

Синтез фторсодержащих бис(пиразолил)сульфонов из бис(2-полифторалкил-2-фторалкенил)сульфонов и диазометана

Ярослав С. Бородкин¹, Эдуард Б. Русанов¹, Александр И. Хижан^{2,3}, Юрий Г. Шермолович¹*

- ¹ Институт органической химии НАН Украины, ул. Мурманская, 5, Киев 02660, Украина; e-mail: sherm@ioch.kiev.ua
- ² НПО "Енамин",

ул. Красноткацкая, 78, Киев 02094, Украина; e-mail: khyzhan@gmail.com

³ Институт физико-органической химии и углехимии им. Л. М. Литвиненко НАН Украины, Харьковское и., 50, Киев 02160, Украина Поступило 30.05.2019 Принято 8.07.2019

Реакции диазометана с бис(2-полифторалкил-2-фторалкенил) сульфонами сопровождаются дегидрофторированием и приводят к образованию новых биспиразолилсульфонов, содержащих полифторалкильные заместители в положении 4 пиразольных циклов. Строение четырех новых сульфонов подтверждено данными рентгеноструктурного анализа.

Ключевые слова: диазометан, дивинилсульфиды, 1-метил-4-полифторалкилпиразолы, фторсодержащие дивинилсульфоны, дегидрофторирование.

Недавно мы сообщили о синтезе новых типов фторсодержащих бис(винил)сульфидов 1 и сульфонов 2, содержащих фрагмент CH=CF(Alk_F)¹ (схема 1).

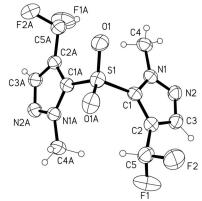
$$R_{F} = H(CF_{2}), \mathbf{b} \ R_{F} = H(CF_{2})_{3}, \mathbf{c} \ R_{F} = H(CF_{2})_{5}$$

Наличие в молекулах сульфидов и сульфонов двух винильных фрагментов, содержащих активированную двойную связь С=С, позволяет предположить, что эти соединения могут быть использованы для синтеза различных бисгетероциклов. В качестве метода синтеза этих соединений могут быть использованы, например, реакции циклоприсоединения дивинилсульфонов с 1,3-диполями различной природы. Следует отметить, что разработке методов синтеза метиленпроизводных

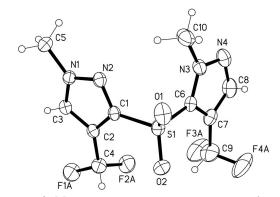
бисгетероциклов в последнее время уделяется достаточно большое внимание, что связано с возможностью их использования в качестве лигандов для получения металлоорганических катализаторов. Гораздо меньше известно о соединениях, содержащих два гетероциклических фрагмента, связанных атомом серы в различном валентном состоянии. О синтезе первых бис(пиразолил)сульфидов и сульфонов сообщалось в публикациях середины прошлого века.

Учитывая то обстоятельство, что изучению методов синтеза, химических и биологических свойств фторсодержащих пиразолов уделяется большое внимание, в настоящей работе мы исследовали реакции фторированных дивинилсульфонов 2 с диазометаном.

Мы обнаружили, что дивинилсульфоны 2 реагируют с диазометаном в CH_2Cl_2 при комнатной температуре с образованием смеси изомерных N-метилпиразолов 3 и 4, отличающихся расположением метильных групп у атомов азота (схема 2). В случае всех трех исследованных дивинилсульфонов $2\mathbf{a}-\mathbf{c}$ преобладающим является образование симметричных биспиразолов $3\mathbf{a}-\mathbf{c}$. По данным спектроскопии \mathbf{SMP} ¹⁹F реакционных


Схема 2
$$R_F$$
 R_F R

смесей, соотношение изомерных продуктов составляет 1:0.5 (соединения **3**, **4 a**), 1:0.7 (соединения **3**, **4 b**) и 1:0.6 (соединения **3**, **4 c**). Для полного превращения исходного сульфона в конечные продукты необходимо использовать мольное соотношение реагентов не менее 1:7 (полифторалкилсульфон: диазометан). Строение соединений **3a**,**b** и **4a** было доказано методом рентгеноструктурного анализа (рис. 1–3).


