

7-(2-Этоксифенил)дигидроазолопиримидины в реакциях окисления бромом

Ирина Г. Овчинникова 1* , Ольга В. Федорова 1 , Геннадий Л. Русинов 1,2 , Валерий Н. Чарушин 1,2

Поступило 26.06.2018 Принято 22.07.2018

Исследованы реакции окисления 4,7- и 6,7-дигидроазоло[1,5-a]пиримидинов бромом и предложены механизмы этих процессов. Показано влияние этоксифенильного заместителя и азольного цикла на кинетику окисления. Методами спектроскопии ЯМР 1 Н, хромато-масс-спектрометрии и рентгеноструктурного анализа подтверждено строение основных продуктов и интермедиатов бромирования и окисления. Установлено, что заметная туберкулостатическая активность азоло[1,5-a]пиримидинов снижается у их бромированных аналогов.

Ключевые слова: бромопроизводные азоло(азидо)пиримидинов, бромирование, окисление бромом.

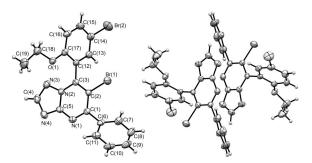
В современном органическом синтезе галогены являются одними из наиболее востребованных реагентов в реакциях электрофильного присоединения/ замещения с олефинами/(гет)аренами, 1,2 электрофильной циклизации в дизайне полициклических систем, в реакциях окисления. 1 Продукты галогенирования нашли применение в реакциях кросс-сочетания Хека, Соногаширы, Сузуки–Мияуры и др. 4,5 Галоген(гет)арены, обладая определенной биологической активностью, представляют значительный интерес для медицинской химии. В частности, азолопиримидиновые галогениды и их дигидроазолопиримидиновые предшественники являются эффективными модуляторами кальциевых и калиевых каналов, цитостатиками, проявляют антипролиферативную клеточную активность, 6 значительную гербицидную активность, 7 как потенциальные ингибиторы DPP4 перспективны в лечении диабета второго типа.⁸ В наших исследованиях дигидроазоло[1,5-а]пиримидины и их структурные аналоги, макроциклические краунофаны, продемонстрировали в опытах *in vitro* в отношении лабораторного штамма M. tuberculosis $(H_{37}Rv)^9$ умеренную туберкулостатическую активность с минимальной ингибирующей концентрацией (МИК) вплоть до 3.15 мкг/мл. 10 В продолжение исследований влияния заместителей, в частности брома, в азоло(азидо)пиримидинах на туберкулостатическую активность нами синтезированы их этоксифенилзамещенные бромиды.

В литературе имеются сведения по ароматизации дигидроазолопиримидинов бромом без рассмотрения возможных механизмов окисления. Вместе с тем окисление галогенами зачастую сопровождается образованием устойчивых интермедиатов, которое может служить важным аргументом в обосновании механизмов реакции. Нами проведено сравнительное окисление бромом 4,7- и 6,7-дигидроазолопиримидинов 1a—c, ранее синтезированных из (E)-1-фенил-3-(2-этоксифенил)проп-2-ен-1-она, 13 в растворах уксусной кислоты и хлороформа при 22 °C (схема 1). Реакция практически полностью завершалась за

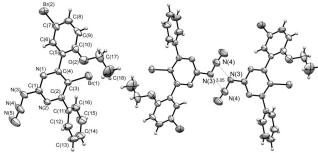
¹ Институт органического синтеза им. И. Я. Постовского УрО РАН, ул. С. Ковалевской, 22 / Академическая, 20, Екатеринбург 620990, Россия e-mail: iov@ios.uran.ru

² Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, ул. Мира, 19, Екатеринбург 620002, Россия

Схема 1


30 мин, приводя в уксуснокислых растворах к образованию исключительно продуктов **2а-с** (выходы ~97%). В хлороформных растворах, согласно хромато-масс-спектрометрии и спектроскопии ЯМР ¹Н реакционных смесей, процесс окисления представляет собой более сложную картину (схема 1): образуются не только продукты "исчерпывающего" бромирования, типа соединений **2a**, **3b**,**c**, но, как показано в случае соединения **2a**, также продукт частичного бромирования **4** и соединения **5a**,**b**, **6–8**, что связано с перегруппировочными и гидролитическими превращениями.

Наличие атома брома в положении 6 ароматической системы соединений $3\mathbf{b}$, \mathbf{c} , структура которых подтверждена PCA (рис. 1, 2), свидетельствует в пользу механизма окисления, связанного с участием электронодонорного атома C-6 гетеробициклов $1\mathbf{b}$, \mathbf{c} (схемы 2 и 3). Кроме того, среди кристаллов, полученных из хроматографической фракции соединения $3\mathbf{c}$ (SiO₂, элюент гексан—этилацетат, 2:1), наряду с кристаллами основного продукта, обнаружен морфологически отличав-


шийся кристалл, сформированный, по данным РСА, молекулами 6-бромо-4,7-дигидротетразолопиримидинового интермедиата **9c** (схема 2, рис. 3).

Молекулярные упаковки бромидов **3b,с** и **9c** сформированы молекулами оптических и конформационных антиподов, которые образуют три различных типа центросимметричных димеров по данным PCA. В случае соединения **3b** это π -стекинговые димеры (рис. 1). Расстояние между центроидами $C(1)\cdots N(1)$ шестичленного и $N(2)\cdots N(3)$ пятичленного цикла гетероциклических систем в димере составляет 3.6 Å. Молекулы в димерах монокристалла **3c** стабилизированы укороченными контактами, в частности, между атомами азота $N(3)\cdots N(4)$ (1.5 – x, -0.5 – y, 1 – z) азидогрупп с расстоянием 3.05 Å (рис. 2). Молекулы в димерах монокристалла **9c** стабилизированы межмолекулярными водородными связями $H(4B)\cdots N(3A)$ и $H(4AB)\cdots N(3)$ (2 – x, 4 – y, -1 – z) с расстоянием 2.16 Å (рис. 3),

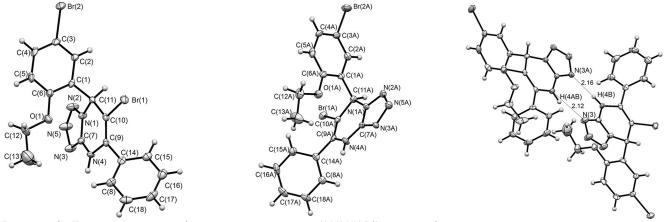

Таким образом, первоначальную стадию окисления можно рассматривать как характерное для олефинов¹

Рисунок 1. Геометрия молекулы **3b** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью и центросимметричный димер (справа), сформированный конформационными антиподами.

