А. П. Гудзь¹, А. С. Канищев¹, Ю. Г. Власенко¹, А. Н. Чернега¹, Ю. Г. Шермолович^{1*}

ИССЛЕДОВАНИЕ ХЛОРИРОВАНИЯ 6-(ПЕРФТОРАЛКИЛ)-5-(*n*-ТОЛИЛСУЛЬФОНИЛ)УРАЦИЛОВ. СИНТЕЗ 6-(ПЕРФТОРАЛКИЛ)-5-(*n*-ТОЛИЛСУЛЬФОНИЛ)5-ХЛОРПИРИМИДИН-2,4(3*H*,5*H*)-ДИОНОВ

Хлорирование 4-(перфторалкил)-5-(n-толилсульфонил)-2,6-бис(триметилсилилокси) пиримидинов приводит к образованию 6-(перфторалкил)-5-(n-толилсульфонил)-5-хлорпиримидин-2,4(3H,5H)-дионов, строение которых подтверждено данными спектроскопии ЯМР и РСА. Исследованы реакции хлорпроизводных пиримидин-2,4(3H,5H)-дионов с нуклеофилами.

Ключевые слова: пиримидинон, урацил, хлоргидрин, силилирование, хлорирование.

5-Замещённые урацилы и нуклеотиды или нуклеозиды на их основе способны ингибировать различные энзимы за счёт блокирования некоторых стадий биосинтеза нормальных нуклеотидов или путём внедрения в нуклеиновые кислоты, а также влияния на синтез энзима или на его активный центр [1]. Особый интерес вызывают пиримидиновые аналоги нуклеозидов с атомом серы в положении 5, благодаря возможности изменять в широких пределах как размеры серосодержащих заместителей, так и их электроноакцепторные свойства [2]. 6-(Трифторметил)урацилы, в свою очередь, также представляют интерес для медицинской химии, так как являются сильными ингибиторами тимидинфосфорилазы [3, 4]. 6-(Фторметил)уридины обладают противолейкемической активностью [5].

Урацилы **1а,b**, содержащие в положениях 5 и 6 *п*-толилсульфонильную и перфторалкильную группы соответственно, были получены из 1,1-дигидрополифторалкил-*п*-толилсульфонов [6]. Следует отметить, что соединения **1а,b** являются представителями практически неизученного типа 6-перфторалкилзамещённых урацилов с электроноакцепторными заместителями в положении 5 [7].

1 a $R_F = CF_3$, b $R_F = C_3F_7$; 2 R = 4-MeC₆H₄, Bn; $R_F = H(CF_2)_3$, CF_3

Ранее при исследовании свойства 4-(арилсульфонил)-5-(полифторалкил)-1,2,3-триазолов мы показали, что присоединение *N*-хлорпроизводных **2** к С=С-связи гликалей [8] является удобным методом синтеза новых гетероциклических аналогов нуклеозидов, обладающих противовирусными свойствами [9]. Представляло интерес расширить этот подход на N-Cl-произ-

водные 6-(перфторалкил)-5-(n-толилсульфонил)урацилов. С этой целью мы изучили возможность их получения хлорированием урацилов 1a,b. В литературе имеются противоречивые сведения о подобного рода реакциях. Так, в работе [10] сообщалось, что тимин (5-метилурацил) не реагирует с гипохлоритом натрия, в то время как хиназолиндион в аналогичных условиях образует N,N-дихлорпроизводное 3 с хорошим выходом. В то же время при обработке урацила 10-кратным избытком водной HOCl в фосфатном буфере при рН 7 происходит его полная деструкция с образованием трихлоруксусной кислоты, двуокиси углерода и трёххлористого азота [11].