Во всех исследованных соединениях длины связей и валентные углы в пиразольных циклах не имеют особенностей, а сами они планарны. Все длины связей в пиразольных циклах лежат в узких диапазонах и фактически совпадают в пределах ошибки эксперимента, например, длины связей N–N в пиразольных циклах лежат в диапазоне 1.341–1.349 Å. Геометрия атомов серы в исследованных соединениях обычна для сульфонов, и в целом длины связей и валентные углы находятся в очень узком диапазоне значений. Так длины связей С–S и O=S находятся в диапазоне 1.750–1.759 и 1.425–1.433 Å соответственно, а значения углов С–S–С и O–S–О находятся в диапазоне 105.00–106.14 и 119.55–120.54° соответственно.

Строение остальных соединений 3c, 4b,c доказано сравнением их спектров $\rm ЯМР^{-1}H$ и ^{13}C со спектрами соединений 3a,b и 4a установленного строения. Указанные спектры демонстрируют полное подобие. В спектрах $\rm ЯМР^{-1}H$, ^{13}C и ^{19}F несимметричных биспиразолов 4a—c наблюдаются двойные наборы близко расположеных сигналов соответствующих ядер.

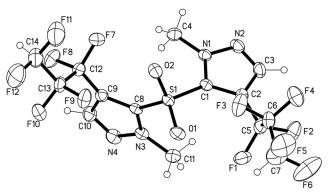
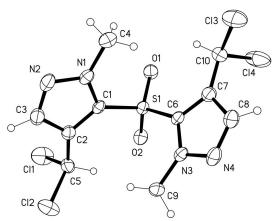

Следует отметить, что, в отличие от сульфонов 2а-с, дивинилсульфиды 1а-с не реагируют с диазометаном в аналогичных условиях. Более высокая реакционная способность сульфонов связана с электроноакцепторным влиянием сульфонильной группы, повышающей СН-кислотность исходных или промежуточных продуктов реакции и облегчающей отщепление фтористого водорода. Можно предложить две схемы образования конечных продуктов: а) первоначальное присоединение диазометана по двойной связи С=С дивинилсульфона 2 с образованием пиразолина 5 и последующее отщепление от него фтористого водорода, ведущее к образованию пиразола 7, или б) первоначальное отщепление фтористого водорода от молекулы дивинилсульфона 2 и образование диацетиленсульфона 6 с последующим присоединением диазометана и образованием такого же пиразола 7 (схема 3). Пиразолы 7 метилируются при действии избытка

Рисунок 1. Молекулярная структура соединения **3а** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью.

Рисунок 2. Молекулярная структура соединения **4а** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью.

Рисунок 3. Молекулярная структура соединения **3b** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью.

диазометана. В настоящее время мы не можем отдать предпочтение ни одному из приведенных путей. Указанные превращения протекают быстро и при попытках контроля реакции методом спектроскопии ЯМР ¹⁹F реакционных смесей мы фиксируем только сигналы исходных и конечных продуктов.


Химия и применение комплексных металлоорганических соединений, в которых в качестве лигандов используются пиразолы, интенсивно изучаются. Наиболее часто при этом используются соли меди, никеля, цинка, платины, титана и некоторых других

металлов. ⁵ Достаточно неожиданный результат мы получили при исследовании возможности образования комплексов биспиразолилсульфонов **3** и **4** с TiCl₄ (схема 4). Оказалось, что результат реакции зависит исключительно от длины полифторалкильного заместителя. В то время как соединения **3b,c**, **4b,c** не реагируют с TiCl₄ при комнатной температуре, соединения **3a**, **4a** в аналогичных условиях легко превращаются в биспиразолилсульфоны **8**, **9**, содержащие дихлорметильные группы. Строение соединения **8** было подтверждено методом PCA. Замена группы CHF₂ на группу CHCl₂ не только не приводит к изменению геометрических параметров самих пиразольных циклов, но и не влияет на длины связей С—CHal₂.

Схема 4

Причина столь легкого протекания обмена галогенами в дифторметильной группе пока неясна. Можно предположить только, что этому способствует первоначальное образование комплексного соединения, в котором обмен фтора на хлор облегчается.

Следует отметить, что подобного обмена не происходит при действии тетрахлорида титана на гетероциклы других классов 10a,b, которые были получены нами ранее 1,6 (схема 5).

Рисунок 4. Молекулярная структура соединения **8** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью.

Таким образом, в данной работе предложен метод синтеза новых 5,5'-сульфонилбис(1-метил-1*H*-пиразолов), содержащих полифторалкильные или дихлорметильный заместители в положении 4 пиразольного цикла.