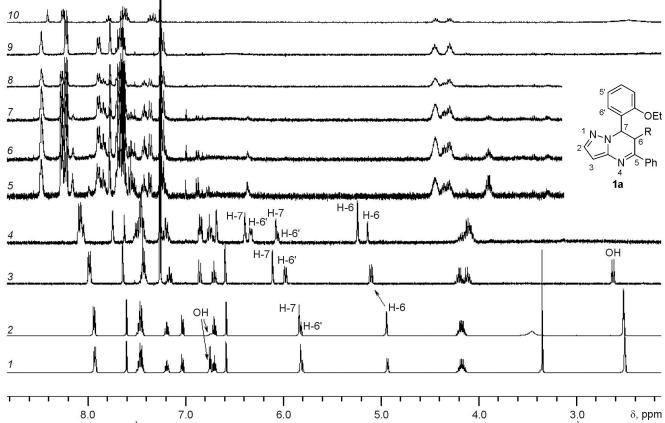
Рисунок 2. Геометрия молекулы **3с** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью и центросимметричный димер (справа), сформированный конформационными антиподами.

Рисунок 3. Геометрия двух конформеров молекулы rac-(11(11A)R*)-изомера **9c** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью; центросимметричный димер (справа), стабилизированный водородными связями между двумя молекулами.

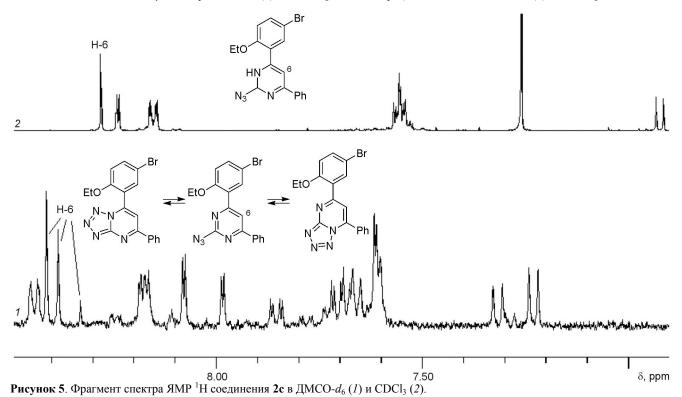
электрофильное присоединение брома к атому С-6 в сопряженном фрагменте H–N–C=C. В пользу этого свидетельствуют и квантово-химические расчетные данные по распределению зарядов в гетероциклической системе соединений 1 (табл. 1). Дальнейшая ароматизация может проходить через интермедиат A с выбросом НВг и образованием азолопиримидинов 2b,c или через интермедиаты 9b,c и B с электрофильным присоединением второго атома Вг и образованием соединений 3b,c. Отметим, что попытка введения атома брома в положение 6 пиримидинового кольца ароматических соединений 2b,c оказалась безуспешной. Следо-

Таблица 1. Значения зарядов на атомах углерода соединений **1а-с**, полученные стандартным анализом заселенности по Лёддину (Loewdin)¹⁴ с использованием пакета программ Orca 4.0.1 (метод DFT B3LYP 6-311G*)

Соединение	C-3	C-6	C-5'	C-7
6,7-Дигидро- 1 а	-0.176	-0.090	-0.127	-0.077
4,7-Дигидро- 1 а	-0.232	-0.064	-0.128	-0.075
4,7-Дигидро- $\mathbf{1a}$ (форма $\mathrm{OH_2}^+$)	-0.200	-0.129	-0.076	-0.073
4,7-Дигидро- 1b		-0.154	-0.128	-0.065
6,7-Дигидро- 1b		-0.200	-0.126	-0.064
4 ,7-Дигидро- 1c		-0.152	-0.126	-0.063
6,7-Дигидро- 1c		-0.201	-0.124	-0.063


вательно, образование 6-бромзамещенных соединений **3b**,с является результатом окислительного процесса.

Согласно анализу синтезированных продуктов наличие электронодонорной этоксигруппы в бензольном и электроотрицательного атома углерода в азольном фрагментах исходных 1а-с инициирует побочные реакции электрофильного замещения. Кинетические исследования процессов замещения/окисления были проведены на примере гидроксипроизводного 1а в растворе CDCl₃ в ампуле ЯМР спектрометра. Через первые пять минут в спектрах ЯМР 1Н наблюдалось удвоение набора сигналов протонов, связанное с формированием 3-бромзамещенного аддукта С (схема 3) наряду с исходным 1а в интегральном соотношении 0.46:1 их наблюдаемых химических сдвигов. На электрофильное замещение бромом атома водорода в положении 3 пиразольного цикла соединения 9 указывает, в частности, исчезновение дублетного сигнала протона Н-3 (КССВ 1.9 Гц) в области 6.5-7.0 м. д. и появление синглета протона Н-2 в области 7.63 м. д. (сравните спектры ЯМР 1 Н (3) и (4), рис. 4). Одновременно исчезновение сигнала протона группы ОН при 2.6 м. д. связано с ее протонированием образующейся в растворе кислотой НВг.


Минимальный отрицательный заряд на атоме C-6 гетероцикла существенно возрастает в протонированной гидроксиформе **D** (схема 3) согласно квантово-

химическим расчетным данным (табл. 1). Следовательно, образующаяся кислота может играть ключевую роль в инициировании окислительного процесса. Действительно, в спектре ЯМР 1 H (5) (рис. 4) исчезновение сигналов протонов H-6 соединений 9 и 1а, смещение сигнала протона H-7 в область \sim 7.0 м. д., а также появление новых наборов слабопольных сигналов протонов гетероциклической системы свидетельствовали об образовании интермедиата $\bf E$ и ароматического продукта 4. Ароматизация завершалась через 20 мин (спектры ЯМР 1 H (5) и (8), рис. 4).

