В. И. Теренин, А. В. Борисов, Е. Л. Ручкина, А. П. Плешкова ДИПИРРОЛО[1,2-а; 2',1'-c]ПИРАЗИНЫ

5*. АЗОСОЧЕТАНИЕ ДИПИРРОЛО[1,2-*a*; 2',1'-*c*]ПИРАЗИНОВ И 5,6-ДИГИДРОДИПИРРОЛО[1,2-*a*; 2',1'-*c*]ПИРАЗИНОВ

Синтезирован ряд не описанных ранее азокрасителей на основе реакции азосочетания алкилзамещенных дипирролопиразинов с арилдиазонийхлоридом. Показано, что для субстратов данного типа, где одно либо оба α -положения пиррольных колец молекулы не заняты заместителями, электрофильная атака первоначально направляется по атому углерода $C_{(3)}$.

Арилазопроизводные дипирролопиразинов формально можно рассматривать как аналоги продигиозинов — природных оранжево-красных пигментов, обладающих антибактериальной и противогрибковой активностью. В связи с этим проявления аналогичной биологической активности следует ожидать как для арилазозамещенных дипирролопиразинов, так и для 5,6-дигидроаналогов. Мы изучили азосочетание 2-метил- и 2,8-диметилзамещенных дипирролопиразинов IIa, б и 5,6-дигидродипирролопиразинов Іа.б. полученных ранее [1-3], с хлористым арилдиазонием. Из литературных источников известно [4, 5], что пирроло [1, 2-b] пиридазины и пирроло [1,2-с] пиримидины вступают в реакцию азосочетания с образованием продуктов замещения по свободному α -углеродному атому с выходами 50...70%. Так как диазосоставляющая является довольно слабым электрофилом, то азосоставляющая должна быть довольно реакционноспособной в реакциях электрофильного замещения. Некоторые субстраты, например пирроло [1,2-а] пиразин, не вступают в реакцию азосочетания и оказываются устойчивыми к замещению слабыми электрофильными агентами [6]. В противоположность пирроло [1,2-а] пиразинам, бициклическим аналогам дипирроло [1,2-a; 2',1'-c] пиразинов, последние легко вступают в реакцию данного типа. Азосочетание соединений [a,b], [a,b] с солями хлористого арилдиазония идет при комнатной температуре с образованием соответствующих арилазосоединений с выходами 41...92%.

Было показано, что заместитель в *пара*-положении бензольного ядра диазосоставляющей влияет на окраску конечных продуктов реакции азосочетания: в ряду арилазопроизводных III или IV наблюдается изменение окраски от оранжевой до фиолетовой в соответствии с увеличением протяженности цепи сопряжения в данных гетероциклических системах. В УФ спектрах длинноволновые полосы поглощения для соединений IIIа и III6 находятся примерно в одной области при 488 и при 492 нм соответственно, в то же время для соединения IIIв, как и следовало ожидать, наблюдается довольно сильный батохромный сдвиг на 73...77 нм.

Азосочетание дипирролопиразинов Ia, IIa с арилдиазонийхлоридом, где R = H или $R = OCH_3$, проводится с применением метода прямого прибавления, тогда как для *пара*-нитрофенилдиазонийхлорида выход продуктов реакции выше при использовании метода обратного прибавления.

^{*} Сообщение 4 см. [1].

III—IVa X = H, $\delta X = OCH_3$, $B X = NO_2$

Спектры ЯМР ¹Н соединений IIIа—в фиксируют характерные сигналы 9-Н, 1-Н, 10-Н в районе 5,97...6,04; 6,26...6,38 и 6,38...6,53 м. д. соответственно. Однако ссли для соединений IIIа и III6 с фенилазо- и пара-метоксифенилазозаместителями в положении 3 пиррольного фрагмента сигналы протонов пиразинового ядра и протона 10-Н имеют нормальную форму и мультиплетность, то для 3-(пара-нитрофенилазо)-5,6-дигидропирролопиразина IIIв сигналы протонов 10-Н и 6-Н имеют форму широкого