Экспериментальная часть

Спектры ЯМР ¹Н зарегистрированы на спектрометре Bruker Avance 400 (400 МГц) в CDCl₃, внутренний стандарт ТМС. Спектры ЯМР 13С записаны на спектрометре Bruker Avance 500 (126 МГц) в CDCl₃, химические сдвиги приведены относительно сигналов растворителя (б 77.2 м. д.). Сигналы ядер углерода отнесены с помощью метода APT. Спектры ЯМР ¹⁹F зарегистрированы на спектрометре Bruker Avance-400 (377 МГц), внутренний стандарт C_6F_6 (δ_F –162.9 м. д.). Массспектры HPLC/MS соединений записаны на приборе Agilent 1100, оснащенном диодно-матричным и массселективным детектором Agilent LC/MSD SL, ионизация электрораспылением при атмосферном давлении (70 эВ). Масс-спектр (GC/MS) соединения **3a** записан на приборе HewlettPackard 5890/5972 (ионизация ЭУ, 70 эВ). Масс-спектры соединений 3с и 8 записаны на масс-спектрометре VG7070, ионизация – пучком атомов аргона с энергией 8 кэВ (FAB), в качестве матрицы использован 3-нитробензиловый спирт. Элементный анализ выполнен методом экспрессгравиметрии (С, Н), методом сожжения по Шенигеру (S) и методом Дюма-Прегля (N). Температуры плавления определены на приборе Boetius. Для колоночной хроматографии (диаметр колонки 2 см, длина колонки 30 см) использован силикагель марки Merck 60 (70–230 мкм). Для тонкослойной хроматографии использованы пластины марки Macherey-Nagel, Polygram Sil G/UV254.

Все растворители предварительно высушены и перегнаны согласно стандартным методикам. Диазометан получен из нитрозометилмочевины по литературному методу 7 с использованием метил-*трем*бутилового эфира.

Синтез бис(пиразолил)сульфонов 3, 4 а-с (общая методика). К охлажденным до 0 °C 0.07 моль 0.9 М раствора диазометана в метил-*трет*-бутиловом эфире по каплям добавляют 0.01 моль раствора дивинилсульфона 2а-с в CH₂Cl₂ с такой скоростью, чтобы температура реакционной смеси не превышала 5 °C. Смесь перемешивают в течение 2 ч при температуре 0-5 °C и далее еще 12 ч при температуре 20 °C. Реакционную смесь фильтруют и фильтрат упаривают при пониженном давлении (10–20 мм рт. ст.). Остаток очищают методом колоночной хроматографии на силикагеле, элюент EtOAc-гексан, 4:6.

5,5'-Сульфонилбис[4-(дифторметил)-1-метил-1*Н***-пиразол]** (**3a**). Выход 0.56 г (17%), светло-желтые кристаллы, т. пл. 130–131 °C (СНСІ₃), $R_{\rm f}$ 0.74. Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 7.85 (2H, c, –СН=); 7.16 (2H, д, J = 54.7, СНГ₂); 3.95 (6H, c, 2CH₃). Спектр ЯМР ¹³С, δ , м. д. (J, Γ ц): 39.2 (NCH₃); 108.9 (т, J = 234.3, CHF₂); 122.3 (т, J = 30.3, \underline{C} CHF₂); 135.1 (т, J = 7.0, CSO₂); 137.0 (т, J = 4.0, CH=N). Спектр ЯМР ¹⁹F, δ , м. д. (J, Γ ц): 110.25 (д, J = 54.7, CHF₂). Масс-спектр, m/z ($I_{\rm OTH}$, %): 326 [М]⁺ (25), 103 (100). Найдено, %: С 36.64; H 3.01; N 17.07; S 9.69. С₁₀H₁₀F₄N₄O₂S. Вычислено, %: С 36.81; H 3.09; N 17.17; S 9.83.

