T. E. Glotova¹, D. A. Shabalin¹, M. Yu. Dvorko¹, I. A. Ushakov¹, E. Yu. Schmidt¹, A. V. Ivanov¹, A. I. Mikhaleva¹, B. A. Trofimov^{1*}

ONE-POT ASSEMBLY OF 3,5-BIS(1*H*-PYRROL-2-YL)-4*H*-1,2,4-TRIAZOL-4-AMINES FROM PYRROLECARBONITRILES AND HYDRAZINE

The reaction of pyrrole-2-carbonitriles with hydrazine hydrate in the presence of hydrazine dihydrochloride (ethylene glycol, 130–132°C, 1–2 h, argon atmosphere) affords hitherto unknown 3,5-bis(1*H*-pyrrol-2-yl)-4*H*-1,2,4-triazol-4-amines in up to 86% yield.

Keywords: 3,5-bis(1*H*-pyrrol-2-yl)-4*H*-1,2,4-triazole-4-amines, hydrazine hydrate, 1*H*-pyrrole-2-carbonitriles.

1,2,4-Triazole is known to be a structural unit of diverse pharmaceuticals (Ribavirin, Fluconazole, Triazolam) [1]. Its derivatives exhibit antifungal [2], antimicrobial [3], anti-inflammatory [4], and anticancer [5] activities. Triazoles are widely used in the synthesis of coordination polymers and supramolecules [6, 7] possessing magnetic [8], luminescent [9], and thermochromic [10] properties. 1,2,4-Triazoles substituted at the position 3 or/and 5 by heterocyclic fragments (pyridine, pyrazine, pyrimidine) show the features of multidentate chelating agents [11–13].

The reaction of hydrazine or substituted hydrazines with suitable nitrogencontaining electrophiles is the most common method for the preparation of the triazoles [1]. To synthesize asymmetrically substitutes triazoles, the reactions of hydrazine and its derivatives with acylhydrazides are generally employed [5, 14– 17], while 3,5-symmetrically substituted triazoles are obtained *via* the interaction of hydrazine with carbonitriles [18–21].

To the best of our knowledge, the literature lacks the data on the reaction of pyrrolecarbonitriles with hydrazine and 3,5-bispyrrolyl-1,2,4-triazol-4-amines remain also unknown.

At the same time, the pyrrole structures are frequently met in many biologically and pharmaceutically important compounds [22–24]. Also, they are precursors of optoelectronic materials [25], synthetic metals [26], and sensors [27]. Recently developed convenient method for pyrrole formylation using oxalyl chloride [28] has increases the accessibility of pyrrole-2-carbaldehydes and, hence, pyrrole-2-carbonitriles [29] (prepared therefrom), potential precursors of pyrrole-triazole ensembles.

In the present work, we report on the synthesis of previously unknown 3,5-bis-(1*H*-pyrrol-2-yl)-4*H*-1,2,4-triazole-4-amines **2a**–e. The reaction proceeds under heating of equimolar mixture of pyrrole-2-carbonitriles **1a**–e and hydrazine dihydrochloride with excess of hydrazine hydrate (4 equivalents per 1 equivalent of nitrile **1a**–e) in ethylene glycol (argon atmosphere, 130–132°C, 1–2 h), the yields of aminotriazoles **2a**–e are 51–86%. The conditions found allow the reaction to be directed towards selective formation of triazoles **2a**–e.