Наиболее медленной оказалась стадия электрофильного замещения атома водорода бромом в этоксибензольном фрагменте при образовании конечного продукта $\mathbf{2a}$ (спектры $\mathrm{ЯMP}^{-1}\mathrm{H}$ (8) и (9), рис. 4, схема 3). Отметим, что при недостатке брома в растворе CDCl_3 формировался только продукт $\mathbf{4}$ (спектр $\mathrm{ЯMP}^{-1}\mathrm{H}$ (10), рис. 4). Структура последнего дополнительно подтверждена характерным двойным пиком молекулярного иона $[\mathrm{M}]^+$ с m/z 411, 409 в масс-спектре его раствора. Таким образом, прослеживается определенная корреляция между скоростями процессов замещения/

Рисунок 4. Спектр ЯМР 1 Н соединения **1а** в ДМСО- d_{6} до (1) и после (2) подкисления CD₃COOD; спектр ЯМР 1 Н соединения **1а** в CDCl₃ до (3) и после (4) добавления Br₂ с последующей записью спектров (4)–(9) через каждые 5 мин; спектр ЯМР 1 Н соединения **4** в CDCl₃ (10).

окисления молекулярным бромом и значениями электроотрицательного заряда на реакционноспособных углеродных атомах дигидроазолопиримидиновой системы.

Спектры ЯМР 1 Н синтезированных бромидов **2a**–**c** и **3b**, **c** демонстрируют типичные сигналы протонов ароматических систем. Подобно ранее исследованным тетразолоазинам 13 их бромиды **2c** и **3c** в ДМСО- d_6 из-за кольчато-цепной таутомерии характеризуются тремя наборами химических сдвигов протонов одной открытой и двух циклических форм (рис. 5(1)), тогда как в малополярном CDCl₃ — только одной азидоформы (рис. 5(2), экспериментальная часть). Азидоформа в ИК спектрах растворов в хлороформе (рис. 6) и в кристаллах **2c** и **3c** (экспериментальная часть) подтверждается высокоинтенсивными полосами группы N_3 в области 2136-2342 см $^{-1}$.

В масс-спектрах (ионизация ЭУ) бромидов 2а, в и 3в присутствуют пики молекулярных ионов с изотопными компонентами, соответствующими количеству атомов брома в их составе, и осколочных ионов, связанных с выбросом радикалов С₂Н₅О и Вг на первых стадиях фрагментации. Другой тип распада в масс-спектрах с ионизацией ЭУ бромидов 2с и 3с связан, по-видимому, с легким раскрытием гетероциклов метастабильных молекулярных ионов азидных и циклических форм и образованием, в частности, перегруппировочных ионов с m/z 370 (д. 39%) и 449 (т. 18%) соответственно с одновременным выбросом радикала CN и сужением пиримидинового цикла (схема 4). Интересно отметить, что в этом случае фрагментация молекулярных ионов соединения 2с идет через формирование двух региоизомерных ионов F и G, структурное отличие которых поддержано осколочными ионами последующего их распада с m/z 325 (из фрагмента \mathbf{F}), m/z 238 и 131 (из фрагмента \mathbf{G}). Присутствие атома брома в пиримидиновом цикле соединения $3\mathbf{c}$ обеспечивает преимущественную деструкцию молекулярных ионов через перегруппировочный ион \mathbf{F}' (схема 4).

Способность к перегруппировочным превращениям обнаружена у пиразоло[1,5-a]пиримидина 2a (схема 1). В соответствии с результатами препаративного хроматографического разделения продуктов реакции бромирования и хромато-масс-спектрометрическим анализом реакционных растворов бромид 5a образуется в небольших количествах (7%). Следовые количества

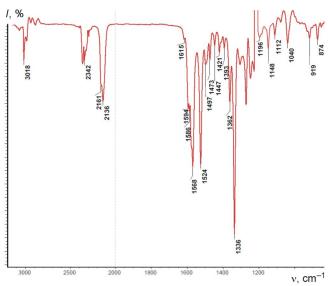
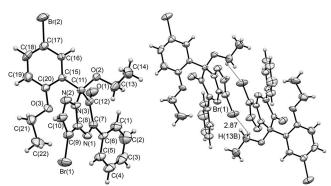



Рисунок 6. Фрагмент ИК спектра соединения 2с в CHCl₃.

бромида **5b** (не более 1%) были зафиксированы только хромато-масс-спектрометрическим методом. Структура дибромида **5a**, выделенного с помощью препаративной хроматографии, надежно подтверждена методом РСА (рис. 7). В масс-спектре с ионизацией ЭУ дибромида **5a** фиксируется пик молекулярного иона $[M]^+$ с m/z 533, содержащий 2 атома брома.

Возможный механизм перегруппировки был предложен исходя из строения кетона 5а и анализа массспектров низкомолекулярных продуктов гидролитиче-

Рисунок 7. Геометрия молекулы rac-(11R*)-изомера **5а** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью и центросимметричный димер (справа), сформированный оптическими антиподами.

ского распада 6-8 (схема 5). Перегруппировка, повидимому, связана с формированием димерного интермедиата Н в результате нуклеофильного присоединения гидроксигруппы продукта 2а или промежуточного соединения 4 к атому углерода С-5 бромированного интермедиата С (схема 3). Последующее сближение электроотрицательного атома кислорода этоксигруппы с атомом углерода С-7 соседних гетероциклических фрагментов димера запускает процесс перераспределения химических связей, который завершается образованием кетонов 5a,b и вероятного интермедиата I. Поскольку соединения структурно близкие интермедиату I не были зафиксированы хромато-массспектрометрически, мы предположили, что в кислой среде они подвергались дальнейшему ретро-распаду по Михаэлю. Отчасти подтверждением этого может быть высокоинтенсивный пик молекулярного иона $[M]^+$ с m/z285 (100%), 287 (98%) в масс-спектре с ионизацией ЭУ одного из продуктов деструкции. Его структура, предположительно, соответствует имину 6 с бруттоформулой C₁₅H₁₂NBr и дополнительно поддержана пиками осколочных ионов $[C_8H_8N]^+$, $[C_7H_7N]^+$, $[C_7H_5]^+$ и $[C_6H_5]^+$ с m/z 118, 105, 89 и 77.

