П. М. Кочергин, Л. А. Резниченко, Р. Н. Гирева, Е. В. Александрова

ИССЛЕДОВАНИЯ В РЯДУ ИМИДАЗОЛА

98*. РЕАКЦИЯ НИТРОГАЛОГЕНИМИДАЗОЛОВ С АМИНОКИСЛОТАМИ

Изучена реакция 1-метил(1,2-диметил)-4-нитро-5-хлор(бром) имидазолов и 1-метил-4-хлор-5-нитроимидазола с аминокислотами, позволившая синтезировать ряд N-(4-нитроимидазолил-5)- и N-(5-нитроимидазолил-4) замещенных аминокислот. Получены эфиры некоторых из этих кислот.

Известны три группы биологически активных аминокислот, содержащих в своей структуре имидазольное ядро, — незаменимая аминокислота гистидин [2], предшественник биосинтеза пуриновых нуклеотидов 4(5)-амино-5(4)-имидазолкарбоксамид и его антагонисты [3—7] и 1-карбоксиалкилимидазолы [8—11], у которых атом азота является общим как для аминокислоты, так и имидазола.

N-Замещенные аминокислоты, у которых один атом водорода аминогруппы замещен на остаток имидазола, в литературе не описаны. С целью получения такого типа соединений нами изучена реакция 1-метил-4-нитро-5-хлор- (I), 1,2-диметил-4-нитро-5-бром- (II) и 1-метил-4-хлор-5-нитроимидазолов (III) с рядом алифатических и ароматических аминокислот (глицин, валин, β -аланин, γ -аминомасляная, n-аминофенилуксусная, m- и n-аминобензойные кислоты).

$$R^1$$
 Ме R^1 Ме R^2 Ме

I Hal = Cl; II Hal = Br; I, IV, VI—X, XIII R = H; II, V, XI, XIV R = Me; IV, V R¹ = CH₂COOH; VI R¹ = CH₂CH₂COOH; VII R¹ = CH₂CH₂COOH; VIII R¹ = p-C₆H₄COOH; XI R¹ = p-C₆H₄COOH; XI R¹ = p-C₆H₄COOH; XV R² = Me; XVI R² = Et

^{*} Сообщение 97 см. [1].

Реакция нитрогалогенимидазолов I и II с аминокислотами легко протекает при нагревании компонентов в воде или в μ -бутаноле в присутствии едкого кали и приводит к образованию соответствующих N-имидазолилзамещенных аминокислот IV—IX (выход 65...80%).

Значительно труднее протекает реакция 4-нитро-5-галогенимидазолов I, II с антраниловой кислотой. Она проходит лишь в условиях реакции Ульмана, т. е. при длительном кипячении в амиловом спирте в присутствии бикарбоната натрия и катализатора — монохлористой меди. Более реакционноспособный 1-метил-4-хлор-5-нитроимидазол (III) реагирует с антраниловой кислотой без катализатора. Выходы N-имидазолилзамещенных антраниловой кислоты X—XII 61...72%.

Определенный интерес представляли эфиры некоторых N-имидазолиламинокислот (в частности, антраниловых) XIII—XVI.

Кислота X легко этерифицируется в метаноле в присутствии хлористого водорода с образованием метилового эфира XIII (выход 90%). Близкая по структуре кислота XI в тех же условиях образует метиловый эфир XIV с выходом 20%. С высоким выходом (86%) эфир XIV получен взаимодействием кислоты XI с диметилсульфатом в ДМФА в присутствии поташа.

N-(1-Mетил-5-нитроимидазолил-4)антраниловую кислоту (XII) в виде ее калиевой соли подвергали этерификации диметилсульфатом и галоидными алкилами (CH₃I, C₂H₅I) в ДМФА. При этом были получены метиловый (XV) и этиловый (XVI) эфиры с выходами 61...65%. Образцы эфира XV, полученные разными методами, оказались идентичными.

