Pr, n-Bu, t-Bu, n-Hex, Ph

Каталитическое циклоаминометилирование пиррола бис(метоксиметил)алкиламинами или смесью алкил(фенил)аминов и параформальдегида в присутствии катализатора [Ni(Py)₄Cl₂]· $0.76H_2O$ или NiCl₂· $6H_2O$ проходит по положениям 2 и 5 пиррольного цикла. Циклоаминометилирование индола эффективно осуществляется по положениям 1 и 3 в присутствии катализатора ZrOCl₂· $8H_2O$. Карбазол под действием бис(метоксиметил)алкиламина в присутствии катализатора ZrOCl₂· $8H_2O$ превращается в N-аминометилированный продукт – N-[(9H-карбазол-9-ил)метил]-N-(метоксиметил)алкиламин.

Ключевые слова: бис(метоксиметил)алкиламины, индол, карбазол, кислоты Льюиса, пиррол, фунгициды, гетероциклизация, катализ, циклоаминометилирование.

Азотсодержащие производные пиррола или индола проявляют антиоксидантные, антибактериальные, фунгицидные, противовоспалительные, анальгезирующие свойства. 1,2

Известно, ³⁻⁶ что реакции пиррола и индола с формалином и первичными аминами проходят по положениям 1, 3 или 2, 5 исходного пиррола и по положению 3 индола с образованием ациклических аминометильных продуктов. Гетероциклизация пиррола и индола с помощью каталитической реакции циклоаминометилирования не известна.

Мы предположили, что гетероциклизацию можно осуществить с участием CH- и NH-реакционных центров пиррола или индола с образованием новых связей C–C и C–N в реакции с бис(метоксиметил)алкиламинами в качестве бифункциональных электрофилов⁷ или с системой первичный амин – формальдегид⁸ в соотношении 1:2.

Ранее нами установлено, что кислоты Льюиса являются эффективными катализаторами CH-актива-

ции 1,3-дикарбонильных соединений в реакциях с электрофилами. ^{9,10} С учетом этих результатов в настоящем исследовании изучена каталитическая активность кислот Льюиса на основе солей переходных металлов (Cp₂TiCl₂, Cp₂ZrCl₂, ZrOCl₂·8H₂O, NiCl₂·6H₂O, [Ni(Py)₄Cl₂]·0.76H₂O, CuCl, PdCl₂, FeCl₃·6H₂O) и оснований (K_2 CO₃, BuONa) в реакции циклоаминометилирования пиррола, индола и карбазола.

На примере реакции пиррола с бис(метоксиметил)-алкиламинами (метод I) или параформальдегидом и первичными аминами в среде метанола (метод II) изучено влияние температуры и природы катализаторов на направление реакции аминометилирования. Из числа испытанных катализаторов наиболее эффективными в указанной реакции оказались $ZrOCl_2 \cdot 8H_2O$, $NiCl_2 \cdot 6H_2O$, $[Ni(Py)_4Cl_2] \cdot 0.76H_2O$ и основание K_2CO_3 (табл. 1).

Установлено, что в условиях катализа реакция аминометилирования проходит с образованием трех типов продуктов (схема 1). Циклоаминометилирование

Схема 1

Method I: RN(CH₂OMe)₂, catalyst, EtOAc or Py, 0°C, 6 h

Method II: 1) (CH₂O)_n, MeOH, 60°C, 2 h; 2) RNH₂, 60°C, 1 h; 3) pyrrole, catalyst, 0°C, 6 h

пиррола успешно реализуется по положениям 2 и 5 при температуре 0-5 °C под действием в качестве катализатора $NiCl_2 \cdot 6H_2O$ или $[Ni(Py)_4Cl_2] \cdot 0.76H_2O$ как по методу I, так и по методу II с образованием пиперазинопирролов 3a-e. Проведение реакции в присутствии $ZrOCl_2 \cdot 8H_2O$ в качестве катализатора приводит к смеси C^2 , C^δ , N- и C^2 -аминометилированных продуктов 1 и 2. Аналогично проходит реакция в присутствии K_2CO_3 , однако смесь продуктов 1 и 2 образуется с меньшим выходом ($\sim 30\%$) вследствие низкой конверсии пиррола (схема 1, табл. 1). Циклоаминометилирование с участием анилина удается осуществить только в условиях метода II, так как по методу I при

синтезе бис(метоксиметил)анилина основным продуктом оказался 2,4,6-трифенилтриазинан.

Таким образом, каталитическая реакция циклоаминометилирования пиррола позволила осуществить синтез ранее неописанных 3-алкил(фенил)замещенных гетероциклов со структурой 3,8-диазабицикло[2.3.1]окта-1(7),5-диенов 1 и 3.

По-видимому, механизм реакции циклоаминометилирования пиррола в присутствии 5 моль. % $[Ni(Py)_4Cl_2]\cdot 0.76H_2O$ или $NiCl_2\cdot 6H_2O$ включает формирование координационной связи $N{\longrightarrow}Ni$ с образованием промежуточного комплекса ${\bf A}$, в котором атом водорода NH пиррольного цикла заблокирован за счет

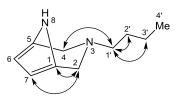
Таблица 1. Выходы продуктов реакции в зависимости от условий циклоаминометилирования пиррола