Мы обнаружили, что соединения **1a,b** не реагируют при действии избытка хлора на их суспензию в CCl₄ или CH₂Cl₂ в интервале температур 20–70 °C, что, вероятно, связано с их низкой растворимостью в органических растворителях. Поэтому реакцией соединений **1a,b** с гексаметилдисилазаном и триметилхлорсиланом мы синтезировали легкорастворимые производные урацилов **4a,b**, которым по аналогии с известными производными силилированных урацилов можно приписать строение *О*-силилированных продуктов [12]. Соединения **4a,b** являются неустойчивыми и десилилируются при комнатной температуре в течение нескольких часов. По этой причине мы не выделяли их в индивидуальном состоянии, а характеризовали только методом спектроскопии ЯМР в растворе. Однако при действии избытка хлора на ацетонитрильные растворы свежеприготовленных соединений **4a,b** с хорошими выходами образуются продукты хлорирования **5a,b**, содержащие электроноакцепторные перфторалкильные группы у эндоциклической кратной С=N-связи.

1a,b
$$\xrightarrow{\text{Me}_3\text{SiCl}}$$
 R_F
 $R_$

Возможная схема протекания реакции заключается в первичном образовании N,N'-дихлорпроизводных \mathbf{I} , изомеризующихся путём 1,3-хлоротропного сдвига в N-хлорпиримидиндионы \mathbf{II} , которые хлорируют растворитель и превращаются в конечные соединения $\mathbf{5a}$, \mathbf{b} . Строение соединений $\mathbf{5a}$, \mathbf{b} подтверждено данными спектроскопии ЯМР и методом РСА (для соединения $\mathbf{5b}$).

Общий вид молекулы соединения **5b** представлен на рисунке. Центральный гетероцикл C(1)N(1)C(2-4)N(2) неплоский и имеет конформацию "ванна" (торсионные углы в гетероцикле C(2)-N(1)-C(1)-N(2) 18.31, N(1)-C(1)-N(2)-C(4)-C(3)-C(4)-C(3)-C(4)-C(3)-C(2) 35.31, C(4)-C(3)-C(2)-N(1) 35.28, C(3)-C(2)-N(1)-C(1) 11.53°). Фрагменты C(3)-C(2)-N(1)-C(1) и C(1)-N(2)-C(4)-C(3) плоские (отклонения атомов от среднеквадратичной плоскости не превышают 0.052 и 0.030 Å соответственно),

$$\begin{array}{c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Молекулярная структура соединения **5b** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью

и диэдральный угол между ними составляет 30.46° . Следует отметить, что плоскость фенильного кольца C(5-10) практически параллельна фрагменту C(1)–N(2)–C(4)–C(3) (соответствующий двугранный угол составляет всего 3.86°). Атом N(1) имеет плоскотригональную конфигурацию связей (сумма валентных углов при нём составляет 359.9°) из-за сопряжения между неподелённой электронной парой атома N(1) и кратными π -связями C(1)–O(1) и C(2)–O(2).

Особенностью молекулярной структуры соединения **5b** является образование слабых [3] межмолекулярных водородных связей $N(1)-H(11)\cdots O(3)$ ($N\cdots O\ 2.93(1)\ Å,\ H\cdots O\ 2.16(3)\ Å;\ NHO\ 173(5)°).$

Присутствие электроноакцепторных заместителей у эндоциклической кратной связи C=N соединений $\mathbf{5a,b}$ существенно повышает их способность реагировать с такими нуклеофилами, как вода или метанол, уже при комнатной температуре с образованием производных дигидропиримидин-2,4(1H,3H)-дионов $\mathbf{6}$ и $\mathbf{7a,b}$ соответственно. Хлоргидрин $\mathbf{6}$ образуется также при действии избытка хлора на урацил $\mathbf{1a}$ в уксусной кислоте.

5a,b

$$\begin{array}{c}
(\text{M3 5a}) \\
H_2\text{O, MeCN} \\
F_3\text{C} \\
HO \\
HO \\
K_F
\\
MeOH
\\
7a,b
\\
7a R_F = CF_3, b R_F = C_3F_7
\end{array}$$
1a

Строение продуктов присоединения **6** и **7а**,**b** подтверждено данными спектроскопии ЯМР. В спектрах ЯМР 13 С соединений сигналы ядер углерода С-5 (связанного с тозильной группой) и С-6 (связанного с перфторалкильным заместителем) проявляются в области 83–89 м. д. Ядра фтора CF_2 -групп

соединения **7b** диастереотопны, благодаря присутствию хирального атома углерода, и в спектрах ЯМР ¹⁹F проявляются в виде AB-систем.