Два других низкомолекулярных продукта 7 и 8, судя по масс-спектрометрическому распаду их молекулярных ионов $[M]^+$, соответственно с брутто-формулами

C₁₆H₁₃O₃Br (*m/z* 332 (100%), 334 (98%)) и C₁₁H₁₃O₃Br (*m/z* 272 (100%), 274 (98%)), были отнесены к гидролитическому ретро-распаду кетона 5. Варианты фрагментации, подтверждающие структуры соединений 7 и 8, представлены на схеме 6. Кроме того, в пользу предложенной структуры дикетона 7 свидетельствовали и характерные сигналы протонов бромэтоксифенильного и фенильного фрагментов в спектре ЯМР ¹Н препаративно выделенной фракции, содержащей данный продукт (экспериментальная часть). Таким образом, наиболее вероятный механизм деструкции, например, кетона **5b** с учетом полученных данных (схема 5) связан с образованием триола Ј. Дальнейшее его превращение в оксикислоту К происходит в результате перегруппировки. 15 ацилоиновой Предполагаемая

1,2-миграция арильной группы через мостиковый фенониевый ион является частным случаем семипинаколиновых перегруппировочных реакций, ¹⁵ характерных для диолов и их производных. Как правило, оксикислоты в присутствии минеральных кислот склонны к расщеплению, в частности, с образованием оксикетона L и муравьиной кислоты. Завершающие рассматриваемый механизм трансформации интермедиата L приводят к экспериментально установленным продуктам 7 и 8 в ходе конкурентного выброса молекулы этанола или бензальдегида.

Туберкулостатическая активность бромидов 2a–с и 3b, а также ранее синтезированных 7-(2-этоксифенил)-азолопиримидинов 13 была исследована в опытах *in vitro* в отношении лабораторного штамма M. tuberculosis

 $(H_{37}Rv)$. Установлено, что введение атомов брома в структуру соединений **2a**—**c** и **3b** приводит к снижению туберкулостатической активности до МИК 12.5 мкг/мл в сравнении с МИК 6.4, 12.5 и 0.8 мкг/мл для 5-фенил-7-(2-этоксифенил)пиразоло[1,5-a]пиримидин-6-ола, 5-фенил-7-(2-этоксифенил)[1,2,4]триазоло[1,5-a]пиримидина и 2-азидо-6-фенил-4-(2-этоксифенил)пиримидина¹³ соответственно. Для изониазида, который был выбран в качестве препарата сравнения, МИК составила 0.15 мкг/мл.

Таким образом, исследования окислительных процессов дигидроазоло [1-5a] пиримидинов как молекулярным кислородом, ¹³ так и бромом свидетельствуют о ключевой роли электронодонорного атома углерода С-6 в радикальных или ионных механизмах ароматизации гетероцикла. Образование 6-бромзамещенного азолопиримидина является исключительно результатом окисления. Установлена склонность 6-гидроксипиразоло [1-5a] пиримидина к ранее неизвестному типу перегруппировки, связанному с миграцией этоксигруппы.

Экспериментальная часть

ИК спектры зарегистрированы на фурье-спектрометре Spectrum One фирмы PerkinElmer с помощью приставки диффузного отражения. Спектры ЯМР ¹Н и ¹³С записаны на приборе Bruker DRX-400 (400 и 100 М Γ ц соответственно), используя ТМС и ДМСО- d_6 (бс 39.5 м. д.) в качестве внутренних стандартов соответственно. Хромато-масс-спектрометрический анализ проведен с использованием газового хроматографамасс-спектрометра Agilent GC 7890A MSD 5975C inert XL EI/CI (США) с МСД и кварцевой капиллярной колонкой HP5-MS (полидиметилсилоксан, 5 масс. % фенильных групп) длиной 30 м, диаметром 0.25 мм, толщина пленки 0.25 мкм. Начальная температура колонки 40 °C (выдержка 3 мин), далее нагрев со скоростью 10 °С/мин до 290 °С (выдержка 30 мин). Температура испарителя 250 °C. Температура переходной камеры 280 °C, температура источника 230 °C, температура квадруполя 250 °C. Газ-носитель – гелий, деление потока 1:50, расход через колонку 1.2 мл/мин. Сканирование по полному ионному току в диапазоне 20-1000 а. е. м. при энергии ионизации электронов 70 эВ. Элементный анализ выполнен на CHN-анализаторе EA 1108 (Carlo Erba Instruments, Италия). Температуры плавления определены на микронагревательном столике Boetius. TCX проведена на пластинах Sorbfil-UV (Россия).

Бромирование дигидроазолопиримидинов 1а—с (общая методика). Растворяют $0.1~\mathrm{r}$ ($0.3~\mathrm{ммоль}$) дигидроазолопиримидина ¹³ 1а—с в 5 мл CHCl₃ или AcOH и при перемешивании по каплям добавляют $\mathrm{Br_2}$ до устойчивой желто-оранжевой окраски. Реакционную смесь выдерживают при температуре 22 °C в течение 1 ч. Процесс контролируют с помощью TCX (элюент гексан—этилацетат, 2:1), проявляя пятна парами иода или светом ртутной лампы с длиной волны пропускания $254~\mathrm{u}$ 365 нм. По завершению реакции раство-

ритель удаляют, продукт промывают водой на фильтре, сушат. В случае уксуснокислых растворов целевой продукт **2**а-с выделяют перекристаллизацией из этанола. Реакционные смеси из раствора хлороформа разделяют методом препаративной колоночной хроматографии (SiO₂), элюируя смесью гексан—этилацетат, 3:1, 1:1 или 1:2. Растворы реакционных смесей и фракции с индивидуальными веществами охарактеризованы методами спектроскопии ЯМР и масс-спектрометрии. Физические характеристики тетразолопиримидинов **2**с и **3**с даны для их азидоформ.