Опыт	Катализатор (5 моль. %)	Метод* / растворитель	Продукт	R	Выход**, %	Соотношение соединений 1 и 2
1	-	I / EtOAc	1b + 2b	n-Bu	7	1:1
2	BuONa	I / EtOAc	1b + 2b	<i>n</i> -Bu	15	1:1
3	K_2CO_3	I / EtOAc	1b + 2b	<i>n</i> -Bu	27	1:1
4	K_2CO_3	II / MeOH	1a + 2a	<i>n</i> -Pr	34	3:1
5	CuCl	II / MeOH	1a + 2a	<i>n</i> -Pr	25	1:1
6	FeCl ₃ ·6H ₂ O	II / MeOH	1a + 2a	<i>n</i> -Pr	26	1:1
7	Cp_2TiCl_2	I / EtOAc	1b + 2b	<i>n</i> -Bu	37	1:2
8	$ZrOCl_2 \cdot 8H_2O$	I / EtOAc	1a + 2a	<i>n</i> -Pr	67	2:1
9	$ZrOCl_2 \cdot 8H_2O$	I / EtOAc	1b + 2b	<i>n</i> -Bu	85	2:1
10	$ZrOCl_2 \cdot 8H_2O$	I / EtOAc	1c + 2c	t-Bu	60	2:1
11	$ZrOCl_2 \cdot 8H_2O$	II / MeOH	1a + 2a	<i>n</i> -Pr	78	3:1
12	$ZrOCl_2 \cdot 8H_2O$	II / MeOH	1b + 2b	<i>n</i> -Bu	86	3:1
13	$ZrOCl_2 \cdot 8H_2O$	II / MeOH	1c + 2c	<i>t</i> -Bu	68	3:1
14	$ZrOCl_2 \cdot 8H_2O$	II / MeOH	1d + 2d	Hex	59	1:3
15	$ZrOCl_2 \cdot 8H_2O$	II / MeOH	1e + 2e	Ph	48	1:3
16	$[Ni(Py)_4Cl_2]\cdot 0.76H_2O$	II / MeOH	3a	<i>n</i> -Pr	42	
17	$[Ni(Py)_4Cl_2]\cdot 0.76H_2O$	II / MeOH	3b	n-Bu	48	
18	$[Ni(Py)_4Cl_2]\cdot 0.76H_2O$	II / MeOH	3c	<i>t</i> -Bu	37	
19	$[Ni(Py)_4Cl_2]\cdot 0.76H_2O$	II / MeOH	3d	Hex	35	
20	$[Ni(Py)_4Cl_2]\cdot 0.76H_2O$	II / MeOH	3e	Ph	43	
21	NiCl ₂ ·6H ₂ O	I / Py	3a	<i>n</i> -Pr	37	
22	NiCl ₂ ·6H ₂ O	I / Py	3b	<i>n</i> -Bu	40	
23	NiCl ₂ ·6H ₂ O	I / Py	3c	t-Bu	32	
24	NiCl ₂ ·6H ₂ O	I / Py	3d	Hex	30	

^{*} Метод I – реакция пиррола с бис(метоксиметил)алкиламином; метод II – многокомпонентная реакция пиррола с параформом и аминами.

^{**} Для смесей соединений 1 и 2 указан общий выход смеси.

образования водородной связи с атомом хлора. Последующая атака 1,3-диэлектрофильного реагента проходит по положениям 2 и 5 пиррола с селективным образованием 3-алкил- или фенилзамещенных 3,8-диазабицикло[2.3.1]окта-1(7),5-диенов **3а-е**. Не исключено, что соли переходных металлов могут координироваться также с атомами кислорода метоксигрупп монои диэлектрофильных реагентов (схема 2).


Схема 2

$$\begin{bmatrix} Ni \end{bmatrix} & \begin{bmatrix} Ni \end{bmatrix} & \begin{bmatrix}$$

При катализе $ZrOCl_2 \cdot 8H_2O$, вероятно, с центральным атомом катализатора координируются π -электроны ароматического цикла пиррола (промежуточный комплекс \mathbf{B} , схема 3) и, как следствие, в реакции аминометилирования участвуют либо три реакционных центра (атомы C-2, C-5, N) с образованием продуктов $\mathbf{1a}$ - \mathbf{e} , либо реакция протекает через N-аминометилированный продукт \mathbf{C} , который трансформируется в продукты $\mathbf{2a}$ - \mathbf{e} по типу аза-перегруппировки Кляйзена. $\mathbf{11}$

В масс-спектрах соединений **1а**—е и **3а**—е присутствуют соответствующие молекулярные ионы. В их спектрах ЯМР ¹Н наблюдаются сигналы атомов водорода соответствующих алкильных фрагментов или фенильного заместителя, сигналы ароматических протонов пиррольного цикла при 5.84—6.18 м. д., сигналы метиленовых протонов пиперазинового фрагмента при 3.40—4.46 м. д. и сигналы протонов NH при 7.28—10.49 м. д.

В спектре $^{1}\text{H}-^{13}\text{C}$ HSQC соединения **3b** отмечаются кросс-пики между сигналами циклических метиленовых протонов при 3.52 м. д. и сигналом атомов углерода C-2,4 при 51.7 м. д. (файл сопроводительной

Рисунок 1. Гетероядерные спин-спиновые взаимодействия в спектре ${}^{1}\text{H}-{}^{13}\text{C}$ HMBC соединения **3b**.

информации). Наблюдается корреляция между сигналом метиновых протонов пиррола при 5.9 м. д. и сигналом ароматических атомов C-6,7 при 107.1 м. д.

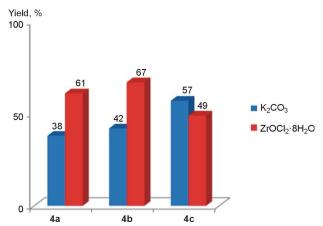
В спектре 1 H— 13 C HMBC отмечается корреляция между протонами ациклических метиленовых групп при атоме азота при 2.42 м. д. и атомами углерода циклических метиленовых групп при 51.7 м. д. (рис. 1), а также взаимодействия 1 H— 13 C в бутильном фрагменте (файл сопроводительной информации).

На основании спектральных данных соединению **3b** приписана структура 3-бутил-3,8-диазабицикло[3.2.1]-окта-1(7),5-диена.

Каталитическая гетероциклизация индола в условиях метода I или II селективно проходит по положениям 1, 3 с образованием продуктов C^3 ,N-циклоаминометилирования индола — 3-алкил(фенил)-3,4-дигидро-2H-1,5-(метено)[1,3]бензодиазепинов **4a**-**d**. Наиболее высокую активность в данной реакции проявили катализаторы ZrOCl₂·8H₂O и K₂CO₃, с использованием которых выходы целевых продуктов варьировались от 38 до 67% (схема 4, рис. 2).

В спектре ЯМР ¹Н соединений **4а**–**c** наблюдаются сигналы атомов водорода соответствующих алкильных фрагментов, ароматических протонов в области 6.63–7.78 м. д., метиленовых протонов пиримидинового фрагмента при 3.81–4.98 м. д.

В спектре ¹H–¹³C HSQC соединения **4b** омечаются кросс-пик между сигналом протонов циклической метиленовой группы при 3.96 м. д. и сигналом атома углерода С-4 при 47.5 м. д., кросс-пик между сигналом протонов циклической метиленовой группы при 4.98 м. д. и сигналом атома углерода С-2 при 64.2 м. д., а также кросс-пик между сигналом протонов ациклической метиленовой группы при 2.54 м. д. и сигналом атома углерода С-1' при 51.6 м. д. (файл сопроводительной информации).