Несколько неожиданный результат был получен при реакции соединения $\bf 5b$ с морфолином. Вместо продукта присоединения амина по $\bf C=N$ -связи циклического строения $\bf 8$ образуется соединение такого же состава (по данным хромато-масс-спектрометрии и элементного анализа), но существенно отличающееся спектром $\bf 3MP^{13}C$. Сигналы ядер углерода $\bf 3MP^{13}C$. Соответственно, $\bf 3MP^{13}C$. Сигналы ядер углерода $\bf 3MP^{13}C$. $\bf 3MP^{13}C$. Сигналы ядер углерода $\bf 3MP^{13}C$. Сигналы яд

Таким образом, предложен метод синтеза фторсодержащих пиримидин-2,4(3H,5H)-дионов нового типа, содержащих электроноакцепторные заместители у эндоциклической кратной связи C=N, что существенно повышает их способность реагировать с нуклеофилами с образованием, в зависимости от природы нуклеофила, фторсодержащих производных дигидропиримидин-2,4(1H,3H)-дионов или мочевин ациклического строения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектр соединения 9 зарегистрирован на спектрометре Bruker Vertex 70 в тонком слое. Спектры ЯМР ¹Н и ¹³С записаны на спектрометре Bruker Avance 400 (400 и 100 МГц соответственно), внутренний стандарт ТМС. Спектры ЯМР ¹9F зарегистрированы на приборе Varian Gemini-200 (188 МГц), внутренний стандарт С₆F₆. Масс-спектры ЖХ/МС записаны на приборе Agilent 1100 Series, оснащённом диодно-матричным и масс-селективным детектором Agilent LC/MSD SL, метод ионизации − электрораспыление при атмосферном давлении. Данные элементного анализа для синтезированных соединений были получены в аналитической лаборатории ИОХ НАН Украины методом экспресс-гравиметрии (С, Н), методом сожжения по Шенигеру (Сl, S) и методом Дюма-Прегля (N). Температуры плавления определены на приборе Воеtius. Для колоночной хроматографии использовали силикагель марки Merck 60 (70−230 мкм). Для тонкослойной хроматографии использовали пластины Polygram® Sil G/UV254 (Macherey-Nagel). Все растворители были предварительно высушены и перегнаны согласно стандартным методикам.

5-(*n***-Толилсульфонил)-4-(трифторметил)пиримидин-2,4(1***H***,3***H***)-дион (1a). Получен по методу, приведённому в работе [6]. Выход 60%, бесцветные иглы, т. пл. 295–297 °C (EtOH). Спектр ЯМР ¹H (ацетон-d₆), \delta, м. д. (***J***, \Gammaп): 2.43 (3H, c, CH₃); 7.40 (2H, д, J = 8.2, H Ar); 7.94 (2H, д, J = 8.2, H Ar); 10.75 (1H, c, NH). Спектр ЯМР ¹³С (ДМСО-d₆), \delta, м. д. (***J***, \Gammaп): 21.1 (CH₃); 114.3 (C-5); 118.8 (к, ^{1}J_{CF} = 289, CF₃); 128.1 (2C Ar); 129.3 (2C Ar); 138.4 (C-4'); 144.2 (C-1'); 145.5 (к, ^{2}J_{CF} = 33, C-6); 149.4 (C-2); 159.3 (C-4). Спектр ЯМР ¹⁹F (ацетон-d₆), \delta, м. д.: –58.5 (CF₃). Найдено, %: C 43.32; H 2.69; N 8.41; S 9.76. C_{12}H_{9}F_{3}N_{2}O_{4}S. Вычислено, %: C 43.12; H 2.71; N 8.38; S 9.59.**