Preliminary experiments have shown that the reaction of nitrile 1a with excess of hydrazine hydrate (6 equivalents per 1 equivalent of carbonitrile 1a) in ethanol (argon atmosphere, 78°C, 5 h) furnishes a mixture of triazole 2a and 3,6-bis(pyrrol-2-yl)-1,2-dihydro-1,2,4,5-tetrazine (3a) in total yield 64% (the ratio of 2a:3a \approx 1:2, according to ¹H NMR spectral data). Heating nitrile 1a with hydrazine hydrate (argon atmosphere, 118°C, 5 h) under reflux, the ratio of 2a:3a becomes \approx 2:1 and total yield reaches 75%.

$$1a + NH_2NH_2 \cdot H_2O \xrightarrow[Ar atmosphere]{} 2a + \underbrace{N - N}_{H} \xrightarrow[N - N]{} 3a$$

Structure of compounds 2a and 3a have been established using ¹H NMR spectral data (DMSO-d₆). Chemical shifts of the NH protons of the pyrrole ring and the amino group for compound 2a are observed at 11.62 and 6.18 ppm, respectively. The values of chemical shift of the NH protons of the pyrrole ring (11.10 ppm) and the dihydrotetrazine cycle (8.44 ppm) for compound 3a are in agreement with literature data [30].

Thus, the increase of the reaction temperature leads to growth of the target products total yield, triazole **2a** being formed predominantly. However, these conditions are not applicable for pyrrolecarbonitriles **1b**–e due to the poor solubility of the latter even in boiling hydrazine hydrate. Therefore, for homogenization purpose, ethylene glycol has been introduced in the reaction mixture that has allowed the reaction temperature to be increased up to $130-132^{\circ}C$.

Carbonitriles are known to react with hydrazine to give 1,2-dihydro-1,2,4,5tetrazines which rearrange at elevated temperatures or on treatment with acid to the corresponding 1,2,4-triazol-4-amines [19–21]. In some case, hydrazine dihydrochloride is used as a proton source promoting this rearrangement [21].

We have employed this protocol, but the content of hydrazine hydrate has been increased up to 4 equivalents (per 1 equivalent of carbonitrile 1a-e). This ensures the augmentation of the target triazoles 2a-e yield by 5–8% as compared to the experiment, where 3 equivalents of hydrazine hydrate have been used (3–5 h), the reaction time being simultaneously reduced to 1–2 h.

The structure of triazoles 2a-e has been unambiguously assigned by ¹H, ¹³C, ¹⁵N and 2D NMR spectroscopy. For instance, the 2D NOESY spectrum of compound 2e shows cross peak between pyrrolic H-4 proton (6.46 ppm) and thienyl H-3 proton (7.59 ppm), as well as between pyrrolic NH proton (12.05 ppm) and NH proton of amino group (6.23 ppm).

A tentative mechanism of triazoles 2 formation is depicted on the next page. Amidrazone **A**, formed on the first stage of the assembly, reacts with second molecule of hydrazine abstracting the ammonium molecule to form carbohydrazonohydrazide **B**. The latter adds to the second molecule of carbonitrile 1 to deliver intermediate **C** which further cyclizes (abstracting the ammonium molecule) to dihydrotetrazine 3. Acidiccatalytic rearrangement of dihydrotetrazine 3 leads to triazoles 2 [21].

$$R \xrightarrow{=} N + NH_2NH_2 \longrightarrow \left[R \xrightarrow{NH-NH_2} R \xrightarrow{N-NH_2} R \xrightarrow{NH_2NH_2} \xrightarrow{-NH_3} R \xrightarrow{N-NH_2} R \xrightarrow{NH_2NH_2} \xrightarrow{-NH_3} R \xrightarrow{N-NH_2} R \xrightarrow{N-NH_2} R \xrightarrow{N-NH_2} R \xrightarrow{N-NH_2} R \xrightarrow{N-NH_3} R \xrightarrow{N-NH_2} R \xrightarrow{N-NH_3} R \xrightarrow{$$

In conclusion, 3,5-bis(1*H*-pyrrol-2-yl)-4*H*-1,2,4-triazole-4-amines, promising ligands, metallocomplex and supramolecule components, monomers of electroconducting polymers, have been synthesized for the first time in good yield by the reaction of pyrrole-2-carbonitriles with hydrazine. The presence of the amino group in 4*H*-1,2,4-triazol-4-amines is a prerequisite of their further modification (preparation of Schiff's bases, diazoderivatives [5, 18, 31]) that even more expands the synthetic potential of the compounds obtained.

