В. И. Божанов, С. П. Ивонин

НУКЛЕОФИЛЬНОЕ ЗАМЕЩЕНИЕ В РЯДУ 1,5-БЕНЗОДИАЗЕПИНОНА-2

Взаимодействим 3-бром-4-фенил-2,3-дигидро-1H-1,5-бензодиазепинона-2 с циклическими аминами получены 3-аминоалкилзамещенные 4-фенил-2,3-дигидро-1H-1,5-бензодиазепинона-2. При использовании тиомочевины наряду с продуктом замещения выделен тиазоло [4,5-b][1,5]бензодиазепин.

Ключевые слова: 1,5-бензодиазепиноны-2, тиазоло[4,5-*b*][1,5]бензодиазепин, бромирование, межфазный катализ, нуклеофильное замещение.

Замещенные 1,5-бензодиазепиноны-2 обладают высокой диуретической и нейролептической активностью [1]. Цель настоящего исследования состояла в изучении реакций нуклеофильного замещения галогена в 3-бром-4-фенил-2,3-дигидро-1H-1,5-бензодиазепиноне-2 на аминные фрагменты пирролидина, пиперидина, гексагидроазепина, тетрагидроизохинолина, 2-аминопиридина. Соединение 1 получено бромированием 4-фенил-2,3-дигидро-1H-1,5-бензодиазепинона-2 в условиях, близких к описанным в работе [2], с изменением мольного соотношения реагентов бензодиазепинон—бром, 1:1.25, и времени реакции до 1.5 ч, что позволило получить хроматографически чистый бромбензодиазепин 1 с выходом до 90%.

Амин в случае: $2\mathbf{a}$ – пирролидин; \mathbf{b} – пиперидин; \mathbf{c} – гексагидроазепин; \mathbf{d} – 1,2,3,4-тетрагидроизохинолин; \mathbf{e} – 2-аминопиридин

Реакцию нуклеофильного замещения проводили в этаноле при мольном соотношении реагентов соединение **1** – амин 1 : 1.5. Соединения **2а,b** образуются при комнатной температуре; для получения соединений **2с–е** необходимо кипячение реакционной смеси. Нагревание осложняет 1684

проведение реакции, о чем свидетельствует хроматографический контроль за ее ходом. При проведении реакции с пирролидином (получение соединения **2a**) в условиях межфазного катализа (тетрабутиламмонийбромид – 50 % NaOH – бензол) наряду с продуктом замещения брома на амин с небольшим выходом образуется 3-гидрокси-4-фенил-2,3-дигидро-1H-1,5-бензодиазепинон-2 (**3**), в ИК спектре которого наблюдается широкая полоса ассоциированных групп ОН и NH в области 3565–3356 и 3180–3100 и карбонильное поглощение при 1653 см⁻¹. Увеличение времени нагревания в условиях межфазного катализа приводит к расщеплению бромида **1** и образованию *о*-фенилендиамина.

Спектральные характеристики подтверждают структуру аминов **2** и находятся в соответствии с данными для 1,5-бензодиазепиновых систем [3]. ИК спектры содержат интенсивные полосы валентных колебаний карбонильных групп (1670–1692), полосы связей $C_{(4)}=N_{(5)}$ и C=C (1620–1450 см⁻¹). В спектрах ЯМР ¹Н фиксируется синглетный сигнал амидного протона в области 9.35–11.04, мультиплет ароматических протонов (6.80–8.02 м. д.) и сигналы протонов заместителей.

При взаимодействии соединения 1 с тиомочевиной выделены 3-тиоуреидо-4-фенил-2,3-дигидро-1H-1,5-бензодиазепинон-2 (4) и 2-амино-10фенилтиазоло[4,5-*b*][1,5]бензодиазепин (5). Замыкание трициклических систем для 1,5-бензодиазепинонов при действии нуклеофилов отмечалось ранее [4]. Тиазольный цикл замыкается стандартным путем [5].

В ИК спектре трицикла 5 отсутствует карбонильное полгощение, интенсивность поглощения азометиновых групп увеличиватся.