Приведенные данные свидетельствуют о том, что алкилирование N-нитроимидазолилантраниловых кислот XI, XII как диметилсульфатом, так и галоидными алкилами протекает по карбоксильной группе с образованием сложных эфиров, не затрагивая вторичную аминогруппу.

Строение синтезированных соединений IV—XVI подтверждено данными элементного анализа, ИК, ПМР и масс-спектров.

В масс-спектрах соединений IV, IX, X, XII и XVI зарегистрированы пики молекулярных ионов, соответствующие молекулярной массе указанных веществ.

В ИК спектрах соединений IV—XVI имеются полосы поглощения группы NO₂ в области 1350...1410 и 1500...1570, группы NH в области 1590...1640 и 3120...3350 и группы CO в области 1670...1740 см $^{-1}$.

Спектры ПМР, снятые для ряда соединений, также подтверждают их структуру как N-имидазолилзамещенных аминокислот.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры соединений сняты на приборе UR-20 в таблетках КВг. Масс-спектры получены на спектрометре Varian MAT-112 при прямом вводе образца в источник ионов. Температура ионизационной камеры 180 °C; энергия ионизирующих электронов 70 эВ. Спектры ПМР записаны на спектрометре Tesla BS-497 с рабочей частотой 100 МГц, внутренний стандарт ГМДС. Контроль за ходом реакций и индивидуальностью полученных соединений осуществляли методом ТСХ на пластинках Silufol UV-254.

1-Метил-4-нитро-5-хлоримидазол (I) [12], 1,2-диметил-4-нитро-5-бромимидазол (II) [13] и 1-метил-4-хлор-5-нитроимидазол (III) [14] получены по известным методам.

N-(1-Метил-4-нитроимидазолил-5) глицин (IV). К раствору 1,12 г (0,02 моль) КОН в 70 мл воды добавляют 1,5 г (0,02 моль) глицина и 1,61 г (0,01 моль) соединения I. Смесь нагревают 1,5 ч при 70...90 °C, охлаждают, подкисляют разбавленной НС1 до рН 6, выделившийся осадок отфильтровывают, промывают водой, сушат. Получают 1,5 г соединения IV.

Аналогично получены соединения V, VII, VIII, IX (табл. 1).

Таблица 1 Данные элементного анализа соединений IV—XVI

Соеди- нение	Брутго- формула	<u>Найдено. %</u> Вычислено, %			T _{IUI} , °C	Выход,
	формула	С	н	N		76
· IV	C6H8N4O4	35,97 36,00	4.13 4,03	27,83 27,99	217218	75
V	C7H10N4O4	39,45 39,26	4 <u>.79</u> 4,71	25,91 26,16	193,5194,5	70
VI	C7H10N4O4	39,29 39,26	<u>4,82</u> 4,71	25,77 26,16	203,5204,5	78
VII	C ₈ H ₁₂ N ₄ O ₄ · H ₂ O	39,74 39,02	<u>5,85</u> 5,69	22,41 22,76	158161	65
VIII	C ₁₂ H ₁₂ N ₄ O ₄	52,60 52,17	4,43 4,38	20.33 20,28	190192	80
IX	C11H10N4O4	50.72 50,36	4.19 3,84	20,97 21,37	214215	61
X	C ₁₁ H ₁₀ N ₄ O ₄	50,56 50,36	4.00 3,84	21,32 21,37	206207	72 .
XI	C ₁₂ H ₁₂ N ₄ O ₄	51,95 52,17	4,51 4,38	19,85 20,28	228230	63
ΧП	C ₁₁ H ₁₀ N ₄ O ₄	50,73 50,36	<u>4.12</u> 3,84	21.34 21,37	221,5223	61
XIII	C ₁₂ H ₁₂ N ₄ O ₄	51,90 52,17	<u>4,21</u> 4,38	20,15 20,28	213214	90
XIV	C13H15N4O4	53.86 53,60	4,88 5,15	<u>19,24</u> 19,24	210211	86
XV	C12H12N4O4	51,85 52,17	<u>4,30</u> 4,38	$\frac{20,47}{20,28}$	192193	6165
XVI	C ₁₃ H ₁₄ N ₄ O ₄	<u>53,57</u> 53,79	<u>5.19</u> 4,82	<u>18,77</u> 19,31	138140	62