EXPERIMENTAL

The IR spectra were recorded on a Bruker IFS25 spectrophotometer from samples prepared as KBr pellets. The ¹H and ¹³C NMR spectra were recorded on Bruker DPX-400 and AV-400 spectrometers (400 and 100 MHz respectively) in DMSO-d₆ using HMDSO as an external standard. The ¹⁵N NMR spectra were recorded at 40 MHz, external standard MeNO₂. The assignments of ¹H, ¹³C and ¹⁵N NMR spectra were performed by COSY, NOESY, HSQC, and HMBC experiments. Elemental analyses were performed on a Flash EA 1112. Melting points were determined on a Micro-Hot-Stage PolyTherm A.

Hydrazine dihydrochloride is commercially available and was used without any additional purification. Hydrazine monohydrate, ethylene glycol and ethanol were purified by standard procedures prior to use. Pyrrole-2-carbonitriles **1a**–e were obtained according to literature methods [29, 32] and their NMR data corresponds to those given in [33, 34].

Synthesis of triazoles 2a–e (General Method). A mixture of the corresponding pyrrole-2-carbonitrile 1a–e (2 mmol), hydrazine dihydrochloride (0.210 g, 2 mmol), hydrazine monohydrate (0.400 g, 8 mmol) and ethylene glycol (5 ml) was stirred under argon atmosphere at 130–132°C for 1 h (in the case of compound 2b – for 2 h). The reaction mixture was cooled, diluted with water (10 ml), the precipitate was filtered off and recrystallized from EtOH–H₂O (1:1).

3,5-Bis(1*H***-pyrrol-2-yl)-4***H***-1,2,4-triazol-4-amine (2a). Yield 0.178 g (83%), colourless crystals, mp 292–294°C (decomp.). IR spectrum, v, cm⁻¹: 3346, 3214, 3105, 1633, 1595, 1499, 1399, 1265, 1154, 1142, 1125, 1092, 1045, 1030, 916, 883, 829, 737, 605. ¹H NMR spectrum, \delta, ppm: 6.18 (2H, s, NH₂); 6.20–6.23 (2H, m, H-4 Pyr); 6.95–6.98 (4H, m, H-3,5 Pyr); 11.62 (2H, s, NH Pyr). ¹³C NMR spectrum, \delta, ppm: 108.6 (C-4 Pyr); 109.3 (C-3 Pyr); 118.3 (C-2 Pyr); 120.4 (C-5 Pyr); 148.5 (C-3,5 Tr). ¹⁵N NMR spectrum, \delta, ppm: -85.0 (***sp***²-N); -205.7 (***sp***³-N Tr); -218.8 (NH Pyr); -307.0 (NH₂). Found, %: C 56.32; H 4.68; N 39.12. C₁₀H₁₀N₆. Calculated, %: C 56.07; H 4.71; N 39.23.**

3,5-Bis(4,5-dimethyl-1*H***-pyrrol-2-yl)-4***H***-1,2,4-triazol-4-amine (2b). Yield 0.137 g (51%), colourless crystals, mp 280–282°C (decomp.). IR spectrum, v, cm⁻¹: 3364, 3269, 3106, 2918, 2858, 1619, 1539, 1492, 1361, 1285, 1159, 956, 957, 803, 711. ¹H NMR**

spectrum, δ, ppm (*J*, Hz): 1.98 (6H, s, 4',4"-CH₃); 2.15 (6H, s, 5',5"-CH₃); 5.98 (2H, s, NH₂); 6.70 (2H, d, ${}^{4}J$ = 1.9, H-3 Pyr); 11.10 (2H, s, NH Pyr). 13 C NMR spectrum, δ, ppm: 10.5 (CH₃); 10.8 (CH₃); 110.7 (C-3 Pyr); 114.1 (C-4 Pyr); 115.5 (C-5 Pyr); 126.5 (C-2 Pyr); 148.2 (C-3,5 Tr). 15 N NMR spectrum, δ, ppm: -81.0 (*sp*²-N); -216.1 (*sp*³-N Tr); -226.5 (NH Pyr); -315.6 (NH₂). Found, %: C 62.43; H 6.71; N 30.88. C₁₄H₁₈N₆. Calculated, %: C 62.20; H 6.71; N 31.09.