4-(Дифторметил)-3-{[4-(Дифторметил)-1-метил-1*Н*-пиразол-5-ил]сульфонил}-1-метил-1*Н*-пиразол (4а). Выход 0.20 г (6%), светло-желтые кристаллы, т. пл. 69–70 °C (CHCl₃), $R_{\rm f}$ 0.64. Спектр ЯМР ¹H, δ , м. д. (J, Γ II): 7.74 (2H, c, -CH=); 7.70 (2H, c, -CH=); 7.10 (2H, т. д, J = 56.0, J = 16.0, CHF₂); 4.24 (3H, c, NCH₃); 3.95 (3H, c, NCH₃). Спектр ЯМР ¹³С, δ , м. д. (J, Γ II): 39.8 (NCH₃); 40.6 (NCH₃); 109.1 (т. д, J = 235.6, J = 6.8, CHF₂); 119.9 (д. т, J = 304.9, J = 30.2, \underline{C} CHF₂); 134.2 (д. т, J = 598.5, J = 3.8, CSO₂,); 139.7 (т, J = 7.2, CH=N); 147.4 (т, J = 6.3, CH=N). Спектр ЯМР ¹⁹F, δ , м. д. (J, Γ II): 110.25 (д. д, J = 56.4, CHF₂). Масс-спектр, m/z (I_{отн}, %): 327 [M+H]⁺ (100). Найдено, %: С 36.71; H 2.98; N 17.02; S 9.72. СI₁₀H₁₀F₄N₄O₂S. Вычислено, %: С 36.81; H 3.09; N 17.17; S 9.83.

5,5'-Сульфонилбис[4-(1,1,2,2,3,3-гексафторпропил)-1-метил-1*H***-пиразол] (3b)**. Выход 2.16 г (41%), бесцветные кристаллы, т. пл. 76–78 °C (CHCl₃), $R_{\rm f}$ 0.71. Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 7.67 (2H, c, –CH=); 5.98 (2H, т. т, J = 52.0, J = 4.0, CHF₂); 4.20 (6H, c, 2CH₃). Спектр ЯМР ¹³С, δ , м. д. (J, Γ ц): 41.7 (NCH₃); 107.7 (т. т, J = 254.5, J = 31.5, CHF₂); 113.5 (т, J = 29.0, CF₂); 113.6 (д. т, J = 252.0, J = 32.8, \underline{C} CF₂); 138.3 (c, CSO₂); 138.5 (т, J = 25.2, CH=N). Спектр ЯМР ¹⁹F, δ , м. д.

 $(J, \Gamma_{\rm II})$: 137.77 (д. д, $J=52.6, J=6.0, {\rm CHF_2}$); 129.67 (д, $J=6.2, {\rm CF_2}$); 104.42 (т, $J=8.6, {\rm CF_2}$). Масс-спектр, m/z ($I_{\rm OTH}$, %): 527 [M+H]⁺ (100). Найдено, %: С 31.22; Н 1.72; N 10.14; S 5.95. $C_{14}H_{10}F_{12}N_4O_2S$. Вычислено, %: С 31.95; Н 1.92; N 10.65; S 6.09

4-(1,1,2,2,3,3-Гексафторпропил)-3-{[4-(1,1,2,2,3,3-гексафторпропил)-1-метил-1*H*-пиразол-5-ил|сульфонил}-**1-метил-1***H***-пиразол (4b)**. Выход 1.68 г (32%), бесцветная жидкость, $R_{\rm f}$ 0.42. Спектр ЯМР ¹H, δ , м. д. (J, Γ ц): 7.77 (2H, c, -CH=); 7.74 (2H, c, -CH=); 6.19 (1H, T. T, $J = 52.0, J = 8.0, \text{CHF}_2$; 6.14 (1H, T. T, J = 52.0, J = 4.0, СНГ₂); 4.24 (3H, c, NCH₃); 3.94 (3H, c, NCH₃). Спектр ЯМР ¹³С, б, м. д. (*J*, Гц): 40.4 (NCH₃); 41.2 (NCH₃); 107.7 (т. т. J = 124.7, J = 30.2, CHF₂); 110.5–115.5 (м. $C(CF_2)_2$; 133.7 (T, J = 6.3, CH=N); 137.5 (c, CSO₂); 138.5 (T, J = 6.3, CH=N); 149.7 (c, CSO₂). Спектр ЯМР ¹⁹F, δ , м. д. (J, Γ ц): 137.27–137.79 (м, CHF_2); 130.10 (д. д, J = 96.8, J = 20.9, CF₂); 103.14 (д. д. J = 79.1, J = 21.1, CF₂). Масс-спектр, m/z ($I_{\text{отн}}$, %): 527 [M+H]⁺ (100). Найдено, %: С 31.47; Н 1.81; N 10.12; S 6.02. С₁₄H₁₀F₁₂N₄O₂S. Вычислено, %: С 31.95; H 1.92; N 10.65; S 6.09