T аблица 2 ИК спектры и пики молекулярных ионов (M $^{+}$) соединений IV—XVI

Соединение	M ⁺	ИК спектр, $ u$, см $^{-1}$			
Сосдинение	141	NO ₂	NH	со	
IV	201	1350, 1550	1640, 3300	1740	
v		1350, 1550	1640, 3300	1740	
VI		1410, 1550	1610, 3280	1680	
VII		1360, 1550	1620, 3340	1710	
vm		1350, 1540	1620, 3350	1730	
IX	262				
x	262	1370, 1500	1600, 3120	1700	
XI		1370, 1550	1590, 3260	1670	
хп	262	1350, 1570	1620, 3120	1680	
xm			1600, 3300	1700	
XIV		1370, 1560	1600, 3310	1690	
XV	į	1350, 1540	1610, 3140	1700	
XVI	290	1355, 1540	1600, 3140	1700	

Спектры ПМР соединений IV, VI, VII, IX—XVI

Соеди- нение	Химический сдвиг, δ , м. д.*						
	N—CH ₃ (3H, c)	С2—Н (1Н, с)	протоны бензольного кольца	протоны других групп			
IV	3,85	7,52		4,48 (2H, л, <i>J</i> = 6 Гц, NCH ₂); 7,74 (1H, т, <i>J</i> = 6 Гц, NH)			
VI	3,79	7,38	·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
VII	3,80	7,32		1,88 (2H, м, β -CH ₂); 2,39 (2H, т, J = 8 Γ ц, CH ₂ NH); 3,61 (2H, м, CH ₂ COOH)			
IX	3,46	7,71	6,95 (1Н, м, 2-Н); 7,40 (3Н, м, 4,5,6-Н)	9,06 (1H, ym. c, NH)			
X	3,65	8,31	6,40 (1H, μ , $J = 8$ $\Gamma\mu$, 3-H); 6,85 (1H, π , $J = 8$ $\Gamma\mu$, 4-H); 7,20 (1H, π , $J = 8$ $\Gamma\mu$, 5-H); 7,80 (1H, μ , $J = 8$ $\Gamma\mu$, 6-H)				
XI	3,45		6,60 (1H, м, 4-H); 6,90 (1H, м, 5-H); 7,38 (1H, м, 3-H); 8,00 (1H, м, 6-H)	2,38 (3H, c, C ₂ CH ₃)			
XII	3,95		7,02 (1H, т, <i>J</i> = 6 Гц, 4-H); 7,54 (1H,т, <i>J</i> = 8 Гц, 5-H), 7,96 (2H, м, C ₂ -H + 3-H); 8,90 (1H, д, <i>J</i> = 7 Гц, 6-H)	5,50 (1Н, уш. с, ОН); 12,30 (1Н, уш. с, NН)			
XIII	3,65	8,32	6,40 (1H, μ , $J = 5 \Gamma \mu$, 3-H); 6,85 (1H, τ , $J = 6 \Gamma \mu$, 4-H); 7,15 (1H, τ , $J = 6 \Gamma \mu$, 5-H); 7,76 (1H, μ , $J = 5 \Gamma \mu$, 6-H)	3,42 (3H, c, OCH ₃)			
XIV	3,74			2,41 (3H, c, CCH ₃); 3,32 (3H, c, OCH ₃)			
XV	4,10	8,46	7,12 (1H, т, <i>J</i> = 8 Fц, 4-H); 7,65 (1H, т, <i>J</i> = 8 Fц, 5-H); 8,00 (1H, д, <i>J</i> = 6 Fц, 3-H); 8,95 (1H, д, <i>J</i> = 8 Fц, 6-H)	3,99 (3H, c, OCH ₃); 11,90 (1H, c, NH)			
XVI	4,11	8,45	7,12 (1H, т, <i>J</i> = 6 Гц, 4-H); 7,64 (1H, т, <i>J</i> = 6 Гц, 5-H); 8,00 (1H, д, <i>J</i> = 8 Гц, 6-H); 8,98 (1H, д, <i>J</i> = 8 Гц, 3-H)	1,40 (3H, т, <i>J</i> = 8 Гц, CH ₃ CH ₂); 4,40 (2H, кв, <i>J</i> = 6 CH ₂ CH ₃); 11,91 (1H, уш. с, NH)			