$$MeO$$
— $N=N$ — Me N — Me —

						,	,	
Соеди- нение	Брутто- формула	<u>Найлено, %</u> Вычислено, %			M ⁺	T _{ILII} , °C	Суб- страт/реа- гент,	Выход, %
	1 1-3	С	Н	N			ммоль	į
IIIa*	C18H18N4	74,84 74,50	<u>6,36</u> 6,20		290	144146	1:1	41
шб*	C19H20N4O	71.80 71,25	6,37 6,25	17.60 17,50	320	139140	1:1	76
Шв*	C ₁₈ H ₁₇ N ₅ O ₂	65,15 64,47	5,50 5,07		٠.	180182	1:1	65
IVa	C ₁₈ H ₁₆ N ₄	74,72 75,00	<u>5,59</u> 5,55	19,53 19,40	288	145147	1:1	73
IVб	C19H18N4O	71.56 71,69	<u>5,60</u> 5,66	17,56 17,61		165170	1:1	75
IVв	C ₁₈ H ₁₅ N ₅ O ₂				333	_* 2	1:1	72
v	C ₁₈ H ₁₈ N ₄ O				306	8890	1:1	91
VI	C25H24N6O2				440	215	1:2	82
VII	C ₁₈ H ₁₆ N ₄ O				304	7580	1:1	92
VIII	C25H22N6O2	69,92 68,49	5,36 5,02	19,11 19,17	438	220225	1:2	50

^{*} YO CHEKIDЫ, λ_{max} (ig \mathcal{E}): IIIa 488 (4,52), 295 (4,09); III6 492 (4,59), 300(4,13), 235 (4,01); IIIB 565 (4,48), 384 (4,08), 304 (3,97), 268 HM (3,92).

*2 Соединение IVв в индивидуальном виде выделить не удалось.

синглета, а сигналы протонов в положении 5 пиразинового ядра становятся неэквивалентными и находятся при 4,59 и 5,00 м. д.

Для 2,8-диметил-3-арилазодипирролопиразинов IVа—в с двойной связью между атомами углерода $C_{(5)}$ — $C_{(6)}$ в спектрах ПМР высокого разрешения наблюдается следующая закономерность: протоны пиразинового ядра при атоме углерода $C_{(5)}$ имеют форму уширенного синглета, хотя при этом протоны при соседнем атоме $C_{(6)}$ имеют форму дублета с КССВ 6,3 Гц.

При взаимодействии 2-метилзамещенных субстратов Іб и ІІб, где оба α-положения пиррольных колец молекулы свободны для электрофильной атаки, с эквимолярным количеством арилдиазонийхлорида с высокими выходами образуются 3-арилазозамещенные производные V и VII, при увеличении количества реагента в 2 раза электрофильное замещение идет с образованием 3,8-дизамещенных производных VI и VIII.

Таким образом, в случае реакции азосочетания аналогично другим реакциям электрофильного замещения в ряду алкилзамещенных дипирролопиразинов и их 5,6-дигидроаналогов, где одно или оба α -положения пиррольных колец молекулы не заняты заместителями, электрофильная атака первоначально направляется по атому углерода $C_{(3)}$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР соединений III—VIII в CDCl₃ зарегистрированы на приборе Varian VXR-400, внутренний стандарт ТМС. Масс-спектры соединений IIIа,б, IVa,в, V—VIII записаны на приборе Kratos MS-90 при энергии ионизации 70 эВ, УФ спектры — на спектрофотометре Varian Cary 219 в CH₂Cl₂. Контроль за ходом реакции осуществляли методом ТСХ на пластинах Silufol UV-254.

Выходы, константы и соотношение субстрат—реагент всех синтезированных соединений приведены в табл. 1, спектры ПМР — в табл. 2.

2,8-Диметил-5,6-дигидродипирроло $[1,2-a;\ 2',1'-c]$ пиразин (Ia), 2-метил-5,6-дигидродипирроло $[1,2-a;\ 2',1'-c]$ пиразин (Ib), 2,8-диметилдипирроло $[1,2-a;\ 2',1'-c]$ пиразин (IIa), 2-метилдипирроло $[1,2-a;\ 2',1'-c]$ пиразин (II6) синтезированы по методике [2].