3,5-Bis(4,5,6,7-tetrahydro-1*H***-indol-2-yl)-4***H***-1,2,4-triazol-4-amine (2c). Yield 0.250 g (78%), beige crystals, mp 254–258°C (decomp.). IR spectrum, v, cm⁻¹: 3342, 3267, 3105, 2925, 2849, 1618, 1545, 1444, 1357, 1266, 1132, 1058, 957, 801, 711. ¹H NMR spectrum, \delta, ppm (***J***, Hz): 1.70–1.72 (8H, m, 5',5",6',6"-CH₂); 2.45–2.47 (4H, m, 4',4"-CH₂); 2.55–2.57 (4H, m, 7',7"-CH₂); 5.98 (2H, s, NH₂); 6.65 (2H, d, ⁴***J* **= 2.2, H-3 Ind); 11.02 (2H, s, NH Ind). ¹³C NMR spectrum, \delta, ppm: 22.4, 22.6, 22.9, 23.4 (CH₂); 108.1 (C-3 Ind); 116.3 (C-2 Ind); 116.7 (C-3a Ind); 129.3 (C-7a Ind); 148.4 (C-3,5 Tr). ¹⁵N NMR spectrum, \delta, ppm: -87.7 (***sp***²-N); -215.5 (***sp***³-N Tr); -230.9 (NH Ind); -315.6 (NH₂). Found, %: C 67.26; H 6.68; N 26.11. C₁₈H₂₂N₆. Calculated, %: C 67.06; H 6.88; N 26.07.**

3,5-Bis(5-phenyl-1H-pyrrol-2-yl)-4H-1,2,4-triazol-4-amine (2d). Yield 0.304 g (83%), light green crystals, mp 278–280°C (decomp.). IR spectrum, v, cm⁻¹: 3411, 3323, 3253, 1623, 1604, 1541, 1494, 1301, 1238, 1194, 1061, 964, 753, 709. ¹H NMR spectrum, δ , ppm (*J*, Hz): 6.26 (2H, s, NH₂); 6.71 (2H, dd, ³*J* = 3.6, ⁴*J* = 2.2, H-4 Pyr); 7.05 (2H, dd, ³*J* = 3.6, ⁴*J* = 2.1, H-3 Pyr); 7.22–7.84 (10H, m, H Ph); 11.87 (2H, s, NH Pyr). ¹³C NMR spectrum, δ , ppm: 107.2 (C-4 Pyr); 111.4 (C-3 Pyr); 119.8 (C-2 Pyr); 124.3, 126.3, 128.6, 132.0 (C Ph); 133.8 (C-5 Pyr); 148.3 (C-3,5 Tr). ¹⁵N NMR spectrum, δ , ppm: -80.4 (*sp*²-N); -212.4 (*sp*³-N Tr); -232.1 (NH Pyr); -314.3 (NH₂). Found, %: C 72.02; H 4.86; N 22.62. C₂₂H₁₈N₆. Calculated, %: C 72.11; H 4.95; N 22.93.