4-(Гептафторпропил)-5-(*п*-толилсульфонил)пиримидин-**2,4(1***H,***3***H*)-дион (**1b**). Получен по методу, приведённому в работе [6]. Выход 68%, бесцветные иглы, т. пл. 253–255 °C (EtOH). Спектр ЯМР 1 H (ацетон-d₆), δ , м. д. (J, Γ ц): 2.36 (3H, c, CH₃); 7.40 (2H, д, J = 8.2, H Ar); 7.94 (2H, д, J = 8.2, H Ar); 10.75 (1H, c, NH). Спектр ЯМР 19 F (ацетон-d₆), δ , м. д.: –118.1 (2F, м, CF₂)*; –101.8 (2F, м, CF₂); –79.2 (3F, м, CF₃). Найдено, %: С 38.66; H 2.29; N 6.60; S 7.65. $C_{14}H_{9}F_{7}N_{2}O_{4}S$. Вычислено, %: С 38.72; H 2.09; N 6.45; S 7.38.

Получение пиримидинов 4a,b (общая методика). Суспензию 2.5 ммоль урацила 1a,b и 0.05 мл (0.4 ммоль) Me_3SiCl в 10 мл гексаметилдисилазана кипятят в течение 2.5 ч до получения прозрачного жёлтого раствора. Избыток силилирующих реагентов отгоняют в вакууме (10–15 мм рт. ст.), остаток повторно упаривают с сухим ксилолом (3×10 мл), высушивают в вакууме (0.05 мм рт. ст.). В связи с легкой гидролизуемостью соединений 4a,b не удалось корректно определить их температуры плавления и провести элементный анализ. Полученные соединения 4a,b используют в последующих синтезах без дополнительной очистки.

2,6-Бис(триметилсилилокси)-5-(*n***-толилсульфонил)-4-(трифторметил)пиримидин (4а)**. Выход 1.19 г (100%), порошок светло-кремового цвета. Спектр ЯМР 1 H (CDCl₃), δ , м. д. (J, Γ ц): 0.34 (9H, c, Si(CH₃)₃); 0.39 (9H, c, Si(CH₃)₃); 2.44 (3H, c, ArC<u>H</u>₃); 7.31 (2H, д, J = 8.2, H Ar); 7.86 (2H, д, J = 8.2, H Ar). Спектр ЯМР 19 F (CDCl₃), δ , м. д.: -63.3 (CF₃).

2,6-Бис(триметилсилилокси)-4-(гептафторпропил)-5-(n-толилсульфонил)пиримидин (4b). Выход 1.45 г (100%). Спектр ЯМР 1 H (CDCl₃), δ , м. д. (J, Γ ц): 0.31 (9H, c, Si(CH₃)₃); 0.38 (9H, c, Si(CH₃)₃); 2.44 (3H, c, ArC<u>H</u>₃); 7.30 (2H, д, J = 8.2, H Ar); 7.83 (2H, д, J = 8.2, H Ar). Спектр ЯМР 19 F (ацетон-d₆), δ , м. д.: –121.7 (2F, м, CF₂); –103.3 (2F, м, CF₂); –81.4 (3F, м, CF₃).

Получение пиримидин-2,4(3*H***,5***H***)-дионов 5а,b** (общая методика). Силилированный урацил **4a,b** (2.5 ммоль) растворяют в 10 мл MeCN, пропускают ток хлора на протяжении 20 мин (до насыщения раствора). Реакционную смесь перемешивают в течение 2 ч при комнатной температуре, растворитель упаривают в вакууме. Остаток перекристаллизовывают из CCl₄.

5-(*п***-Толилсульфонил)-6-(трифторметил)-5-хлорпиримидин-2,4(3***H***,5***H***)-дион (5a)**. Выход 0.7 г (76%), бесцветный порошок, т. пл. 110–112 °C. Спектр ЯМР ¹H (ацетон-d₆), δ , м. д. (J, Γ ц): 2.50 (3H, c, CH₃); 7.50 (2H, д, J = 8.2, H Ar); 7.84 (2H, д, J = 8.2, H Ar). Спектр ЯМР ¹⁹F (ацетон-d₆), δ , м. д. (J, Γ ц): –68.9 (CF₃). Найдено, %: С 39.15; H 2.25; Cl 9.58; N 7.45. C₁₂H₈ClF₃N₂O₄S. Вычислено, %: С 39.09; H 2.19; Cl 9.62; N 7.60.