Характеристики соединений 2а-е, 3

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С (раство-	ИК спектр, см ⁻¹	Вы- ход, %
		C	Н	N	ритель)	CM	лод, /0
2a	C ₁₉ H ₁₉ N ₃ O	74.42 74.75	6.10 6.23	13.21 13.77	280–281 (ДМСО)	3160–3100, 1680, 1630, 1575–1465	68
2b	C ₂₀ H ₂₁ N ₃ O	74.93 75.24	6.63 6.58	12.89 13.17	187–188 (этанол)	3300–3100, 1685, 1625, 1580–1430	81
2 c	C ₂₁ H ₂₃ N ₃ O	75.21 75.68	6.45 6.91	12.12 12.61	172–173 (этанол)	3175–3040, 1675, 1620, 1560–1465	80
2d	C ₂₄ H ₂₁ N ₃ O	78.21 78.47	<u>5.35</u> 5.71	11.20 11.44	95–96 (этанол– вода, 1:1)	3185–3100, 1692, 1625, 1590–1475	96
2e	C ₂₀ H ₁₆ N ₄ O	72.87 73.17	4.60 4.88	16.86 17.07	269–270 (этанол)	3325–3151, 1640, 1620, 1560–1450	71
3	C ₁₅ H ₁₂ N ₂ O ₂	70.82 71.43	4.64 4.76	11.02 11.11	268-270 (метанол)	3565–3356, 3180–3100, 1653, 1620–1480	30

Масс-спектральные характеристики соединений 4 и 5 различны. Масс-спектр соединения 5 содержит интенсивные пики молекулярного M⁺ 292 (60%) и фрагментарного иона 217* (70%), что соответствует отщеплению тиазольного фрагмента. Максимальным в спектре является пик 291 [М–Н]. Пик молекулярного иона соединения 4 менее интенсивен M⁺ 310 (26%); максимальным в спектре является пик 235, образующийся при элиминировании из молекулярного иона фрагмента SC(NH₂)=NH.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакций и чистотой синтезированных соединений проводили хроматографически на пластинках Silufol UV-254, элюент — бензол — этилацетат, 7:4. ИК спектры записаны на приборе UR-20 в таблетках КВг. Спектры ЯМР ¹Н регистрировали на приборе Varian VXR-300 в ДМСО-d₆ с ТМС в качестве внутреннего стандарта. Массспектры получены на масс-спектрометре Varian MAT-443 с использованием системы прямого ввода образца в ионный источник, энергия ионизирующих электронов 70 эВ.

3-Бром-4-фенил-2,3-дигидро-1H-1,5-бензодиазепинон-2 (1). К 10 ммоль 4-фенил-2,3-дигидро-1H-1,5-бензодиазепинона-2 в 40 мл ледяной уксусной кислоты, подогретой до 35 °C, добавляют по каплям при перемешивании 12.5 ммоль брома в 5 мл уксусной кислоты. Перемешивают реакционную смесь 1.5 ч при ∼20 °C. Осадок 2.7 г соединения 1 отфильтровывают, промывают разбавленным раствором аммиака, водой. Полученное вещество используют без дальнейшей очистки.

3-Пирролидино-4-фенил-2,3-дигидро-1H-1,5-бензодиазепинон-2 (2a). К 5 ммоль соединения **1** в 25 мл этанола добавляют 7.5 ммоль пирролидина и 5 ммоль триэтиламина. Через 1 сут осадок амина **2a** отфильтровывают, промывают водой. Константы соединений **2a–e** представлены в таблице. Спектр ЯМР 1 Н, δ , м. д., J, Γ ц: 1.74 (4H, c, CH₂); 2.95, 3.18 (4H, c, CH₂N); 6.66 (1H, д, J = 7.5, 6-H); 6.88–7.16 (8H, м, Het + Ph); 7.33 (1H, c, CH); 10.87 (1H, c, NH).

3-Пиперидино-4-фенил-2,3-дигидро-1H-1,5-бензодиазепинон-2 (2b). Соединение получают аналогично предыдущему, выделяют добавлением к реакционной смеси 100 мл воды. Спектр ЯМР 1 H, δ , м. д., J, Γ ц : 1.50 (4H, c, CH₂); 1.67 (4H, м, CH₂); 2.82–3.20 (4H, м, CH₂N); 4.76 (1H, c, CH); 6.60 (1H, д, J = 7.8, 6-H); 7.28–7.40 (8H, м, Ph + Ar); 10.67 (1H, c, NH).

3-Гексагидроизоазепино-4-фенил-2,3-дигидро-1H-1,5-бензодиазепинон-2 (2с). Получают аналогично. Спектр ЯМР 1 H, δ , м. д., J, Γ ц: 0.98 (4H, c, CH₂); 1.18 (4H, c, CH₂); 2.20–2.50 (4H, м, CH₂N); 4.96 (1H, c, CH); 7.02–7.20 (3H, м, m-Ph, 8-H); 7.35 (1H, д, J = 8.1, 6-H); 7.48–7.58 (3H, м, p-Ph, 7-, 9-H); 8.02 (2H, д, J = 8.1, o-Ph); 10.77 (1H, c, NH).