Спектры ПМР синтезированных соединений (δ , м. д., J, Γ ц)

		· · · · · · · · · · · · · · · · · · ·					
Соеди- нение		Протоны пиразинового ядра					
	1-H	2-R	3-R	8-R(H)	9-H	10-H	
IIĮa	6,29 уш. с	2,47 уш. с (3H)	7,27 м (1H, p-H) 7,43 м (2H, m-H) 7,75 м (2H, o-H)	2,31 c (3H)	$6,00$ д $J_{910} = 3,6$	$6,42$ д $J_{109} = 3,6$	4,80 м (2H, 5-CH ₂) 4,10 м (2H, 6-CH ₂)
Шб	6,26 уш. с	2,44 уш. с (3H)	3,86 с (<i>p</i> -ОСН ₃) 6,94 м (2H, <i>o</i> -H) 7,71 м (2H, <i>m</i> -H)	2,28 c (3H)	$5,97$ д $J_{910} = 3,6$	$6,38$ д $J_{109}=3,6$	4,72 м (2H, 5-CH ₂) 4,08 м (2H, 6-CH ₂)
IIIB	6,38 уш. с	2,47 уш. с (3H)	7,76 m (2H, o-H) 8,25 m (2H, m)	2,32 д (3Н)	6,04 д. к J ₉₁₀ = 3,0 J _{H,CH3} = 0,9	6,54 уш. с	4,59 уш. с (1H, 5-H) 5,00 уш. с (1H, 5-H) 4,11 уш. с (2H, 6-CH ₂)
IVa	6,54 с	2,58 c (3H)	7,28 м (1H, <i>p</i> -H) 7,44 м (2H, <i>m</i> -H) 7,79 м (2H, <i>o</i> -H)	2,45 д (3Н)	$\begin{vmatrix} 6,41 & \text{д. к } J_{910} = 3,7 \\ J_{H,CH3} = 0,8 \end{vmatrix}$	$6,67$ д $J_{109} = 3,7$	8,80 уш. с (1H, 5-H) 7,08 д (1H, 6-H) J ₆₅ = 6,3
IVб	6,52 к	$2,57$ д (3H) $J_{\text{CH3,H}} = 0,6$	3,87 с (p-OCH ₃) 6,97 м (2H, o-H) 7,77 м (2H, m-H)	$2,45$ д (3H) $J_{\text{CH3,H}} = 0,7$	6,39 д. к J ₉₁₀ = 3,7 J _{H,CH3} = 0,7	$6,64 \text{ д } J_{109} = 3,7$	8,71 уш. с (1H, 5-H) 7,07 д (1H, 6-H) J ₆₅ = 6,3
IVв	6,32 уш. с	2,69 уш. с (3H)	7,81 м (2H, <i>o</i> -H) 8,27 м (2H, <i>m</i> -H)	2,50 c (3H)	$6,19$ д $J_{910} = 3,5$	$6,35$ д $J_{109} = 3,5$	9,21 уш. с (1H, 5-H) 7,21 д (1H, 6-H) J ₆₅ = 5,9
v	6,32 д J _{H,CH3} = 0,86	2,44 уш. с (3H)	3,84 с (<i>p</i> -ОСН ₃) 6,94 м (2H, <i>o</i> -H) 7,72 м (2H, <i>m</i> -H)	$6,70$ д. д $J_{89} = 2,65$ $J_{810} = 1,45$	$\begin{vmatrix} 6,23 \text{ д. д.} & J_{910} = 3,6 \\ J_{98} = 2,14 \end{vmatrix}$		4,72 м (2H, 5-CH ₂) 4,20 м (2H, 6-CH ₂)
VI	$6,45 \text{ g}$ $J_{H,CH3} = 0,92$	2,46 уш. с (3H)	3,874 с (<i>p</i> -ОСН ₃) 6,97 м (2H, <i>o</i> -H) 7,79 м (2H, <i>m</i> -H)	3,877 с (<i>p</i> -ОСН ₃) 6,97 м (2H, <i>o</i> -H) 7,79 м (2H, <i>m</i> -H)	6,81 д Ј910 = 4,2	$6,59$ д $J_{109} = 4,2$	4,71 м (2H, 5-CH ₂) 4,81 м (2H, 6-CH ₂)
VII	6,55 уш. с	2,57 уш. с (3H)	3,87 с (<i>p</i> -ОСН ₃) 6,97 м (2H, <i>o</i> -H) 7,78 м (2H, <i>m</i> -H)	7,14 д. д $J_{89} = 2,74$ $J_{810} = 1,65$	6,63 д. д J ₉₁₀ = 3,9 J ₉₈ = 2,74	$\begin{vmatrix} 6,69 & д. & д. & д & J_{109} = \\ 3,9 & J_{108} = 1,65 \\ J_{106} = 0,67 \end{vmatrix}$	8,65 уш. с (1H, 5-H) 7,19 д. д (1H, 6-H) J ₆₅ = 6,2; J ₆₁₀ = 0,67
VIII	6,71 c	2,61 c (3H)	3,888 с (<i>p</i> -ОСН ₃) 7,01 м (2H, <i>o</i> -H) 7,84 м (2H, <i>m</i> -H)	3,891 с (<i>p</i> -ОСН ₃) 7,01 м (2H, <i>o</i> -H) 7,84 м (2H, <i>m</i> -H)	7,18 д Ј910 = 4,25	$6,85$ д $J_{109} = 4,25$	$\begin{vmatrix} 8,33 \text{ д (1H, 5-H)} & 8,80 \text{ д} \\ (1H, 6-H) & J_{65} = 6,1 \end{vmatrix}$