Схема 3

$$[Zr] = ZrOCl_2 \cdot 8H_2O$$

Схема 4

Method I: $RN(CH_2OMe)_2$, catalyst, EtOAc, 0°C, 6 h Method II: 1) $(CH_2O)_n$, MeOH, 60°C, 2 h; 2) RNH_2 , 60°C, 1 h; 3) indole, catalyst, 0°C, 6 h Catalyst = $ZrOCl_2 \cdot 8H_2O$ or K_2CO_3

 $\mathbf{a} R = n\text{-Pr}, \mathbf{b} R = n\text{-Bu}, \mathbf{c} R = t\text{-Bu}, \mathbf{d} R = Ph$

Рисунок 2. Выходы *N*-алкил-3,4-дигидро-2*H*-1,5-(метено)-[1,3]бензодиазепинов **4а**-**c** в зависимости от используемого катализатора. Соединение **4a** получено по методу I, соединения **4b**,**c** – по методу II.

В спектре ¹H—¹³C HMBC соединения **4b** (файл сопроводительной информации) наблюдается взаимодействие между сигналом протонов циклической метиленовой группы при 3.96 м. д. и сигналами ароматических атомов углерода C-5,10 при 109.4 и 122.2 м. д., взаимодействие между сигналом протонов циклической метиленовой группы при 4.98 м. д. и сигналами ароматических атомов углерода C-9a,10 при 137.5 и 122.2 м. д., также отмечаются взаимодействия ¹H—¹³C в бутильном фрагменте (рис. 3).

Аминометилирование карбазола удалось осуществить лишь по группе NH действием бис(метоксиметил)аминов в тетрагидрофуране при 60 °C с селективным образованием *N*-замещенных карбазолов **5а**-с с выходами 35-63% (схема 5, рис. 4).

Строение соединения **5с** подтверждено методом PCA (рис. 5).

Проведены исследования противогрибковой активности синтезированных соединений 1а-е и 3а-е

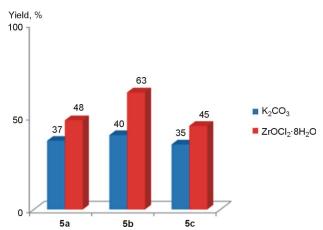
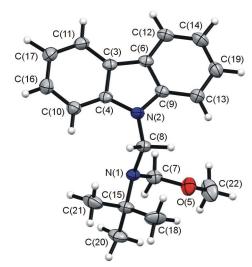

Рисунок 3. Гетероядерные спин-спиновые взаимодействия в спектре ${}^{1}\text{H}-{}^{13}\text{C}$ HMBC соединения **4b**.

Схема 5


RN(CH₂OMe)₂ catalyst

THF
$$60^{\circ}$$
C, 8 h

Catalyst = ZrOCl₂·8H₂O or K₂CO₃
a R = n -Pr. **b** R = n -Bu, **c** R = t -Bu

Рисунок 4. Выход *N*-алкилкарбазолов **5а-с** в зависимости от используемого катализатора.

Рисунок 5. Молекулярная структура соединения **5с** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью.

методом диффузии в агар. ¹² В качестве тест-объектов использовали фитопатогенные грибы *Fusarium oxysporum*, *Bipolaris sorokiniana* и *Rhizoctonia solani*, которые являются возбудителями различных заболеваний сельскохозяйственных культур.

Установлено, что N-бутил- и N-(mpem-бутил)замещенные соединения $\mathbf{1b}$, \mathbf{c} при минимальной концентрации 0.02 моль/л проявляют фунгистатическое действие по отношению к $Rhizoctonia\ solani$, задерживая его развитие и способствуя формированию нетипичного мицелия, тогда как N-фенилзамещенное соеди-

нение **1e** при минимальной концентрации 0.017 моль/л полностью подавляет спорообразование грибка. Соединение **3b** при минимальной концентрации 0.03 моль/л подавляло развитие *Bipolaris sorokiniana* в зоне своего действия.

Таким образом, впервые осуществлено циклоаминометилирование пиррола и индола, инициированное катализаторами на основе соединений циркония и никеля, с образованием N-{[3-алкил(фенил)-3-азабицикло[3.2.1]окта-1(7),5-диен-8-ил]метил}алкил-1-аминов, 3-алкил(фенил)-3,8-диазабицикло[3.2.1]окта-1(7),5-диенов и 3-алкил-3,4-дигидро-2H-1,5-(метено)бензо[f][1,3]диазепинов.

Экспериментальная часть

ИК спектры записаны на фурье-спектрометре Bruker Vertex-70V в вазелиновом масле. Спектры ЯМР ¹H, ¹³C зарегистрированы на спектрометре Bruker Ascend III HD 500 (500, 125 МГц соответственно) в ДМСО- d_6 (соединения 1e, 3e, 4d) и CDCl₃ (остальные соединения), внутренний стандарт ТМС. Гомо- и гетероядерные двумерные эксперименты выполнены с использованием стандартных импульсных последовательностей фирмы Bruker. Хромато-масс-спектры соединений 1a-е записаны на хроматографе Shimadzu GC 2010 (газ-носитель – гелий, температура инжектора – 260 °C, интерфейса – 260 °C, ионного источника – 200 °C, ионизация ЭУ, 70 эВ) с масс-спектроскопическим детектором GCMS-QP2010 Ultra (Shimadzu, Япония) с капиллярной колонкой Supelco 5 mc ($60 \text{ м} \times 0.25 \text{ мм} \times 0.25 \text{ мкм}$). Macc-спектры в режиме MALDI TOF соединений 1d,e, 3a-e, 4a-d и 5a-с зарегистрированы на спектрометре Bruker MALDI TOF Autoflex III, в качестве матрицы использована синапиновая кислота, проба приготовлена методом высушивания капли в хлороформе (1:10). Элементный анализ проведен на элементном анализаторе фирмы Karlo Erba 1106. ГЖХ продуктов реакции проведена на хроматографе Shimadzu GC-9A с пламенно-ионизационным детектором, неподвижная фаза SE-30 (5%) на носителе Chromoton N-AW-HMDS (насадочная стальная колонка 2000 × 3 мм, программирование температуры 50-270 °C, 8 град./мин, газ носитель – гелий). Температуры плавления определены на приборе РНМК 80/2617 (столике Кофлера). Полученные соединения очищены колоночной хроматографией на силикагеле марки КСК (50–160 мкм). Контроль за ходом реакций осуществлен методом ТСХ на пластинах Sorbfil. Для колоночной хроматографии и TCX использован элюент циклогексан-CHCl₃-EtOAc, 1:2:5, проявление парами иода.