6-(Гептафторпропил)-5-(*n*-толилсульфонил)-5-хлорпиримидин-2,4(3*H*,5*H*)-дион (5b). Выход 1.0 г (85%), бесцветные пластинки, т. пл. 95 °C. Спектр ЯМР 1 Н (ацетон-d₆), δ , м. д. (*J*, Γ ц): 2.54 (3H, c, CH₃); 7.60 (2H, д, *J* = 8.2, H Ar); 7.85 (2H, д, *J* = 8.2, H Ar); 11.66 (1H, c, NH). Спектр ЯМР 13 С (ацетон-d₆), δ , м. д. (*J*, Γ ц): 21.9 (CH₃); 81.7 (C-5); 108.4 (т. к, $^1J_{\rm CF}$ = 268, $^2J_{\rm CF}$ = 38, CF₂); 111.6 (т. т, $^1J_{\rm CF}$ = 257, $^2J_{\rm CF}$ = 33, CF₂); 117.7 (к. т, $^1J_{\rm CF}$ = 289, $^2J_{\rm CF}$ = 34, CF₃); 129.0 (C-4'); 131.5 (2C Ar); 132.7 (2C Ar); 150.1 (C-1'); 152.1 (C-2); 159.6 (C-4); 163.6 (т, $^2J_{\rm CF}$ = 28, C-6). Спектр ЯМР 19 F (ацетон-d₆), δ , м. д. (*J*, Γ ц): -122.7 и -121.0 (2F, AB система, *J* = 293, CF₂); -105.3 (2F, м, CF₂); -78.9 (3F, м, CF₃). Найдено, %: С 35.83; Н 1.66; Cl 7.60; N 5.84. $C_{14}H_8{\rm ClF}_7{\rm N}_2{\rm O}_4{\rm S}$. Вычислено, %: С 35.87; Н 1.72; Cl 7.56; N 5.98.

6-Гидрокси-5-(*n***-толилсульфонил)-6-(трифторметил)-5-хлордигидропиримидин-2,4(1***H***,3***H***)-дион (6)**. А. К раствору 0.18 г (0.5 ммоль) пиримидинона **5a** в 10 мл MeCN

^{*} Все мультиплеты в спектрах ЯМР 19 F имеют ширину порядка 0.1 м. д.

добавляют 0.1 мл H_2O , перемешивают в течение 2 ч при 20 °C. Реакционную смесь фильтруют, фильтрат упаривают в вакууме. Выход 0.15 г (80%).

Б. Суспензию 0.50 г (1.5 ммоль) урацила **1а** в 12 мл АсОН перемешивают в течение 30 мин при 20 °C, пропуская при этом ток хлора со скоростью 0.8 г/ч. Реакционную смесь продолжают перемешивать, пока весь осадок не перейдёт в раствор (около 2 ч), фильтруют, фильтрат упаривают в вакууме. Остаток в виде жёлтого масла растворяют в CH_2Cl_2 и оставляют при 0 °C на 15 ч. Выпавший продукт отфильтровывают и высушивают. Выход 0.32 г (55%), бесцветный порошок, т. пл. 195–198 °C (CH_2Cl_2). Спектр ЯМР ¹H (CD_3CN), δ , м. д. (J, Γ u): 2.46 (3H, c, CH_3); 7.42 (2H, д, J = 8.7, H Ar); 7.78 (2H, д, J = 8.7, H Ar); 9.12 (1H, c, NH); 10.45 (1H, c, NH). Спектр ЯМР ¹³C (ацетон-d₆), δ , м. д. (J, Γ u): 21.7 (CH_3); 83.8 (κ , $^2J_{CF}$ = 33, C-6); 87.1 (C-5); 122.8 (κ , $^1J_{CF}$ = 289.0, CF_3); 130.3 (2C Ar); 132.2 (2C Ar); 132.4 (C-4'); 148.0 (C-1'); 150.6 (C-2); 160.3 (C-4). Спектр ЯМР ¹⁹F (CD_3CN), δ , м. д.: –73.9 (CF_3). Найдено, m/z: 385.00 [M–H] $^-$. $C_{12}H_9CIF_3N_2O_5S$. Вычислено, m/z: 385.72. Найдено, %: C 37.15; H 2.96; Cl 9.05; N 7.14. $C_{12}H_{10}CIF_3N_2O_5S$. Вычислено, %: C 37.27; H 2.61; Cl 9.17; N 7.24.