^{*} Спектры сняты в растворах: IV, XV, XVI — ГМП-D18; VI, VII, IX, XI, XII — в ДМФА-D7; X, XIII — в СF3COOD; XIV — в D2SO4.

N-(1-Метил-4-нитроимидазолил-5)- β -аланин (VI). К раствору 1,12 г (0,02 моль) КОН в 100 мл μ -бутанола добавляют 1,78 г (0,02 моль) β -аланина и 1,61 г (0,01 моль) соединения I. Смесь кипятят 2 ч, охлаждают, осадок смеси хлорида калия и калиевой соли кислоты VI отфильтровывают, растворяют в воде и обрабатывают как при получении соединения IV. Выход соединения VI 1.7 г.

N-(1-Метил-4-нитроимидазолил-5) антраниловая кислота (X). Смесь 6,85 г (0,05 моль) антраниловой кислоты, 8,4 г (0,1 моль) NaHCO3 и 50 мл μ -амилового спирта нагревают 30...40 мин при 140...145 °C с насадкой Дина—Старка до окончания отгонки воды. К полученной суспензии натриевой соли антраниловой кислоты добавляют 8,05 г (0,05 моль) соединения I и 1,0 г монохлористой меди. Смесь кипятят 5...6 ч, охлаждают, осадок отфильтровывают, растворяют в воде, фильтруют, фильтрат подкисляют разбавленной HCl до pH 6, осадок отфильтровывают, промывают водой, сушат. Получают 9,2 г соединения X.

Аналогично синтезированы кислоты XI, XII с тем отличием, что соединение XII получено без применения монохлористой меди.

Метиловый эфир N-(1-метил-4-нитроимидазолил-5) антраниловой кислоты (XIII). В суспензию 0.5 г (3.7 ммоль) кислоты X в 40 мл метанола пропускают умеренный ток HCl в течение 1.5 ч. Затем раствор нагревают 2 ч при 50...60 °C, охлаждают, нейтрализуют водным раствором соды до рН 7, растворитель отгоняют в вакууме, твердый остаток промывают водой, сушат. Получают 0.47 г соединения XIII.

Метиловый эфир N-(1,2-диметил-4-нитроимидазолил-5)антраниловой кислоты (XIV). Смесь 2,76 г (0,01 моль) кислоты XI, 3,5 мл (0,04 моль) диметилсульфата и 1,4 г (0,01 моль) безводного поташа в 10 мл ДМФА нагревают 5 ч при 70...80 °C. Реакционную смесь охлаждают, выливают в 100 мл воды, осадок отфильтровывают, промывают водой, сушат. Получают 2,5 г соединения XIV.

Метиловый эфир N-(1-метил-5-нитроимидазолил-4) антраниловой кислоты (XV). А. Смесь $5.2 \, \mathrm{r}$ (0,02 моль) кислоты XII, $4.7 \, \mathrm{mn}$ (0,05 моль) диметилсульфата и $3.5 \, \mathrm{r}$ (0,025 моль) безводного поташа в $150 \, \mathrm{mn}$ ацетона кипятят $5 \, \mathrm{u}$. Горячий раствор фильтруют, фильтрат охлаждают, выделившийся осадок фильтруют, промывают ацетоном, сушат. Получают $2.2 \, \mathrm{r}$ соединения XV. Упариванием маточного раствора и промыванием остатка водой выделяют дополнительно $1.17 \, \mathrm{r}$ соединения XV. Суммарный выход эфира XV $3.37 \, \mathrm{r}$ (61%).