N-Алкил-N,N-бис(метоксиметил)амины синтезированы по литературному методу. ¹³ Соединения **2**а—е идентичны описанным. ^{14а,b} Гидрат дихлортетрапиридинникеля(II) синтезирован по стандартной методике. ¹⁵

Получение соединений 1-е и 3а-е циклоаминометилированием пиррола (общая методика). Метод I. В сосуд Шленка загружают 1 ммоль N-алкил-N,N-бис-(метоксиметил)амина, 0.07 мл (1 ммоль) пиррола, 5 моль. % соответствующего катализатора (табл. 1) и

2 мл EtOAc (для соединений **1a–e**) или 2 мл пиридина (для соединений **3a–e**). Смесь перемешивают при 0 °C в течение 6 ч, затем пропускают через слой SiO₂. Полученный фильтрат упаривают на роторном испарителе, остаток очищают колоночной хроматографией.

Метод II. В сосуд Шленка загружают 0.07 г (2 ммоль) параформа и 3 мл МеОН, полученную суспензию перемешивают при 60 °С в течение 2 ч, затем по каплям добавляют 1 ммоль соответствующего первичного амина. По истечении 1 ч реакционную смесь охлаждают до 0 °С с последующей загрузкой 0.07 мл (1 ммоль) пиррола и 5 моль. % соответствующего катализатора (табл. 1). Реакционную смесь перемешивают в течение 6 ч. Затем смесь пропускают через слой SiO₂, упаривают на роторном испарителе, остаток очищают колоночной хроматографией.

N-Пропил-1-[3-пропил-3,8-диазабицикло[3.2.1]окта-1(7),5-диен-8-ил]метанамин (1а). Выход 0.1 г (45%, метод I), 0.13 г (58%, метод II), оранжевое масло, $R_{\rm f}$ 0.67. ИК спектр, v, см⁻¹: 545, 784, 1068, 1183, 1249, 1652, 3101, 3292. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 0.91 (6H, $_{\rm T}$, 2J = 7.4, 2CH₃); 1.45–1.55 (4H, $_{\rm M}$, CH₂); 2.59 $(2H, T, ^2J = 7.4, NCH_2Et); 3.26 (2H, T, ^2J = 7.4,$ NHCH₂Et); 3.40 (4H, viii. c, 2,4-CH₂); 4.80 (2H, c, NCH₂NH); 5.98 (2H, c, H-6,7); 9.26 (1H, c, NH). Спектр ЯМР ¹³С, δ, м. д.: 11.6 (CH₃); 11.8 (CH₃); 20.7 (CH₂); 21.8 (CH₂); 50.0 (NHCH₂Et); 51.7 (2,4-CH₂); 54.6 (NCH₂Et); 74.2 (NCH₂NH); 107.7 (C-6,7); 129.6 (C-1,5). Масс спектр, m/z ($I_{\text{отн}}$, %): 221 [M]⁺⁻ (10), 149 [M-CH₃(CH₂)₂NHCH₂] (80), 121 [M-C₆H₁₄N] (100), 80 $[M-C_8H_{17}N_2]$ (55), 42 $[M-C_{11}H_{19}N_2]$ (50). Найдено, %: С 70.48; H 10.52; N 18.93. С₁₃Н₂₃N₃. Вычислено, %: C 70.54; H 10.47; N 18.98.

N-Бутил-1-[3-бутил-3,8-диазабицикло[3.2.1]окта-**1(7),5-диен-8-ил]метанамин (1b)**. Выход 0.14 г (57%, метод I), 0.16 г (64%, метод II), оранжевое масло, $R_{\rm f}$ 0.61. HK chektp, v, cm⁻¹: 617, 792, 1141, 1193, 1242, 1593, 3045, 3340. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 0.92 $(6H, T, ^2J = 7.4, 2CH_3); 1.31-1.38 (4H, M, CH_2); 1.42-1.49$ (4H, M, CH₂); 2.50 (2H, T, ${}^{2}J$ = 7.4, NCH₂Pr); 3.48 (2H, T, $^{2}J = 7.4$, NHCH₂Pr); 3.64 (4H, yiii. c, 2,4-CH₂); 4.86 (2H, c, NCH₂NH); 6.00 (2H, c, H-6,7); 9.15 (1H, c, NH). Спектр ЯМР ¹³С, δ, м. д.: 13.7 (СН₃); 14.0 (СН₃); 20.4 (CH₂); 20.7 (CH₂); 29.8 (CH₂); 49.9 (NHCH₂Et); 50.9 (2,4-CH₂); 52.6 (NCH₂Et); 74.6 (NCH₂NH); 107.1 (C-6,7); 127.6 (C-1,5). Macc-chektp, m/z (I_{OTH} , %): 249 [M]⁺⁻ (20), 163 [M-CH₃(CH₂)₃NHCH₂] (70), 121 [M-C₈H₁₈N] (100), 80 $[M-C_{10}H_{21}N_2]$ (50), 42 $[M-C_{13}H_{23}N_2]$ (20). Найдено, %: С 72.18; Н 10.95; N 16.81. С₁₅Н₂₇N₃. Вычислено, %: C 72.24; H 10.91; N 16.85.

N-(*мрет*-Бутил)-1-[3-(*мрет*-бутил)-3,8-диазабицикло[3.2.1]окта-1(7),5-диен-8-ил]метанамин (1с). Выход 0.1 г (40%, метод I), 0.13 г (51%, метод II), оранжевое масло, $R_{\rm f}$ 0.60. ИК спектр, v, см $^{-1}$: 611, 725, 882, 1082, 1115, 1215, 1657, 3103, 3326. Спектр ЯМР 1 Н, δ , м. д.: 1.19 (9H, c, C(CH₃)₃); 1.36 (9H, c, C(CH₃)₃); 3.64 (4H, уш. c, 2,4-CH₂); 4.77 (2H, c, NC<u>H</u>₂NH); 5.99 (2H, c, H-6,7); 7.28 (1H, c, NH). Спектр ЯМР 13 С, δ , м. д.: 27.2 (С(<u>C</u>H₃)₃); 29.2 (С(<u>C</u>H₃)₃); 39.3 (<u>C</u>(CH₃)₃); 39.7 (<u>C</u>(CH₃)₃); 45.3

 $(2,4\text{-CH}_2);$ 63.6 (NCH₂NH); 107.8 (C-6,7); 127.0 (C-1,5). Масс спектр, m/z ($I_{\text{отн}}$, %): 249 [M]⁺ (10), 163 [M–(CH₃)₃CNHCH₂] (55), 121 [M–C₈H₁₈N] (50), 80 [M–C₁₀H₂₁N₂] (100), 42 [M–C₁₃H₂₃N₂] (45). Найдено, %: C 72.18; H 10.94; N 16.88. $C_{15}H_{27}N_3$. Вычислено, %: C 72.24; H 10.91; N 16.85.