3-Бром-7-(5-бром-2-этоксифенил)-5-фенилпиразоло-[1,5-а]пиримидин-6-ол (2а). Выход 110 мг (80%). Т. пл. 259–262 °C. ИК спектр, v, см⁻¹: 686, 698, 755, 791, 808 (ar); 1017, 1037 (v_s , C_{ar} –O– C_{alk}); 1135 (v_{as} , v_s , C_{alk} –O); 1251 (v_{as} , C_{ar} –O– C_{alk}); 1569, 1593, 1605 (δ , C=C, C=N); 2873, 2931, 2982 (δ, C_{alk}-H); 3064 (δ, C_{ar}-H); yiii. 3579 (ОН). Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.07 (3H, τ , $^{3}J = 6.9$, OCH₂CH₃); 4.04 (2H, κ , ³J = 6.9, OCH₂CH₃); 7.19 (1H, д, $^{3}J = 8.4$, H-3'); 7.52–7.57 (3H, м, H-3,4,5 Ph); 7.68 (1H, д, $^{4}J = 2.4$, H-6'); 7.71 (1H, д. д. $^{3}J = 8.4$, $^{4}J = 2.4$, H-4'); 8.01-8.03 (2H, M, H-2,6 Ph); 8.11 (1H, c, H-2); 9.37 (1H, с, ОН). Спектр ЯМР ¹³С, δ, м. д.: 156.4; 153.0; 142.6; 140.8; 138.1; 136.3; 134.1; 134.0; 130.7; 129.7; 129.4 (2C); 128.1 (2C); 118.9; 115.2; 111.3; 82.5; 64.2; 14.3. Масс-спектр (t_R 30.9 мин), m/z ($I_{\text{отн}}$, %): 491 $[M(^{81}Br)]^{+}$ (15), 489 $[M(^{81}Br,^{79}Br)]^{+}$ (32), 487 $[M(^{79}Br)]^{+}$ (16), 446 $[M(^{81}Br)-C_2H_5O]^+$ (7), 444 $[M(^{81}Br,^{79}Br)-C_2H_5O]^+$ (11), 442 $[M(^{79}Br)-C_2H_5O]^+$ (5), 410 $[M(^{81}Br)-Br]^+$ (6), 408 [M(⁷⁹Br)–Br]⁺ (8), 279 (7), 277 (9), 251 (26), 250 (31), 249 (26), 248 (32), 170 (36), 104 (16); 77 $[C_6H_5]^+$ (32), 29 $[C_2H_5]^+$ (100). Найдено. %: С 48.96: Н 3.11: N 8.54. С₂₀H₁₅Br₂N₃O₂. Вычислено, %: С 49.11; Н 3.09; N 8.59.

7-(5-Бром-2-этоксифенил)-5-фенил[1,2,4]триазоло-[1,5-а]пиримидин (2b). Выход 100 мг (85%). Т. пл. 230— 232 °C. ИК спектр, v, см⁻¹: 699, 774, 801 (ar); 1035 $(v_s, C_{ar}-O-C_{alk}); 1134, 1151 (v_{as}, v_s, C_{alk}-O); 1252$ $(v_{as}, C_{ar}-O-C_{alk})$; 1537, 1614 (δ , C=C, C=N); 2896, 2928, 2972, 2984 (δ , C_{alk}-H); 3052, 3124 (δ , C_{ar}-H). Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 1.09 (3H, τ , ${}^{3}J = 6.8$, OCH₂C<u>H</u>₃); 4.11 (2H, к, ${}^{3}J = 6.8$, OCH₂CH₃); 7.26 (1H, д, ${}^{3}J = 8.8$, H-3'); 7.60-7.62 (3H, м, H-3,4,5 Ph); 7.78 (1H, д. д, $^{3}J = 8.8, ^{4}J = 2.4, \text{ H-4'}$; 7.93 (1H, $_{\text{H}}, ^{4}J = 2.4, \text{ H-6'}$); 8.13 (1H, c, H-2); 8.34-8.37 (2H, M, H-2,6 Ph); 8.64 (1H, c, Н-6). Спектр ЯМР ¹³С, δ, м. д.: 160.2; 155.8; 155.7; 155.1; 144.7; 135.9; 134.9; 133.2; 131.4; 129.1 (2C); 127.7 (2С); 121.3; 115.1; 111.3; 108.8; 64.4; 14.2. Масс-спектр $(t_R 30.9 \text{ мин}), m/z (I_{\text{отн}}, \%): 396 [M(^{81}\text{Br})]^+ (66), 394 [M(^{79}\text{Br})]^+$ (78), 367 $[M(^{81}Br)-C_2H_5]^+$ (8), 365 $[M(^{79}Br)-C_2H_5]^+$ (7), 351 $[M(^{81}Br)-C_2H_5O]^+$ (11), 349 $[M(^{79}Br)-C_2H_5O]^+$ (12), 286 $[M-C_2H_5-Br]^+$ (5), 171 (82), 129 (10), 103 (20), 77 $[C_6H_5]^+$ (25), 29 $[C_2H_5]^+$ (100). Найдено, %: С 57.50; Н 3.80; N 14.08. С₁₉H₁₅BrN₄O. Вычислено, %: С 57.74; Н 3.83; N 14.17.

2-Азидо-**4-(5-бромо-2-этоксифенил)-6-фенил- пиримидин (2c)**. Выход 110 мг (92%). Т. пл. 154–156 °С. ИК спектр, ν , см⁻¹: 738, 768, 808 (ar); 1030, 1042 (ν s, C_{ar}–O–C_{alk}); 1106, 1146 (ν as, ν s, C_{alk}–O); 1200; 1247 (ν as, C_{ar}–O–C_{alk}); 1567, 1579, 1593 (δ , C=C, C=N); 2124,

2140 (N₃); 2862, 2895, 2934, 2977 (δ, C_{alk}–H); 3065 $(\delta, C_{ar}-H)$. Спектр ЯМР ^{1}H (CDCl₃), δ , м. д. (J, Γ ц): 1.52 (3H, T, $^{3}J = 6.8$, OCH₂CH₃); 4.18 (2H, K, $^{3}J = 6.8$, OCH₂CH₃); 6.98 (1H, π , ${}^{3}J = 8.8$, H-3'); 7.54–7.56 (3H, M, H-3,4,5 Ph); 7.56 (1H, д. д, ${}^{3}J = 8.8$, ${}^{4}J = 2.8$, H-4'); 8.12— 8.14 (2H, м, H-2,6 Ph); 8.24 (1H, д, ${}^{4}J = 2.8$, H-6'); 8.28 (1H, c, H-6). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 166.0; 163.8; 162.1; 156.7; 136.4; 134.6; 133.6; 131.3; 129.0 (2C); 127.3 (2C); 127.1; 114.3; 113.5; 113.3; 64.6; 14.9. Maccспектр (t_R 26.04 мин), m/z ($I_{\text{отн}}$, %): 371 [M(81 Br)–CN]⁺ (37), 369 [M(⁷⁹Br)–CN]⁺ (39), 356 [M(⁸¹Br)–CHN₂]⁺ (48), 354 $[M(^{79}Br)-CHN_2]^+$ (49), 326 $[M(^{81}Br)-CN-C_2H_6O]^+$ (24), 324 $[M(^{79}Br)-CN-C_2H_6O]^+$ (24), 297 (4), 295 (4), 246 (10), 239 $[M(^{81}Br)-CN-C_7H_6N_3]^+$ (8), 237 $[M(^{79}Br)-CN-C_7H_6N_3]^+$ (8), 158 (20), 172 $[M(^{79}Br)-C_{10}H_8NOBr]^+$ (40), 131 $[M(^{79}Br)-CN-C_{10}H_9NOBr]^+$ (12), 104 $[C_7H_6N]^+$ (33), 77 $[C_6H_5]^+$ (23), 29 $[C_2H_5]^+$ (100). Найдено, %: С 54.30; Н 3.44; N 17.64. С₁₈Н₁₄ВгN₅О. Вычислено, %: С 54.56; H 3.56; N 17.67.