Арилазопроизводные 5,6-дигидродипирроло [1,2- α ; 2',1'-c] пиразинов IIIа—в, V, VI и дипирроло [1,2- α ; 2',1'-c] пиразинов IVа—в, VII, VIII. К раствору 1 ммоль 5,6-дигидродипирроло [1,2- α ; 2',1'-c] пиразина Ia,6 или дипирроло [1,2- α ; 2',1'-c] пиразина IIa,6 в 30 мл метанола при комнатной температуре при перемешивании постепенно добавляют предварительно нейтрализованный до рН \sim 6 раствор хлористого арилдиазония, приготовленного обычным способом. Для получения соединений IIIв—IVв используется метод обратного прибавления [7]. После окончания прибавления реакционную смесь оставляют на ночь, затем выделяют по одному из указанных ниже методов.

- А. Реакционную смесь разбавляют в несколько раз водой до осаждения продукта реакции, осадок отфильтровывают, растворяют в бензоле, маточный раствор несколько раз экстрагируют бензолом, сушат молекулярными ситами ЗА. Обобщенный бензольный раствор упаривают и хроматографируют на колонке с силикагелем, элюент бензол (для соединения IIIа) либо перекристаллизовывают из метанола (для соединения IVв).
- **Б.** Реакционную смесь упаривают, затем хроматографируют на колонке с силикагелем, элюент бензол.
- В. Реакционную смесь упаривают, экстрагируют несколькими порциями горячего бензола, отфильтровывают неорганический остаток, упаривают.

Соединения IIIа, IVв выделяют по методу A, соединения IIIб,в — по методу Б, соединения IVa,б и V—VIII — по методу B.

Работа выполнена при финансовой поддержке РФФИ (грант № 96-03-32157a).

СПИСОК ЛИТЕРАТУРЫ

- 1. Теренин В. И., Ручкина Е. Л., Плешкова А. П., Бундель Ю. Г. // ХГС. 1998. № 7. С. 949.
- 2. Теренин В. И., Ручкина Е. Л., Карапетян К. В., Мамаев В. М., Бундель Ю. Г. // ХГС. 1995. № 11. С. 1566.
- 3. Теренин В. И., Ручкина Е. Л., Лещева И. Ф., Плешкова А. П., Бундель Ю. Г. // ХГС. 1997. № 1. С. 52.
- 4. Zupan M., Stanovnic B., Tisler M. // J. Heterocycl. Chem. 1971. Vol. 8. P. 1.
- 5. Taylor J., Wibberley D. G. // J. Chem. Soc. (C). 1968. N 21. P. 2693.
- 6. Buchan R., Fraser M., Kong Thoo Lin P. V. S. // J. Org. Chem. 1989. Vol. 54. P. 1074.
- Юрьев Ю. К. // Практические работы по органической химии. 1964. Вып. І и П. С. 170.

Московский государственный университет им. М. В. Ломоносова, Москва 119899, Россия e-mail: vter@org.chem.msu.ru Поступило в редакцию 23.02.98