Б. Смесь 0.5 г (1.7 ммоль) калиевой соли кислоты XII, 0.2 мл (3.4 ммоль) иодистого метила и 0.3 г (2 ммоль) безводного поташа в 5 мл безводного ДМФА нагревают 30 мин при 30...40 °C, затем кипятят 30 мин. Реакционную смесь охлаждают, выливают в 50 мл воды, осадок отфильтровывают, промывают водой, сушат. Получают 0.3 г (65%) эфира XV. Проба смешения образцов соединения XV, полученного по методам A и Б, не дает депрессии температуры плавления.

Этиловый эфир N-(1-метил-5-нитроимидазолил-4)антраниловой кислоты (XVI). Смесь 1,0 г (3,3 ммоль) калиевой соли кислоты XII, 0,6 г (4 ммоль) безводного поташа и 0,5 мл (6,6 ммоль) иодистого этила в 10 мл безводного ДМФА нагревают 30 мин при 90 °С (в бане), охлаждают, выливают в 100 мл воды, осадок отфильтровывают, промывают водой, сушат. Получают 0,6 г эфира XVI.

Соединения IV—XVI — желтые кристаллические вещества, трудно растворимые на холоду в воде и в большинстве органических растворителей. Для анализа вещества очищены кристаллизацией из воды (IV—VIII), смеси вода—CH₃COOH (IX, X), смеси вода—ДМ Φ A (XI, XII), метанола (XIII) и ацетона (XIV—XVI).

СПИСОК ЛИТЕРАТУРЫ

- Кочергин П. М., Резниченко Л. А., Гирева Р. Н., Александрова Е. В. // ХГС. —1998. № 10. — С. 1346.
- 2. *Машковский М. Д. //* Лекарственные средства. Харьков: Торнинг, 1997. Т. 2. С. 130.
- Shealy Y. F., Strunk R. F., Holum L. B., Montgomery A. // J. Org. Chem. 1961. Vol. 26. P. 2396.
- 4. Гирева Р. Н., Алешина Г. А., Мальцева Л. Ф., Михайлова Т. В., Петрова О. Н. // Хим.-фарм. журн. 1968. № 9. С. 39.

- 5. Мокрушин В. С., Нифонтов В. И., Пушкарева З. В., Офицеров В. И. // XГС. 1971. № 10. С. 1421.
- 6. Гирева Р. Н., Алешина Г. А., Резниченко Л. А., Кочергин П. М. // Хим.-фарм. журн. 1974. № 11. С. 25.
- 7. Гирева Р. Н., Алешина Г. А., Резниченко Л. А., Зыкина Г. В., Мальцева Л. Ф., Кочергин П. М. // Хим.-фарм. журн. 1976. № 9. С. 48.
- 8. Sunjic V., Faidiga T., Japel M. // J. Heterocycl. Chem. 1970. Vol. 7. P. 211.
- 9. А. с. 384822 СССР / П. М. Кочергин, В. С. Корсунский, В. С. Шлихунова // Б. И. 1973. № 25. С. 81.
- 10. А. с. 455277 СССР / В. С. Корсунский, П. М. Кочергин, В. С. Шлихунова // Б. И. 1996. № 7. С. 278.
- Mroczkeiwicz A. // Acta Polon. Pharm. 1984. Vol. 41. P. 435; C. A. 1985. Vol 103. 104886.
- 12. Корсунский В. С., Кочергин П. М., Шлихунова В. С. // Хим.-фарм. журн. 1989. № 2. С. 249.
- 13. Кочергин П. М., Цыганова А. М., Шлихунова В. С. // Хим.-фарм. журн. 1968. № 10. С. 22.
- 14. Кочергин П. М. // ХГС. 1965. № 5. С. 761.

Центр по химии лекарственных средств — Всероссийский научно-исследовательский химико-фармацевтический институт, Москва 119815

Поступило в редакцию 01.12.97

Новокузнецкий научно-исследовательский химико-фармацевтический институт, Новокузнецк 654034, Россия

Запорожский государственный медицинский университет, Запорожье 330074, Украина