Получение пиримидин-2,4(1*H***,3***H***)-дионов 7а,b (общая методика). К раствору 0.5 ммоль пиримидинона 5а,b в 10 мл MeCN добавляют 0.1 мл абс. МеOH, перемешивают в течение 2 ч при 20 °C. Реакционную смесь фильтруют, фильтрат упаривают в вакууме. Соединение 7b очищают колоночной хроматографией (элюент EtOAc—гексан, 1:1, R_f 0.46), соединение 7a анализируют без дополнительной очистки.**

6-Метокси-5-(*п*-толилсульфонил)-6-(трифторметил)-5-хлордигидропиримидин-**2,4**(1*H,3H*)-дион (7а). Выход 0.18 г (90%), бесцветный порошок, т. пл. 215–217 °C (МеСN). Спектр ЯМР 1 Н (ацетон-d₆), δ , м. д. (*J*, Γ ц): 2.47 (3H, c, CH₃); 3.46 (3H, c, OCH₃); 7.46 (2H, д, J = 8.7, H Ar); 7.79 (2H, д, J = 8.7, H Ar); 9.12 (1H, c, NH); 10.45 (1H, c, NH). Спектр ЯМР 13 С (ацетон-d₆), δ , м. д. (*J*, Γ ц): 21.6 (CH₃); 52.6 (OCH₃); 86.3 (к, $^{2}J_{CF} = 33$, C-6); 86.5 (C-5); 122.8 (к, $^{1}J_{CF} = 291$, CF₃); 130.4 (2C Ar); 132.1 (2C Ar); 132.4 (C-4'); 148.1 (C-1'); 150.6 (C-2); 159.8 (C-4). Спектр ЯМР 19 F (ацетон-d₆), δ , м. д.: -70.7 (CF₃). Найдено, m/z: 399.00 [М–Н] $^{-}$. $C_{13}H_{11}$ ClF₃N₂O₅S. Вычислено, m/z: 399.75. Найдено, %: С 38.65; Н 3.46; СІ 9.01; N 6.96. $C_{13}H_{12}$ ClF₃N₂O₅S. Вычислено, %: С 38.96; Н 3.02; СІ 8.85; N 6.99.

6-Метокси-6-(гептафторпропил)-5-(n-толилсульфонил)-5-хлордигидропиримидин-2,4(1H,3H)-дион (7b). Выход 0.21 г (85%), бесцветный порошок, т. пл. 198–200 °C (ЕtОАс-гексан, 1:1). Спектр ЯМР 1 H (ацетон-d₆), δ , м. д. (J, Γ ц): 2.47 (3H, c, CH₃); 3.43 (3H, c, OCH₃); 7.47 (2H, д, J = 8.2, H Ar); 7.80 (2H, д, J = 8.2, H Ar); 8.76 (1H, c, NH); 10.71 (1H, c, NH). Спектр ЯМР 13 С (ацетон-d₆), δ , м. д. (J, Γ ц): 21.7 (CH₃); 52.1 (OCH₃); 89.6 (τ , $^2J_{CF}$ = 27, C-6); 87.3 (C-5); 108.4 (τ . κ , $^1J_{CF}$ = 268, $^2J_{CF}$ = 38, CF₂); 111.6 (τ . τ , $^1J_{CF}$ = 257, $^2J_{CF}$ = 33, CF₂); 117.7 (κ . τ , $^1J_{CF}$ = 289, $^2J_{CF}$ = 34, CF₃); 130.4 (2C Ar); 132.3 (2C Ar, C-4'); 148.2 (C-1'); 150.7 (C-2); 160.1 (C-4). Спектр ЯМР 19 F (ацетон-d₆), δ , м. д. (J, Γ ц): -124.8 и -117.1 (2F, AB-система, J = 292, CF₂); -111.2 и -108.4 (2F, AB-система, J = 292, CF₂); -79.0 (3F, м, CF₃). Найдено, m/z: 499.00 [М-Н] . С₁₅H₁₁ClF₇N₂O₅S. Вычислено, m/z: 499.76. Найдено, %: С 35.73; H 2.56; Cl 7.25; N 5.81. C₁₅H₁₂ClF₇N₂O₅S. Вычислено, %: С 35.98; H 2.42; Cl 7.08; N 5.59.