5,5'-Сульфонилбис[4-(1,1,2,2,3,3,4,4,5,5-декафтор-пентил)-1-метил-1*H***-пиразол]** (**3c**). Выход 4.36 г (60%), желтая жидкость, $R_{\rm f}$ 0.8. Спектр ЯМР 1 H, δ , м. д. (J, Γ II): 7.70 (2H, c, -CH=); 5.99 (2H, т. т, J = 52.0, J = 4.0, CHF₂); 4.27 (6H, c, 2CH₃). Спектр ЯМР 13 C, δ , м. д. (J, Γ II): 41.9 (NCH₃); 108.1–112.9 (м, Γ CF₂CHF₂); 113.3 (т, Γ J = 30.2, CF₂); 113.9 (т, Γ J = 34.0, Γ CF₂); 115.0 (т, Γ J = 30.0, CF₂); 115.9 (т, Γ J = 34.0, CF₂); 128.2 (C=N); 129.0 (C=N); 138.5–138.6 (м, CSO₂). Спектр ЯМР 19 F, δ , м. д. (Γ J, Γ II): 137.67 (д. д, Γ J = 36.5, Γ J = 17.5, CHF₂); 130.26 (д, Γ J = 38.7, CF₂); 123.70 (д, Γ J = 44.6, CF₂); 121.79 (д, Γ J = 44.6, CF₂); 103.91 (д, Γ J = 41.7, CF₂). Массспектр, Γ J/2 (Γ J/3, Γ 1, Γ 3; N 7.65; S 4.37. Γ 1, Γ 3, Γ 4, Γ 4, Γ 5, Γ 5, Γ 5, Γ 7, Γ 7, Γ 7, Γ 7, Γ 8, Γ 9, Γ 9,

4-(1,1,2,2,3,3,4,4,5,5-Декафторпентил)-3-{[4-(1,1,2,2,3,3,4,4,5,5-декафторпентил)-1-метил-1*H*-пиразол-5-ил|сульфонил}-1-метил-1*H*-пиразол (4c). Выход 1.09 г (15%), желтая жидкость, $R_{\rm f}$ 0.42. Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 7.74 (2H, c, -CH=); 7.71 (2H, c, -CH=); 5.99 (2H, T, J = 52.0, CHF₂); 4.23 (3H, c, NCH₃); 3.91 (3H, c, NCH₃). Спектр ЯМР ¹³С, δ, м. д. (*J*, Гц): 40.4 (с, NCH_3); 41.4 (c, NCH_3); 107.6 (T. T, J = 254.52, J = 30.2, CHF₂); 109.4-111.7 (M, CF₂CF₂); 113.5 (T, J = 32.8, CF₂); 115.0 (T, J = 32.8, CCF_2); 133.9 (T, J = 7.6, CH=N); 137.9 (c, $\underline{C}CF_2$); 138.6 (T, J = 6.3, CH=N); 149.8 (c, CSO_2). Спектр ЯМР 19 F, δ , м. д. $(J, \Gamma_{\rm H})$: 138.37 (д, J=50.8, CHF_2); 130.87 (д, J = 43.2, CF_2); 124.02 (д, J = 41.4, CF₂); 121.78 (c, CF₂); 120.98 (c, CF₂); 102.44 (π , J = 95.8, CF₂). Масс-спектр, m/z ($I_{\text{отн}}$, %): 727 [M+H]⁺ (100). Найдено, %: С 29.63; Н 1.30; N 7.61; S 4.31. $C_{18}H_{10}F_{20}N_4O_2S$. Вычислено, %: С 29.77; Н 1.39; N 7.71; S 4.41.

5,5'-Сульфонилбис[4-(дихлорметил)-1-метил-1*Н***-пиразол] (8)**. К раствору 0.16 г (0.5 ммоль) биспиразола **3а** в 10 мл CH_2Cl_2 медленно добавляют в токе аргона при 20 °C и перемешивании 0.3 г (1.58 ммоль) $TiCl_4$. Смесь перемешивают в течение 2 ч при 20 °C.

Выпавший осадок отфильтровывают и фильтрат упаривают при пониженном давлении (0.1 мм рт. ст.). Сырой биспиразол **8** очищают кристаллизацией. Выход 0.13 г (66%), бесцветные кристаллы, т. пл. 154–155 °C (CHCl₃). Спектр ЯМР ¹H, δ , м. д.: 8.03 (2H, c, –CH=); 7.31 (2H, c, CHCl₂); 3.90 (6H, c, 2CH₃). Спектр ЯМР ¹³C, δ , м. д.: 39.4 (NCH₃); 60.7 (CHCl₂); 128.6 (CCHCl₂); 131.2 (CSO₂); 139.0 (CH=N). Macc-спектр, m/z ($I_{\text{отн}}$, %): 391 [M+H]⁺ (30), 66 (100). Найдено, %: С 30.29; H 2.51; Cl 36.04; N 14.17; S 8.10. $C_{10}H_{10}Cl_4N_4O_2S$. Вычислено, %: С 30.63; H 2.57; Cl 36.17; N 14.29; S 8.18.