N-Гексил-1-[3-гексил-3,8-диазабицикло[3.2.1]-окта-1(7),5-диен-8-ил]метанамин (1d). Выход 45 мг (15%, метод II), оранжевое масло, $R_{\rm f}$ 0.72. ИК спектр, v, см $^{-1}$: 628, 729, 1078, 1150, 1200, 1215, 1270, 1660, 3101, 3379. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 0.92 (6H, τ , ^{2}J = 7.4, 2CH₃); 1.21–1.25 (4H, м, 2CH₂); 1.32–1.37 (8H, м, 4CH₂); 1.39–1.50 (4H, м, 2CH₂); 2.42 (4H, τ , ^{2}J = 7.4, 2NCH₂); 3.58 (4H, уш. с, 2,4-CH₂); 4.44 (2H, с, NCH₂NH); 5.93 (2H, c, H-6,7); 7.29 (1H, c, NH). Спектр ЯМР 13 С, δ , м. д.: 13.9 (2CH₃); 22.3 (2CH₂); 27.0 (2CH₂); 27.2 (2CH₂); 31.5 (2CH₂); 49.9 (NHCH₂); 50.9 (2,4-CH₂); 52.6 (NCH₂); 74.6 (NCH₂NH); 107.8 (C-6,7); 128.6 (C-1,5). Найдено, m/z: 305.2803 [M] $^+$. C_{19} H₃₅N₃. Вычислено, m/z: 305.2825.

N-Фенил-1-[3-фенил-3,8-диазабицикло[3.2.1]окта-1(7),5-диен-8-ил]метанамин (1е). Выход 36 мг (12%, метод II), смола, $R_{\rm f}$ 0.75. Спектр ЯМР $^{\rm l}$ H, δ , м. д.: 4.44 (4H, уш. с, 2,4-CH₂); 5.57 (2H, с, NC $\underline{\rm H}_2$ NH); 5.84 (2H, с, H-6,7); 6.70–7.12 (10H, м, H Ph); 10.49 (1H, с, NH). Спектр ЯМР $^{\rm l3}$ C, δ , м. д.: 50.9 (2,4-CH₂); 74.6 (NCH₂NH); 107.8 (C-6,7); 126.8 (C-1,5); 121.2, 128.6, 129.1 (C Ph); 147.8 (*ipso*-C Ph). Найдено, *m/z*: 289.1618 [М] $^{\rm t}$. С₁₉Н₁₉N₃. Вычислено, *m/z*: 289.1573. Найдено, *m/z*: 328.1255 [М+К] $^{\rm t}$. С₁₉Н₁₉N₃К. Вычислено, *m/z*: 328.1211.

3-Пропил-3,8-диазабицикло[3.2.1]окта-1(7),5-диен (3а). Выход 50 мг (37%, метод I), 60 мг (42%, метод II), коричневое масло, $R_{\rm f}$ 0.61. ИК спектр, v, см $^{-1}$: 724, 787, 972, 1066, 1172, 1248, 1662, 3100, 3246. Спектр ЯМР $^{\rm I}$ Н, δ , м. д. (J, Γ ц): 0.89 (3H, $\rm t, ^2J=7.5$, CH₃); 1.45–1.50 (2H, м, CH₂CH₂CH₃); 2.43 (2H, $\rm t, ^2J=7.5$, NCH₂Et); 3.53 (4H, уш. с, 2,4-CH₂); 5.89 (2H, c, H-6,7); 10.00 (1H, c, NH). Спектр ЯМР $^{\rm I3}$ С, δ , м. д.: 13.9 (CH₃); 20.7 (CH₂CH₂CH₃); 51.6 (2,4-CH₂); 52.9 (NCH₂Et); 106.9 (C-6,7); 129.3 (C-1,5). Найдено, m/z: 150.1157 [M] $^+$. С₉H₁₄N₂. Вычислено, m/z: 150.1151.

3-Бутил-3,8-диазабицикло[3.2.1]окта-1(7),5-диен (3b). Выход 60 мг (40%, метод I), 80 мг (48%, метод II), коричневое масло, $R_{\rm f}$ 0.55. ИК спектр, v, см⁻¹: 774, 1111, 1183, 1267, 1666, 3100, 3319. Спектр ЯМР ¹H, δ , м. д. (J, Γ II): 0.93 (3H, τ , 2J = 7.5, CH₃); 1.31–1.38 (2H, м. NCH₂CH₂CH₂CH₃); 1.44–1.48 (2H, м. NCH₂CH₂CH₂CH₂CH₃); 2.42 (2H, τ , 2J = 7.5, NCH₂Pr); 3.52 (4H, уш. с, 2,4-CH₂); 5.90 (2H, c, H-6,7); 8.26 (1H, c, NH). Спектр ЯМР ¹³С, δ , м. д.: 14.0 (CH₃); 20.7 (NCH₂CH₂CH₂CH₃); 29.7 (NCH₂CH₂CH₂CH₃); 51.7 (2,4-CH₂); 52.6 (NCH₂Pr); 107.1 (C-6,7); 129.4 (C-1,5). Найдено, m/z: 165.1313 [М+H]⁺. C_{10} H₁₇N₂. Вычислено, m/z: 165.1308.

3-*трет*-Бутил-3,8-диазабицикло[3.2.1]окта-1(7),5-диен (3c). Выход 50 мг (32%, метод I), 60 мг (37%, метод II), коричневое масло, $R_{\rm f}$ 0.58. ИК спектр, v, см $^{-1}$: 725, 883, 1082, 1115, 1215, 1657, 3103, 3326. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.43 (9H, τ , ^{2}J = 7.5, $C(CH_{3})_{3}$); 3.94 (4H, уш. c, 2,4- CH_{2}); 6.18 (2H, c, H-6,7); 9.04 (1H, c,

NH). Спектр ЯМР 13 С, δ , м. д.: 28.2 (С(СН₃)₃); 54.8 (2,4-СН₂); 59.5 (С(СН₃)₃); 108.3 (С-6,7); 130.7 (С-1,5). Найдено, m/z: 164.1336 [М] $^+$. С $_{10}$ Н $_{16}$ N $_{2}$. Вычислено, m/z: 164.1308.