3-Тетрагидроизохинолино-4-фенил-2,3-дигидро-1H-1,5-бензодиазепинон-2 (2d). Получают аналогично кипячением реакционной смеси в течение 45 мин. Амин **2d** выделяют добавлением к реакционной смеси 100 мл воды. Спектр ЯМР 1 Н, δ , м. д., J, Γ ц: 3.60–3.85 (2H, м, 4-Н изохин.); 3.20–3.40 (2H, м, 2-Н изохин.); 4.26 (2H, д. д, J = 10, J = 6.0, 1-Н изохин.); 6.68 (1H, д, J = 7.8, 6-H); 6.80–7.25 (13H, м, Het + Ph + Ar); 11.04 (1H, c, NH).

3-(2-Пиридиламино)-4-фенил-2,3-дигидро-1H-1,5-бензодиазепинон-2 (2e). Получают кипячением реакционной смеси 5 ч, выпадает через 1 сут (4 °C). Спектр ЯМР 1 Н, δ , м. д., J, Γ ц: 4.87 (2H, c, CH, C=NH); 6.61 (1H, τ , J = 7.5, 8-H); 6.75 (1H, τ , τ) = 7.5, 6-H); 6.96 (1H, τ , τ) = 7.5, 7-H); 7.10 (1H, τ , τ) = 6.9, Py); 7.30 (1H, τ) = 7.5, 9-H); 7.35–7.55 (5H, м, Ph); 7.74 (1H, τ) = 6.9, Py); 7.91 (2H, τ) = 6.9, Py); 8.81 (1H, τ) = 6.9, C=NH); 9.35 (1H, c, NH).

3-Гидрокси-4-фенил-2,3-дигидро-1H-1,5-бензодиазепинон-2 (3). К 10 ммоль соединения **1** добавляют 10 ммоль пирролидина, 3 мл 50% NaOH, 6 ммоль триэтиламмоний-бромида в 10 мл бензола. Смесь перемешивают 1 ч при 70 °C, охлаждают, органический слой отделяют, промывают водой, сушат MgSO₄. Растворитель удаляют, остаток разделяют дробной кристаллизацией из смеси метанол—вода. Выделяют 1.35 г соединения **2a** и 0.8 г соединения **3**.

^{*} Здесь и далее для пиков ионов приведены величины m/z ($I_{\text{отн}}$, %).

Взаимодействие бромида 1 с тиомочевиной. Раствор 1.6 г (5 ммоль) соединения 1 и 0.37 г (5 ммоль) тиомочевины в 20 мл этанола кипятят 2 ч. При охлаждении выделяют 0.8 г трицикла 5, т. пл. 138–140 °C. ИК спектр (КВг), см⁻¹: 1600 (С=N), 1520–1470 (С=С), 3390-3160 (NH). Масс-спектр: 292 (60), 291 (100), 235 (15), 217 (70). Найдено, %: N 18.98; S 10.74. $C_{16}H_{12}N_4S$. Вычислено, %: N 19.18; S 10.96.

Из фильтрата после удаления растворителя выделяют 0.4 г соединения 4. Т. пл. 236-237 °C (из этанола). ИК спектр (KBr), см⁻¹: 1630 (C=O), 1610 (C=N), 1532–1460 (C=C), 3300–3100 (NH). Масс-спектр: 310 (26), 235 (100), 194 (18.8), 133 (22.37). Найдено, %: N 18.01; S 10.32. С₁₆H₁₄N₄OS. Вычислено, %: N 18.06; S 10.32.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. Н. Прошкина, Дис. канд. хим. наук, Днепропетровск, 1990, 250.
- A. Barchet, K. W. Merz, Tetrah. Lett., 2239 (1964).
- 3. 3. Ф. Соломко, В. Н. Прошкина, Н. Я. Божанова, С. В. Лобань, Л. Н. Бабиченко, ХГС, 223 (1984).
- 4. В. Н. Прошкина, З. Ф. Соломко, Н. Я. Божанова, ХГС, 1288 (1988).
- 5. В. И. Иванский, Химия гетероциклических соединений, Москва, 1978, 191.

Днепропетровский государственный университет, Днепропетровск 320625, Украина

e-mail: cf@ff.dsu.dp.ua

Поступило в редакцию 25.05.99