4-(Дихлорметил)-3-{[4-(дихлорметил)-1-метил-1*Н***-пиразол-3-ил]сульфонил}-1-метил-1***Н***-пиразол (9)** получают из соединения **4a** согласно методике получения соединения **8**. Выход 0.16 г (83%), бесцветные кристаллы, т. пл. 105–107 °C (МеОН). Спектр ЯМР ¹Н, δ , м. д.: 8.56 (1H, c, –CH=); 8.15 (1H, c, –CH=); 7.57 (2H, д, J=8.0, 2CHCl₂); 4.13 (3H, c, NCH₃); 3.97 (3H, c, NCH₃). Спектр ЯМР ¹³С, δ , м. д.: 40.3 (NCH₃); 40.9 (NCH₃); 62.6 (CHCl₂); 63.0 (CHCl₂); 124.2 (CSO₂); 126.9 (CSO₂); 133.5 (CH=N); 135.4 (CHCl₂); 139.7 (CCHCl₂); 143.4 (CH=N). Найдено, %: C 30.55; H 2.48; Cl 36.11; N 14.15; S 8.08. C₁₀H₁₀Cl₄N₄O₂S. Вычислено, %: C 30.63; H 2.57; Cl 36.17; N 14.29; S 8.18.

Рентгеноструктурное исследование соединений **3а,b**, **4а**, **8** проведено на приборе BRUKER SMART APEX II, результаты расшифрованы прямым методом и уточнены МНК с использованием комплекса программ Bruker SHELXTL. Полные рентгеноструктурные данные депонированы в Кембриджском банке структурных данных (депоненты CCDC 1905703 (соединение **3a**), CCDC 1905701 (соединение **3b**), CCDC 1905702 (соединение **4a**), CCDC 1916209 (соединение **8**).

Файл сопроводительной информации, содержащий подробные данные PCA соединений **3a,b**, **4a**, **8**, доступен на сайте журнала http://hgs.osi.lv.

Элементный анализ синтезированных соединений выполнен в аналитической лаборатории Института органической химии НАН Украины.

Список литературы

- Borodkin, Ya.; Rusanov, E.; Marchenko, A.; Koidan, Yu.; Shermolovich, Yu. J. Sulfur Chem. 2019, 40, 416.
- (a) Braussaud, N.; Rüther, T.; Cavell, K. J.; Skelton, B. W.; White, A. H. Synthesis 2001, 626. (b) Abbotto, A.; Bradamante, S.; Pagani, G. A. J. Org. Chem. 1996, 61, 1761. (c) Dauer, D.-R.; Koehne, I.; Herbst-Irmer, R.; Stalke, D. Eur. J. Inorg. Chem. 2017, 1966. (d) Burling, S.; Field, L. D.; Messerle, B. A. Organometallics 2000, 19, 87. (e) Elgafi, S.; Field, L. D.; Messerle, B. A.; Turner, P.; Hambley T. W. J. Organomet. Chem. 1999, 588, 69.
- 3. (a) Finar, I. L.; Lord, G. H. *J. Chem. Soc.* **1959**, 1819. (b) Grandberg, I. I. *Russ. J. Gen. Chem.* **1961**, *31*, 548. [Журн. общ. химии **1961**, *31*, 548.]
- (a) Kirk, K. L. In Fluorinated Hetrocyclic Compounds; Petrov, V. A., Ed.; A John Wiley & Sons Inc.: Hoboken, 2009, p. 91. (b) Zhou, Yu.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422. (c) Gakh, A. A.; Shermolovich, Yu. Curr. Top. Med. Chem. 2014, 14, 952.
- Pérez, J.; Riera, L. Eur. J. Inorg. Chem. 2009, 4913.
 (b) Ojwach, S. O.; Darkwa, J. Inorg. Chim. Acta 2010, 363, 1947.
- Ogurok, V. M.; Siry, S. S.; Rusanov, E. B.; Vlasenko, Yu. G.; Shermolovich, Yu. G. J. Fluorine Chem. 2016, 182, 47.
- (a) Arndt, F. Org. Syntheses Coll. 1943, 2, 165. (b) Arndt, F. Org. Synth. 1935, 15, 3.
- Sheldrick, G. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.