3-Гексил-3,8-диазабицикло[3.2.1]окта-1(7),5-диен (3d). Выход 60 мг (30%, метод I), 70 мг (35%, метод II), коричневое масло, $R_{\rm f}$ 0.62. ИК спектр, v, см $^{-1}$: 774, 1080, 1110, 1180, 1227, 1270, 1660, 3103, 3322. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 0.89 (3H, т, ^{2}J = 7.5, CH₃); 1.25–1.31 (6H, м, 3CH₂); 1.44–1.49 (2H, м, CH₂); 2.43 (2H, т, ^{2}J = 7.5, NCH₂); 3.53 (4H, уш. с, 2,4-CH₂); 5.89 (2H, с, H-6,7); 10.01 (1H, c, NH). Спектр ЯМР 13 С, δ , м. д.: 13.9 (CH₃); 22.4 (CH₂); 27.1 (CH₂); 27.2 (CH₂); 31.5 (CH₂); 51.6 (2,4-CH₂); 52.8 (NCH₂); 106.9 (C-6,7); 129.3 (C-1,5). Найдено, m/z: 193.1720 [M+H] $^{+}$. C_{12} H₂₁N₂. Вычислено, m/z: 193.1699.

3-Фенил-3,8-диазабицикло[3.2.1]окта-1(7),5-диен (3е). Выход 80 мг (43%, метод II), смола. $R_{\rm f}$ 0.55. ИК спектр, ${\bf v}$, ${\bf cm}^{-1}$: 774, 1110, 1180, 1265, 1600, 1666, 3150. Спектр ЯМР 1 Н, ${\bf \delta}$, м. д.: 4.46 (4H, c, 2,4-CH₂); 6.00 (2H, c, H-6,7); 6.61–7.05 (5H, м, H Ph); 10.70 (1H, c, NH). Спектр ЯМР 13 С, ${\bf \delta}$, м. д.: 63.2 (2,4-CH₂); 107.5 (С-6,7); 129.2 (C-1,5); 112.5, 116.3, 117.8 (C Ph); 149.2 (*ipso*-C Ph). Найдено, m/z: 184.2267 [М] $^{+}$. С $_{12}$ Н $_{12}$ N $_{2}$. Вычислено, m/z: 247.2001 [М+H+Na+K] $^{+}$. С $_{12}$ Н $_{13}$ N $_{2}$ NаК. Вычислено, m/z: 247.0608. Найдено, m/z: 263.1709 [М+H+2K] $^{+}$. С $_{12}$ Н $_{13}$ N $_{2}$ К $_{2}$. Вычислено, m/z 263.0346.

Получение соединений 4а—d циклоаминометилированием индола. Метод І. В сосуд Шленка загружают 1 ммоль N-алкил-N,N-бис(метоксиметил)-амина, 0.117 г (1 ммоль) индола, 0.016 г (5 моль. %) ZrOCl $_2$ ·8H $_2$ O и 2 мл EtOAc. Смесь перемешивают при 0 °C в течение 6 ч, затем пропускают через слой SiO $_2$ и упаривают на роторном испарителе. Остаток очищают колоночной хроматографией.

Метод II. В сосуд Шленка загружают 0.070 г (2 ммоль) параформа и 3 мл МеОН (избыток), полученную суспензию перемешивают при 60 °С в течение 2 ч, затем добавляют по каплям 1 ммоль соответствующего первичного амина. По истечении 1 ч реакционную смесь охлаждают до 0 °С с последующей загрузкой 0.117 г (1 ммоль) индола и 0.016 г (5 моль. %) ZrOCl₂·8H₂O. Реакционную смесь перемешивают при 0 °С в течение 6 ч, затем пропускают через слой SiO₂ и упаривают на роторном испарителе. Остаток очищают колоночной хроматографией.

3-Пропил-3,4-дигидро-2*H***-1,5-(метено)[1,3]бензодиазепин (4а)**. Выход 0.12 г (61%, метод I), коричневое масло, $R_{\rm f}$ 0.60. ИК спектр, v, см $^{-1}$: 581, 743, 1011, 1076, 1143, 1180, 1226, 1663, 3054. Спектр ЯМР 1 Н, δ , м. д. (J, Γ II): 0.87 (3H, $_{\rm T}$, ^{2}J = 7.4, CH₃); 1.59–1.69 (2H, м, CH₂CH₂CH₃); 2.60 (2H, $_{\rm T}$, ^{2}J = 7.4, NCH₂Et); 3.90 (2H, c, 4-CH₂); 4.94 (2H, c, NCH₂N); 7.17–7.63 (5H, м, H Ar). Спектр ЯМР 13 С, δ , м. д.: 11.9 (CH₃); 20.6 (NCH₂CH₂CH₃); 47.5 (4-CH₂); 53.9 (NCH₂Et); 64.1 (NCH₂N); 110.2, 111.0, 115.1, 121.4, 122.2, 123.3, 128.6, 137.0 (C Ar). Найдено, m/z: 201.1386.

3-Бутил-3,4-дигидро-2*H***-1,5-(метено)[1,3]бензо- диазепин (4b)**. Выход 0.14 г (67%, метод II), коричневое масло, $R_{\rm f}$ 0.66. ИК спектр, v, см⁻¹: 569, 740, 1013, 1073, 1153, 1180, 1219, 1662, 3052. Спектр ЯМР ¹H, δ , м. д. (J, Γ µ): 1.04 (3H, τ , 2J = 7.4, CH₃); 1.43–1.50 (2H, м) и 1.54–1.62 (2H, м, CH₂CH₂CH₂CH₃); 2.54 (2H, τ , 2J = 7.4, NCH₂Pr); 3.96 (2H, c, 4-CH₂); 4.98 (2H, c, NCH₂N); 7.18–7.78 (5H, c, H Ar). Спектр ЯМР ¹³С, δ , м. д.: 13.9 (CH₃); 20.4 (CH₂); 29.5 (CH₂); 47.5 (4-CH₂); 51.6 (NCH₂Pr); 64.2 (NCH₂N); 109.4, 110.4, 119.5, 121.8, 122.2, 123.2, 128.6, 137.5 (C Ar). Найдено, m/z: 215.1456 [M+H]⁺. $C_{14}H_{19}N_2$. Вычислено, m/z: 215.1543.