3,5-Bis[5-(2-thienyl)-1*H***-pyrrol-2-yl]-4***H***-1,2,4-triazol-4-amine (2e). Yield 0.325 g (86%), light brown crystals, mp 272–274°C (decomp.). IR spectrum, v, cm⁻¹: 3382, 3315, 3202, 1627, 1592, 1557, 1506, 1438, 1378, 1293, 1180, 1051, 844, 774, 685. ¹H NMR spectrum, \delta, ppm (***J***, Hz): 6.23 (2H, s, NH₂); 6.46 (2H, dd, {}^{3}J = 3.7, {}^{4}J = 2.4, H-4 Pyr); 7.02 (2H, dd, {}^{3}J = 3.7, {}^{4}J = 2.2, H-3 Pyr); 7.06 (2H, dd, {}^{3}J = 3.4, {}^{3}J = 5.1, H-4 Th); 7.39 (2H, dd, {}^{3}J = 5.1, {}^{4}J = 1.2, H-5 Th); 7.59 (2H, dd, {}^{3}J = 3.4, {}^{4}J = 1.2, H-3 Th); 12.05 (2H, s, NH Pyr). ¹³C NMR spectrum, \delta, ppm: 107.4 (C-4 Pyr); 111.2 (C-3 Pyr); 119.3 (C-2 Pyr); 122.4 (C-3 Th); 123.5 (C-5 Th); 127.9 (C-4 Th); 128.6 (C-5 Pyr); 135.3 (C-2 Th); 148.3 (C-3,5 Tr). ¹⁵N NMR spectrum, \delta, ppm: -80.4 (***sp***²-N); -212.4 (***sp***³-N Tr); -230.9 (NH Pyr); -314.9 (NH₂). Found, %: C 57.02; H 3.70; N 21.95; S 16.86. C₁₈H₁₄N₆S₂. Calculated, %: C 57.12; H 3.73; N 22.20; S 16.94.**

This work has been carried out under financial support of leading scientific schools by the President of the Russian Federation (grant NSh-1550.2012.3).

REFERENCES

- I. A. Al-Masoudi, Y. A. Al-Soud, N. J. Al-Salihi, N. A. Al-Masoudi, *Khim. Geterotsikl.* Soedin., 1605 (2006). [Chem. Heterocycl. Compd., 42, 1377 (2006).]
- 2. A. Hasan, N. F. Thomas, S. Gapil, *Molecules*, 16, 1297 (2011).
- A. Padmaja, A. Muralikrishna, C. Rajasekhar, V. Padmavathi, *Chem. Pharm. Bull.*, 59, 1509 (2011).
- P. Karegoudar, D. J. Prasad, M. Ashok, M. Mahalinga, B. Poojary, B. S. Holla, *Eur. J. Med. Chem.*, 43, 808 (2008).
- 5. O. Bekircan, B. Kahveci, M. Küçük, Turk. J. Chem., 30, 29 (2006).
- 6. J. G. Haasnoot, Coord. Chem. Rev., 200, 131 (2000).
- 7. S.-Q. Bai, D. J. Young, T. S. Andy Hor, Chem. Asian J., 6, 292 (2011).
- 8. Q. Ma, M. Zhu, L. Lu, S. Feng, J. Yan, Inorg. Chim. Acta, 370, 102 (2011).
- 9. A.-X. Zhu, Q.-Q. Xu, F.-Y. Liu, Z. Li, X.-L. Qi, Inorg. Chim. Acta, 370, 333 (2011).
- M. M. Dîrtu, Y. Garcia, M. Nica, A. Rotaru, J. Linares, F. Varret, *Polyhedron*, 26, 2259 (2007).