3-(Морфолин-4-илкарбонил)-1-{[(*п***-толилсульфонил)хлорметилиден**]**-2,2,3,3,4,4,4-гентафторбутил}мочевина (9).** К суспензии 0.23 г (0.5 ммоль) пиримидинона **5b** в 8 мл бензола добавляют 0.09 г (1.0 ммоль) морфолина. Реакционную смесь перемешивают в течение 2 ч при 20 °C, выпавший из реакционной смеси продукт отфильтровывают, промывают на фильтре бензолом и высушивают в вакууме. Выход 0.27 г (98%), бесцветный порошок, т. пл. 160–162 °C (бензол). ИК спектр, v, см⁻¹: 1666 (C=O), 1704 (C=O), 3219–2975 (OH, NH). Спектр ЯМР ¹H (ацетон-d₆), δ , м. д. (J, Γ п): 2.48 (3H, c, CH₃); 3.56–3.60 (4H, м, CH₂OCH₂); 3.63–3.68 (4H, м, CH₂NCH₂); 7.51 (2H, д, J = 8.2, H Ar); 7.93 (2H, д, J = 8.2, H Ar); 8.96 (1H, c, NH); 10.91 (1H, c, NH). Спектр ЯМР ¹³C (ацетон-d₆), δ , м. д. (J, Γ п): 21.6 (CH₃); 44.8 (CH₂NCH₂); 66.8 (CH₂OCH₂); 108.4 (т. к, $^{1}J_{CF}$ = 268, $^{2}J_{CF}$ = 38, CF₂); 111.6 (т. т, $^{1}J_{CF}$ = 257, $^{2}J_{CF}$ = 33, CF₂); 117.7 (к. т, $^{1}J_{CF}$ = 289, $^{2}J_{CF}$ = 34, CF₃); 128.5 (т, $^{2}J_{CF}$ = 26.2, CC₃F₇); 130.3 (2C Ar); 130.9 (2C Ar); 135.2 (C-4'); 139.9 (CCl); 147.4 (C-1'); 154.1 (C=O); 155.1 (C=O). Спектр ЯМР ¹⁹F (ацетон-d₆), δ , м. д. (J, Γ п): -123.7 (2F, м,

 CF_2); -111.3 (2F, м, CF_2); -79.4 (3F, м, CF_3). Найдено, m/z: 556.20 $[M+H]^+$. $C_{18}H_{18}CIF_7N_3O_5S$. Вычислено, m/z: 556.86. Найдено, %: C 39.25; H 3.47; Cl 6.56; N 7.22. $C_{18}H_{17}CIF_7N_3O_5S$. Вычислено, %: C 38.89; H 3.08; Cl 6.38; N 7.56.