3-*трет*-Бутил-3,4-дигидро-2*H*-1,5-(метено)[1,3]-бензодиазепин (4c). Выход 0.10 г (49%, метод II), коричневое масло, $R_{\rm f}$ 0.63. ИК спектр, v, см $^{-1}$: 591, 744, 1014, 1076, 1143, 1180, 1237, 1667, 3051. Спектр ЯМР 1 H, δ , м. д.: 1.23 (9H, c, C(CH $_{3}$) $_{3}$); 3.81 (2H, c, 4-CH $_{2}$); 4.91 (2H, c, NCH $_{2}$ C); 6.63–7.53 (5H, c, H Ar). Спектр ЯМР 13 C, δ , м. д.: 26.3 (С($_{2}$ H $_{3}$) $_{3}$); 52.5 (4-CH $_{2}$); 54.8 ($_{2}$ C(CH $_{3}$) $_{3}$); 74.1 (NCH $_{2}$ N); 109.7, 110.2, 119.4, 122.1, 123.6, 124.5, 128.7, 137.7 (C Ar). Найдено, m/z: 215.1537 [M+H] $^{+}$. С $_{14}$ H $_{19}$ N $_{2}$. Вычислено, m/z: 215.1543.

3-Фенил-3,4-дигидро-2*H***-1,5-(метено)**[**1,3**]**бензо-диазепин** (**4d**). Выход 0.13 г (55%, метод II), коричневое масло, $R_{\rm f}$ 0.64. ИК спектр, v, см⁻¹: 740, 1010, 1080, 1140, 1185, 1235, 1598, 1660, 3050. Спектр ЯМР $^{\rm 1}$ H, δ , м. д.: 4.50 (2H, уш. с, 4-CH₂); 6.62–6.68 (2H, м, NCH₂N); 7.03–7.55 (10H, м, H Ar). Спектр ЯМР $^{\rm 13}$ С, δ , м. д.: 56.5 (4-CH₂); 63.3 (NCH₂N); 111.7 (2C), 114.6, 116.5, 118.5, 119.1, 121.2, 123.2, 127.7, 129.3, 129.5 (2C), 136.9, 148.1 (C Ar). Найдено, m/z: 234.1169 [M][†]. $C_{16}H_{14}N_2$. Вычислено, m/z: 234.1151. Найдено, m/z: 257.0989 [М+Nа][†]. $C_{16}H_{14}N_2$ Nа. Вычислено, m/z: 257.0971.

Получение соединений 5а—с аминометилированием карбазола. В сосуд Шленка загружают 1 ммоль N-алкил-N,N-бис(метоксиметил)амина, 0.167 г (1 ммоль) карбазола, 0.016 г (5 моль. %) ZrOCl $_2$ ·8H $_2$ O и 2 мл TГФ. Смесь перемешивают при 60 °C в течение 8 ч, затем пропускают через слой SiO $_2$ и упаривают на роторном испарителе, остаток очищают колоночной хроматографией.

N-[(9*H*-Карбазол-9-ил)метил]-*N*-(метоксиметил)-пропил-1-амин (5а). Выход 0.13 г (48%), белый порошок, т. пл. 126–127 °C, $R_{\rm f}$ 0.35. Спектр ЯМР ¹H, δ , м. д. (J, Γ II): 0.85 (3H, т, 2J = 7.4, (CH₂)₂CH₃); 1.23–1.29 (2H, м, CH₂CH₃); 2.81 (2H, т, 2J = 7.4, NCH₂Et); 3.80 (3H, c, OCH₃); 4.48 (2H, c, NCH₂N); 5.09 (2H, c, NCH₂O); 7.23–8.08 (8H, м, H Ar). Спектр ЯМР ¹³С, δ , м. д.: 10.6 ((CH₂)₂CH₃); 20.1 (CH₂CH₂CH₃); 50.7 (OCH₃); 59.4 (NCH₂Et); 64.5 (NCH₂N); 82.4 (NCH₂O); 108.4 (2C Ar); 119.3 (2C Ar); 121.6 (2C Ar); 122.3 (2C Ar); 124.5 (2C Ar); 139.7 (2C Ar). Найдено, m/z: 282.1761 [M]⁺. C_{18} H₂₂N₂O. Вычислено, m/z: 282.1727.

N-[(9*H*-Карбазол-9-ил)метил]-*N*-(метоксиметил)-бутил-1-амин (5b). Выход 0.19 г (63%), белый порошок, т. пл. 123–124 °C, $R_{\rm f}$ 0.30. Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 0.89 (3H, т, 2J = 7.4, (CH₂)₃C $\underline{\rm H}_3$); 1.18–1.25 (2H, м, CH₂CH₂CH₂CH₃); 1.40–1.48 (2H, м, CH₂CH₂CH₂CH₃);

2.85 (2H, т, 2J = 7.4, NC \underline{H}_2 Pr); 3.85 (3H, c, OCH₃); 4.43 (2H, c, NCH₂N); 5.00 (2H, c, NCH₂O); 7.19–8.31 (8H, м, H Ar). Спектр ЯМР 13 С, δ , м. д.: 14.4 ((CH₂)₃ \underline{C} H₃); 20.5 (CH₂CH₂CH₃CH₃); 29.7 (CH₂CH₂CH₂CH₃); 50.4 (OCH₃); 56.3 (N \underline{C} H₂Pr); 64.1 (NCH₂N); 83.9 (NCH₂O); 109.2 (2C Ar); 119.3 (2C Ar); 120.1 (2C Ar); 121.9 (2C Ar); 125.5 (2C Ar); 139.0 (2C Ar). Найдено, m/z: 296.1907 [М] $^+$. С₁₉H₂₄N₂O. Вычислено, m/z: 296.1883.

N-[(9*H*-Карбазол-9-ил)метил]-*N*-(метоксиметил)-2-метилпропил-2-амин (5c). Выход 0.13 г (45%), белый кристаллический порошок, т. пл. 120–121 °C, *R*_f 0.29. Спектр ЯМР ¹H, δ, м. д.: 1.22 (9H, с, С(СН₃)₃); 3.96 (3H, с, ОСН₃); 4.11 (2H, с, NCH₂N); 5.30 (2H, с, NCH₂O); 7.20–8.16 (8H, м, H Ar). Спектр ЯМР ¹ЗС, δ, м. д.: 26.6 (С(СН₃)₃); 55.4 (С(СН₃)₃); 56.4 (ОСН₃); 60.2 (NCH₂N); 78.2 (NCH₂O); 109.0 (2C Ar); 119.4 (2C Ar); 120.1 (2C Ar); 123.3 (2C Ar); 125.7 (2C Ar); 140.1 (2C Ar). Найдено, *m/z*: 296.1894 [М][†]. С₁₉Н₂₄N₂O. Вычислено, *m/z*: 296.1883.