- W. R. Browne, C. M. O'Connor, H. P. Hughes, R. Hage, O. Walter, M. Doering, J. F. Gallagher, J. G. Vos, J. Chem. Soc., Dalton Trans., 4048 (2002).
- 12. K. Liu, X. Zhu, J. Wang, B. Li, Y. Zhang, Inorg. Chem. Commun., 13, 976 (2010).
- M. B. Bushuev, E. V. Peresypkina, V. P. Krivopalov, A. V. Virovets, L. G. Lavrenova, O. P. Shkurko, *Inorg. Chim. Acta*, 365, 384 (2011).
- 14. A. A. Aly, A. B. Brown, T. I. El-Emary, A. M. M. Ewas, M. Ramadan, *ARKIVOC*, i, 150 (2009).
- 15. N. S. A. M. Khalil, Carbohydr. Res., 341, 2187 (2006).
- Z. A. Kaplancikli, G. Turan-Zitouni, A. Özdemir, G. Revial, *Eur. J. Med. Chem.*, 43, 155 (2008).
- 17. A. T. Bijev, P. Prodanova, *Khim. Geterotsikl. Soedin.*, 383 (2007). [*Chem. Heterocycl. Compd.*, **43**, 306 (2007).]
- 18. A. Jha, Y. L. N. Murthy, G. Durga, T. T. Sundari, E-J. Chem., 7, 1571 (2010).
- 19. E. Alcalde, C. Ayala, I. Dinarès, N. Mesquida, J. Org. Chem., 66, 2291 (2001).
- 20. J. F. Geldard, F. Lions, J. Org. Chem., 30, 318 (1965).
- F. Bentiss, M. Lagrenée, M. Traisnel, B. Mernari, H. Elattari, J. Heterocyclic Chem., 36, 149 (1999).
- 22. G. Dannhardt, W. Kiefer, G. Kramer, S. Maehrlein, U. Nowe, B. Fiebich, *Eur. J. Med. Chem.*, **35**, 499 (2000).
- G. A. Pinna, G. Loriga, G. Murineddu, G. Grella, M. Mura, L. Vargiu, C. Murgioni, P. La Colla, *Chem. Pharm. Bull.*, 49, 1406 (2001).
- 24. R. Perez-Tomas, B. Montaner, E. Llagostera, V. Soto-Cerrato, *Biochem. Pharmacol.*, **66**, 1447 (2003).
- E. Yu. Schmidt, N. V. Zorina, M. Yu. Dvorko, N. I. Protsuk, K. V. Belyaeva, G. Clavier, R. Méallet-Renault, T. T. Vu, A. I. Mikhaleva, B. A. Trofimov, *Chem.– Eur. J.*, 17, 3069 (2011).
- 26. I. F. Gimenez, O. L. Alves, J. Braz. Chem. Soc., 10, 167 (1999).
- B. P. J. de Lacy Costello, P. Evans, N. Guernion, N. M. Ratcliffe, P. S. Sivanand, G. C. Teare, Synth. Met., 114, 181 (2000).
- A. I. Mikhaleva, A. V. Ivanov, E. V. Skital'tseva, I. A. Ushakov, A. M. Vasil'tsov, B. A. Trofimov, *Synthesis*, 587 (2009).
- B. A. Trofimov, A. M. Vasil'tsov, A. I. Mikhaleva, A. V. Ivanov, E. V. Skital'tseva, E. Yu. Schmidt, E. Yu. Senotrusova, I. A. Ushakov, K. B. Petrushenko, *Tetrahedron Lett.*, 50, 97 (2009).
- 30. J. Sołoducho, J. Doskocz, J. Cabaj, S. Roszak, Tetrahedron, 59, 4761 (2003).
- B. S. Creaven, M. Devereux, A. Foltyn, S. McClean, G. Rosair, V. R. Thangella, M. Walsh, *Polyhedron*, 29, 813 (2010).
- 32. H. J. Anderson, Can. J. Chem., 37, 2053 (1959).
- D. G. Brown, R. E. Diehl, G. T. Lowen, D. P. Wright, Jr., C. F. Kukel, R. A. Herman, R. W. Addor, US Pat. Appl. 5162308.
- 34. J. L. Helom, A. Z. Rubezhov, A. S. Pilcher, B. K. Wilk, US Pat. Appl. 7399870 (B2).

¹ A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, I Favorsky St., Irkutsk 664033, Russia e-mail: boris_trofimov@irioch.irk.ru

Received 4.10.2012