монокристалла Рентгеноструктурное исследование соединения $(C_{14}H_8CIF_7N_2O_4S)$ с линейными размерами $0.32 \times 0.39 \times 0.44$ мм было проведено при комнатной температуре на автоматическом ССD дифрактометре Bruker Apex II (МоКаизлучение; λ 0.71068 Å; θ_{max} 28.7°; $-13 \le h \le 13$, $-15 \le k \le 15$, $-21 \le l \le 24$). Всего было собрано 36744 отражений (10597 независимых, $R_{\rm int}$ 0.059). Кристаллы соединения 5b триклинные, а 10.3619(4), b 11.7514(5), c 18.3288(7) Å; а 74.290(2), β 86.940(2), γ^{7} 79.709(2)°; V 2113.9(2) Å³; M 468.73; Z 2; d_{BbH} 1.70 Γ/cm^3 ; μ 6.17 cm^{-1} ; F(000) 1084; пространственная группа $P\bar{1}$. Структура расшифрована прямым методом и уточнена МНК в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [15]. В уточнении использовано 3985 отражений с $I > 2.5\sigma(I)$ (621 уточняемый параметр, число отражений на параметр 6.42). Все атомы водорода были выявлены из разностного синтеза электронной плотности и уточнены изотропно. При уточнении была использована весовая схема Чебышева [16] с четырьмя параметрами: 2.26, -0.128, 1.84 и -0.114. Окончательные значения факторов расходимости R 0.0602 и $R_{\rm W}$ 0.0591, GOOF 1.1522. Остаточная электронная плотность из разностного ряда Фурье составляет -0.37 и 0.48 e/Å³. Полный набор рентгеноструктурных данных соединения 5b депонирован в Кембриджском банке структурных данных (депонент ССДС 905391).

СПИСОК ЛИТЕРАТУРЫ

- 1. Р. Марри, Д. Греннер, П. Мейес, В. Родуэлл, *Биохимия человека*, Мир, Москва, 2004, т. 1, с. 381.
- 2. J. M. Carpenter, G. Shaw, J. Chem. Soc. C, 2016 (1970).
- 3. B. R. Baker, M. Kanazu, J. D. McClure, J. Pharm. Sci., 56, 1081 (1967).
- K. Felczak, A. K. Drabikowska, J. A. Vilpo, T. Kulikowski, D. Shugar, *J. Med. Chem.*, 39, 1720 (1996).
- 5. H. Uno, T. Terakawa, H. Suzuki, Synthesis, 381 (1989).
- V. M. Timoshenko, Y. V. Nikolin, A. N. Chernega, Y. G. Shermolovich, Eur. J. Org. Chem., 1619 (2002).
- 7. Y. L. Sing, L. F. Lee, J. Org. Chem., **50**, 4642 (1985).
- 8. Ю. П. Бандера, А. С. Канищев, В. М. Тимошенко, С. А. Бут, А. М. Нестеренко, Ю. Г. Шермолович, *XГС*, 1342 (2007). [*Chem. Heterocycl. Compd.*, **43**, 1138 (2007)].
- 9. O. S. Kanishchev, G. P. Gudz, Y. G. Shermolovich, N. V. Nesterova, S. D. Zagorodnya, A. V. Golovan, *Nucleosides, Nucleotides Nucleic Acids*, **30**, 768 (2011).
- 10. O. Sugimoto, S. Uchitaki, M. Endo, K. Tanji, Lett. Org. Chem., 3, 626 (2006).
- 11. W. H. Dennis, Jr., V. P. Olivieri, C. W. Kruse, *Biochem. Biophys. Res. Commun.*, **83**, 168 (1978).
- 12. H. Komatsu, H. Umetani, Org. Process Res. Dev., 6, 847 (2002).
- 13. L. N. Kuleshova, P. M. Zorkii, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 37, 1363 (1981).
- 14. Ю. М. Маркитанов, В. М. Тимошенко, Ю. Г. Шермолович, *Журн. орган. фарм. химии.*, **8**, 68 (2010).
- 15. D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, *Crystals*, Chemical Crystallography Laboratory, University of Oxford, 1996, Issue 10.
- 16. J. R. Carruthers, D. J. Watkin, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 35, 698 (1979).

¹ Институт органической химии НАН Украины, ул. Мурманская, 5, Киев 02660, Украина e-mail: sherm@ioch.kiev.ua

Поступило 7.12.2012