Рентгеноструктурный анализ соединения 5с. Кристаллы соединения **5c** ($C_{19}H_{24}N_2O$, *M* 296.42 г/моль), пригодные для ренгеноструктурного анализа, получены из раствора в МеОН медленным испарением растворителя. Рентгеноструктурный анализ соединения 5с проведен на автоматическом дифрактометре XCalibur Eos, оборудованном ССD-детектором и источником МоКа-излучения (графитовый монохроматор, $\lambda 0.71073$ Å, ω -сканирование, $2\theta_{max}$ 62°). Сингония триклинная, пространственная группа Р-1. Параметры элементарной ячейки: a 9.2735(8), b 9.9094(12), c 10.7451(9) Å; α 101.447(9), β 95.584(7), γ 117.254(10)°; V 840.04(16) Å³; Z 4; T 293(2) K; μ (MoKα) 0.088 μ m⁻¹, $d_{\text{выч}}$ 1.362 г/см³. Собрано 3856 независимых отражений $(R_{\text{int}} \ 0.0220)$ в области индексов $-12 \le h \le 12, -11 \le k \le 13,$ $-13 \le l \le 14$. Окончательные значения факторов расходимости R_1 0.0552 с $I > 2\sigma(I)$ и wR_2 0.1417 для всех независимых отражений.

Сбор и обработка результатов выполнены с помощью программы CrysAlis^{Pro} Oxford Diffraction Ltd. ¹⁶ Cтруктура расшифрована прямым методом и уточнена с использованием программы SHELX¹⁷ в программном комплексе OLEX2¹⁸ полноматричным МНК в анизотропном приближении. Положения атомов водорода выявлены из разностных синтезов Фурье и включены в уточнение с фиксированными позиционными и температурными параметрами. Полные рентгеноструктурные данные депонированы в Кембриджском банке структурных данных (депонент CCDC 1818416).

Исследования противогрибковой активности соединений 1а-е и 3а-е с чистотой не менее 95% проведены методом диффузии в агар. 12 Микроскопические грибы, использованные в качестве тест-культур, взяты из коллекции микроорганизмов Уфимского института биологии РАН.

Файл сопроводительных материалов, содержащий спектры ЯМР 1 H, 13 C, COSY, 1 H $^{-13}$ C HSQC и 1 H $^{-13}$ C HMBC соединений **3b,d,e** и **4b**, доступен на сайте журнала http://hgs.osi.lv.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований и Академии наук Республики Башкортостан (проект № 17-43-020292 р_а) и проектной части Госзадания $AAAA-A117\ 012610060-7\ (2017-2019\ гг.)$.

Структурные исследования полученных соединений выполнены с использованием оборудования Регионального центра коллективного пользования «Агидель».

Список литературы

- Kaur, R.; Rani, V.; Abbot, V.; Kapoor, Y.; Konar, D.; Kumar, K. J. Pharm. Chem. Chem. Sci. 2017, 1, 17.
- 2. Roman, G. Mini-Rev. Org. Chem. 2006, 3, 167.
- 3. Hsieh, C.-C.; Chao, W.-J.; Horng, Y.-C.; Lee, H. M. J. Chin. Chem. Soc. 2009, 56, 435.
- 4. Earle, M. J.; Fairhurst, R. A.; Heaney, H.; Papageorgiou, G.; Wilkins, R. F. *Tetrahedron Lett.* **1990**, *31*, 4229.
- 5. Heaney, H.; Papageorgiou, G. Tetrahedron 1996, 52, 3473.
- Markova, M. V.; Sobenina, L. N.; Ushakov, I. A.; Ivanov, A. V.; Trofimov, B. A. Russ. J. Org. Chem. 2017, 53, 184. [Журн. орган. химии 2017, 53, 196.]
- 7. Khabibullina, G. R.; Zaynullina, F. T.; Valiakhmetova, A. R.; Ibragimov, A. G.; Dzhemilev, U. M. *Synthesis* **2016**, 2294.
- 8. Khabibullina, G. R.; Fedotova, E. S.; Meshcheryakova, E. S.; Buslaeva, T. M.; Akhmetova, V. R.; Ibragimov, A. G. *Chem.*

- Heterocycl. Compd. **2016**, 52, 840. [Химия гетероцикл. соединений **2016**, 52, 840.]
- 9. Akhmetova, V. R.; Akhmadiev, N. S.; Yanybin, V. M.; Galimzyanova, N. F. Russ. J. Org. Chem. **2013**, 49, 1072. [Журн. орган. химии **2013**, 49, 1086.]
- 10. Ахметова, В.; Ахмадиев, Н. *Каскадное амино-, окси- и тиометилирование дикарбонильных СН-кислот*; Lambert Academic Publishing, 2017, с. 11.
- 11. Danishefsky, S. J.; Phillips, G. B. Tetrahedron Lett. 1984, 25, 3159.
- 12. *Практикум по микробиологии*; Егоров, Н. С., Ред.; Изд-во МГУ: Москва, 1976, с. 307.
- 13. Rochin, C.; Babot, O.; Dunoguès, J.; Duboudin, F. *Synthesis* 1986, 228.
- (a) Martínez-Mora, E. I.; Caracas, M. A.; Escalante, C. H.; Espinoza-Hicks, C.; Quiroz-Florentino, H.; Delgado, F.; Tamariz, J. Synthesis 2016, 1055. (b) Gurnham, J.; Gambarotta, S.; Korobkov, I.; Jasinska-Walc, L.; Duchateau, R. Organometallics 2014, 33, 4401.
- 15. Bonev, B.; Hooper, J.; Parisot, J. *J. Antimicrob. Chemother.* **2008**, *61*, 1295.
- 16. CrysAlis PRO; Agilent Technologies Ltd.: Yarnton, 2012.
- 17. Sheldrick, G. M. SHELX, Program for the Refinement of Crystal Structure; Göttingen University: Göttingen, 2008.
- Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J; Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.