6-Бром-7-(5-бром-2-этоксифенил)-5-фенил[1,2,4]**триазоло[1,5-а]пиримидин (3b)**. Выход 18 мг (12%). Т. пл. 179–181 °С. ИК спектр, v, см⁻¹: 694, 714, 747, 775, 808, 819 (ar); 1037 (v_s , C_{ar} –O– C_{alk}); 1124, 1155 (v_{as} , v_s , C_{alk} –O); 1253 (v_{as} , C_{ar} –O– C_{alk}); 1571, 1587 (δ , C=C, C=N); 2886, 2936, 2979, 2989 (\delta, Calk-H); 3030, 3060, 3112 (\delta, Car-H). Спектр ЯМР 1 Н, δ , м. д. (*J*, Γ ц): 1.26 (3H, т, ${}^{3}J = 6.8$, OCH_2CH_3); 4.05 (2H, к, ${}^3J = 6.8$, OCH_2CH_3); 7.08 (1H, д, ^{3}J = 8.8, H-3'); 7.55–7.59 (2H, м, H-3,5 Ph); 7.63 (1H, д. д. $^{3}J = 8.8, ^{4}J = 2.8, \text{H-4'}$; 7.68–7.72 (1H, M, H-4 Ph); 7.80– 7.83 (2H, м, H-2,6 Ph); 7.84 (1H, c, H-2); 8.10 (1H, д, ^{4}J = 2.8, H-6'). Спектр ЯМР 13 С, δ , м. д.: 162.6; 156.4; 155.0; 153.2; 144.6; 138.0; 135.0; 132.7; 130.0; 129.1 (2C); 128.1 (2C); 121.8; 115.4; 111.5; 108.1; 64.5; 14.2. Maccспектр ($t_{\rm R}$ 29.54 мин), m/z ($I_{\rm отн}$, %): 476 [M($^{81}{\rm Br}$)]⁺ (13), 474 [M($^{81}{\rm Br}$, $^{79}{\rm Br}$)]⁺ (24), 472 [M($^{79}{\rm Br}$)]⁺ (12), 431 [M($^{81}{\rm Br}$) $^{-20}{\rm C}_2{\rm H}_5{\rm O}$]⁺ (16), 429 [M($^{81}{\rm Br}$, $^{79}{\rm Br}$) $-{\rm C}_2{\rm H}_5{\rm O}$]⁺ (30), 427 $[M(^{79}Br)-C_2H_5O]^+$ (14), 395 $[M(^{81}Br)-Br]^+$ (85), 393 $[M(^{79}Br)-Br]^+$ (92), 314 $[M-2Br]^+$ (19), 367 $[M(^{81}Br)-Br-C_2H_4]^+$ (15), 365 $[M(^{79}Br)-Br-C_2H_4]^+$ (18), 286 $[M-2Br-C_2H_4]^+$ (8), 231 (11), 201 (6), 183 (10), 171 (38), 129 (9), 103 (13), 77 $[C_6H_5]^+$ (35), 29 $[C_2H_5]^+$ (100). Найдено, %: С 48.31; H 2.93; N 11.87. С₁₉H₁₄Br₂N₄O. Вычислено, %: С 48.13; H 2.98: N 11.82.

2-Азидо-5-бромо-4-(5-бромо-2-этоксифенил)-6-фенил-пиримидин (3c). Выход 10 мг (7%). Т. пл. 93–96 °С. ИК спектр, v, см⁻¹: 694, 754, 771, 803 (аг); 1039 (v_s, C_{аг}–О-C_{alk}); 1110, 1133 (v_{as}, v_s, C_{alk}–О); 1247 (v_{as}, C_{ar}–О-C_{alk}); 1565, 1573, 1593 (δ , C=C, C=N); 2127, 2151 (N₃); 2849, 2919, 2979 (δ , C_{alk}–H); 3061 (δ , C_{ar}–H). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (J, Гп): 1.26 (3H, т, ³J = 6.8, OCH₂CH₃); 4.15 (2H, к, ³J = 6.8, OCH₂CH₃); 7.16 (1H, д, ³J = 8.8, H-3'); 7.54 (1H, д, ⁴J = 2.4, H-6'); 7.56–7.59 (3H, м, H-3,4,5 Ph); 7.66 (1H, д. д, ³J = 8.8, ⁴J = 2.4, H-4'); 7.71–7.74 (2H, м, H-2,6 Ph). Масс-спектр (t_R 26.12 мин), m/z (I_{OTH}, %): 451 [M(⁸¹Br)–CN]⁺ (10), 449 [M(⁸¹Br, ⁷⁹Br)–CN]⁺ (18), 447 [M(⁷⁹Br)–CN]⁺ (9), 436 [M(⁸¹Br)–CHN₂]⁺ (5), 434 [M(⁸¹Br, ⁷⁹Br)–CN]⁺ (8), 432 [M(⁷⁹Br)–CHN₂]⁺ (5), 370 [M(⁸¹Br)–CN-Br]⁺ (69), 368 [M(⁷⁹Br)–CN-Br]⁺ (84), 342 [M(⁸¹Br)–C₈H₁₁N₂]⁺ (12), 340 [M(⁸¹Br, ⁷⁹Br)–C₈H₁₁N₂]⁺ (20),

338 [M(79 Br)–C₈H₁₁N₂]⁺ (10), 326 [M(81 Br)–CN–Br–C₂H₅O]⁺ (9), 324 [M(81 Br)–CN–Br–C₂H₅O]⁺ (9), 288 [M(79 Br)–CN–Br–HBr]⁺ (4), 247 (4), 171 [M–C₁₀H₈OBr₂]⁺ (10), 104 [C₇H₆N]⁺ (17), 77 [C₆H₅]⁺ (22), 29 [C₂H₅]⁺ (100). Найдено, %: C 45.55; H 2.88; N 14.68. C₁₈H₁₃Br₂N₅O. Вычислено, %: C 45.50; H 2.76; N 14.74.

Структура **3-бром-5-фенил-7-(2-этоксифенил)пиразоло-**[**1,5-***a***] пиримидин-6-ола (4)** подтверждена сравнительными данными кинетических исследований в ампуле ЯМР спектрометра при недостатке реагента Br_2 (спектр ЯМР 1 Н в растворе CDCl₃, рис. 1 (*10*)) и хромато-массспектрометрическим анализом этого раствора. Спектр ЯМР 1 Н (CDCl₃, HBr), δ , м. д. (*J*, Γ II): 1.32 (3H, т, $^3J = 6.8$, OCH₂CH₃); 4.26–4.33 (1H, м) и 4.40–4.46 (1H, м, OCH₂CH₃); 7.32 (1H, д, $^3J = 8.0$, H-3'); 7.37 (1H, т, $^3J = 8.0$, H-4'); 7.58–7.66 (4H, м, H-6', H-3,4,5 Ph); 7.78 (1H, т, $^3J = 7.2$, H-5'); 8.24–8.26 (2H, м, H-2,6 Ph); 8.41 (1H, с, H-2). Macc-спектр (t_R 27.12 мин), m/z ($I_{\rm OTH}$, 9 6): 411 [M(81 Br)]⁺ (36), 409 [M(79 Br)]⁺ (37), 366 [M(81 Br)—C₂H₅O]⁺ (8), 364 [M(79 Br)—C₂H₅O]⁺ (8), 330 [M–Br]⁺ (9), 279 (8), 277 (98), 251 (25), 250 (24), 249 (25), 248 (24), 170 (53), 104 (24), 77 [C₆H₅]⁺ (51), 29 [C₂H₅]⁺ (100).

3-Бром-7-(5-бром-2-этоксифенил)-5-фенил-7-этокси**пиразоло[1,5-а]пиримидин-6(7H)-он (5a)**. Выход 11 мг (7%). Т. пл. 191–194 °С. ИК спектр, v, см⁻¹: 682, 693, 704, 732, 755 (ar); 1038 (v_s , C_{ar} –O– C_{alk}); 1110, 1145 (v_{as} , v_s , C_{alk} –O); 1243 (v_{as} , C_{ar} –O– C_{alk}); 1595 (δ , C=C, C=N); 1705 (δ, C=O); 2900, 2936, 2976 (δ, C_{alk}-H); 3074, 3117 (δ , C_{ar} –H). Спектр ЯМР 1 H, δ , м. д. (J, Γ ц): 0.83 (3H, т, $^{3}J=6.8$) и 1.13 (3H, т, $^{3}J=6.8$, OCH₂CH₃); 3.18–3.22 (1H, м), 3.40–3.44 (1H, м), 3.74–3.77 (1H, м) и 3.80–3.83 (1H, м, OCH₂CH₃); 6.95 (1H, д, ${}^{3}J = 8.8$, H-3'); 7.55–7.63 (4H, м, H-4', H-3,4,5 Ph); 7.90 (1H, c, H-2); 7.93 (1H, д, J = 1.2, H-6'); 7.99–8.01 (2H, M, H-2,6 Ph). Macc-chektp $(t_{\rm R}\ 27.9\ {\rm Mин}),\ m/z\ (I_{\rm отн},\ \%):\ 535\ [{\rm M}(^{81}{\rm Br})]^+\ (18),\ 533$ $[M(^{81}Br,^{79}Br)]^{+}$ (35), 531 $[M(^{79}Br)]^{+}$ (17), 507 $[M(^{81}Br)$ –CO]⁺ (9), 505 $[M(^{81}Br, ^{79}Br)-CO]^+$ (19), 503 $[M(^{79}Br)-CO]^+$ (9), 478 $[M(^{81}Br)-CO-C_2H_5]^+$ (17), 476 $[M(^{81}Br,^{79}Br)-CO-C_2H_5]^+$ (33), 474 $[M(^{79}Br)-CO-C_2H_5]^+$ (16), 454 $[M(^{81}Br)-Br]^+$ (8), 452 [M(⁷⁹Br)–Br]⁺ (8), 250 (17), 248 (18), 103 (9), 229 (15), 227 (15), 201 (33), 199 (32), 120 (17), $77[C_6H_5]^+$ (18), 29 [C₂H₅]⁺ (100). Найдено, %: С 49.38; Н 3.52; N 7.91. С22Н19Вг2N3O3. Вычислено, %: С 49.54; Н 3.56; N 7.88.

Структура **3-бромо-5-фенил-7-этокси-7-(2-этокси-фенил)пиразоло[1,5-***а*]пиримидин-6(7*H*)-она (5b) установлена путем сравнения его хромато-масс-спектрометрических данных с таковыми соединений **2a** и **5a**. Масс-спектр (t_R 24.56 мин), m/z ($I_{\rm отн}$, %): 455 [M(⁸¹Br)]⁺ (4), 453 [M(⁷⁹Br)]⁺ (4), 427 [M(⁸¹Br)–CO]⁺ (29), 425 [M(⁷⁹Br)–CO]⁺ (29), 398 [M(⁸¹Br)–CO–C₂H₅]⁺ (33), 396 [M(⁷⁹Br)–CO–C₂H₅]⁺ (31), 374 [M–Br]⁺ (21), 250 (18), 248 (18), 238 (14), 209 (8), 149 (50), 121 (100), 103 (10), 93 (22), 77 [C₆H₅]⁺ (20), 65 (21).

3-(2-Бромфенил)-1-фенилпроп-2-ен-1-имин (6). Массспектр (t_R 22.51 мин), m/z ($I_{\text{отн}}$, %): 287 [M(81 Br)]⁺ (98), 285 [M(79 Br)]⁺ (100), 118 [C_8H_8N]⁺ (16), 105 [C_7H_7N]⁺ (67), 89 [C_7H_5]⁺ (26), 77 [C_6H_5]⁺ (90).

1-(5-бром-2-этоксифенил)-2-фенилэтан-1,2-дион (7). Спектр ЯМР 1 Н препаративно выделенной фракции с

соединением 7 в растворе ДМСО- d_6 , δ , м. д. (J, Γ и): 0.68 (3H, т, 3J = 6.9, OCH₂CH₃); 3.92 (2H, κ , 3J = 6.9, OCH₂CH₃); 7.18 (1H, д, 3J = 8.8, H-3'); 7.58–7.62 (2H, м, H-3,5 Ph); 7.73–7.77 (1H, м, H-4 Ph); 7.88 (1H, д. д, 3J = 8.8, 4J = 2.5, H-4'); 7.98 (1H, д, 4J = 2.5, H-6'). Масс-спектр (t_R 21.08 мин), m/z ($I_{\rm OTH}$, %): 334 [M(${}^{81}{\rm Br}$)] ${}^+$ (5), 332 [M(${}^{79}{\rm Br}$)] ${}^+$ (5), 229 (84), 227 (86), 201 (44), 199 (45), 120 [C₈H₈O] ${}^+$ (28), 105 [C₇H₅O] ${}^+$ (74), 77 [C₆H₅] ${}^+$ (100).

Этил-5-бром-2-этоксибензоат (8). Масс-спектр $(t_{\rm R}\ 14.86\ {\rm мин}),\ m/z\ (I_{\rm отн},\ \%):\ 274\ [{\rm M(}^{81}{\rm Br})]^+\ (17),\ 272\ [{\rm M(}^{79}{\rm Br})]^+\ (18),\ 227\ [{\rm M(}^{81}{\rm Br})-{\rm C}_2{\rm H}_5{\rm OH-H}]^+\ (41),\ 225\ [{\rm M(}^{79}{\rm Br})-{\rm C}_2{\rm H}_5{\rm OH-H}]^+\ (42),\ 200\ [{\rm M(}^{81}{\rm Br})-{\rm 2C}_2{\rm H}_5]^+\ (98),\ 198\ [{\rm M(}^{79}{\rm Br})-{\rm 2C}_2{\rm H}_5]^+\ (100),\ 172\ [{\rm M(}^{81}{\rm Br})-{\rm 2C}_2{\rm H}_5-{\rm CO]}^+\ (21),\ 170\ [{\rm M(}^{79}{\rm Br})-{\rm 2C}_2{\rm H}_5-{\rm CO]}^+\ (22),\ 91\ (10),\ 63\ (38).$

Рентгеноструктурное исследование соединений 3b,с, 5а и 9с проведено на автоматическом дифрактометре Xcalibur 3 ССD (МоКα-излучение, λ 0.71073 Å, графитовый монохроматор, ω-сканирование с шагом 1°. T 295K). Кристаллы соединений **3b**,**c**, **5a** и **9c** получены медленным упариванием из ацетонитрильных растворов. Введена эмпирическая поправка на поглощение. Расшифровка и уточнение структур проведено с использованием программного пакета SHELXTL. 16 Структуры расшифрованы прямым методом и уточнены полноматричным МНК по F^2 в анизотропном для неводородных атомов приближении. Положения атомов водорода рассчитаны геометрически и уточнены по модели "наездник". Рентгеноструктурные данные депонированы в Кембриджском банке структурных данных (депоненты ССДС 1858441 (соединение **3b**), ССDС 1858442 (соединение **3c**), ССDС 1858444 (соединение 5а), ССDС 1858440 (соединение 9с).

Работа выполнена при финансовой поддержке РНФ (грант № 15-13-00077-П).

Список литературы

- Saikia, I.; Borah, A. J.; Phukan, P. Chem. Rev. 2016, 116, 6837.
- Petrone, D. A.; Ye, J.; Lautens, M. Chem. Rev. 2016, 116, 8003
- Godoi, B.; Schumacher, R. F.; Zeni, G. Chem. Rev. 2011, 111, 2937.
- 4. Афанасьев, В. В.; Беспалова, Н. Б.; Белецкая, И. П. *Рос.* хим. журн. Рос. хим. о-ва им. Д. И. Менделеева **2006**, L(4), 81.
- 5. Snieckus, V. Johnson Matthey Technol. Rev. 2016, 60, 99.
- 6. Shkurko, O. P.; Tolstikova, T. G.; Sedova, V. F. Russ. Chem. Rev. 2016, 85, 1056. [Venexu xumuu 2016, 85, 1056.]
- Clough, J. M.; Dale, R. P.; Elsdon, B.; Hawkes, T. R.; Hogg, B. V.; Howell, A.; Kloer, D. P.; Lecoq, K.; McLachlan, M. M. W.; Milnes, P. J.; O'Riordan, T. J. C.; Ranasinghe, S.; Shanahan, S. E.; Sumner, K. D.; Taya, S. Pest Manage. Sci. 2016, 72, 2254.
- Brigance, R. P.; Meng, W.; Fura, A.; Harrity, T.; Wang, A.; Zahler, R.; Kirby, M. S.; Hamann, L. G. *Bioorg. Med. Chem. Lett.* 2010, 20, 4395.
- 9. Vasilev, V. N. *Mycobaterioses and Pulmonary Mycoses* [in Bulgarian]; Medizina i Fizkultura: Sofia, 1971, p. 377.
- Ovchinnikova, I. G.; Valova, M. S.; Fedorova, O. V.; Tumashov, A. A.; Kravchenko, M. A.; Medvinsk'i, I. D.; Rusinov, G. L.; Charushin, V. N. Macroheterocycles 2016, 9, 301.
- 11. Липсон, В. В. Дис. докт. хим. наук; Харьков, 1991.
- 12. Десенко, С. М.; Орлов, В. Д. Азагетероциклы на основе ароматических непредельных кетонов; Фолио: Харьков, 1998, р. 148.
- Ovchinnikova, I. G.; Valova, M. S.; Matochkina, E. G.; Kodess, M. I.; Tumashov, A. A.; Slepukhin, P. A.; Fedorova, O. V.; Rusinov, G. L.; Charushin, V. N. Russ. Chem. Bull., Int. Ed. 2014, 63, 1552. [Изв. АН, Сер. хим. 2014, 1552.]
- 14. Neese, F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73.
- 15. Song, Z.-L.; Fan, C.-A.; Tu, Y.-Q. Chem. Rev. 2011, 111, 7523.
- Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.