

Синтез 2*H*-пирано[3,2-*g*]хинолин-2-онов, содержащих пиримидиноновый фрагмент и исследование их антикоагулянтной активности на примере ингибирования факторов свертываемости крови Ха и ХІа

Андрей Ю. Потапов¹*, Борис В. Папонов², Надежда А. Подоплелова³, Михаил А. Пантелеев³, Михаил А. Потапов¹, Ирина В. Леденева¹, Надежда В. Столповская¹, Хидмет С. Шихалиев¹

Поступило 12.12.2020 Принято 18.01.2021

Взаимодействием 7-гидрокси-1,2,2,4-тетраметилгидрохинолин-6-карбальдегидов с метил-3-оксопентандиоатом синтезированы 3-оксо-3-(6,8,8,9-тетраметил-2-оксо-2*H*-пирано[3,2-*g*]хинолин-3-ил)пропаноаты различной степени гидрированности пиридинового цикла, конденсацией которых с карбоксимидамидами получен ряд новых 6,8,8,9-тетраметил-3-(6-оксо-1,6-дигидропиримидин-4-ил)-2*H*-пирано[3,2-*g*]хинолин-2-онов. Найдено, что некоторые соединения этого класса проявляют относительно высокую ингибирующую активность по отношению к факторам свертываемости крови Xa и XIa.

Ключевые слова: карбоксимидамид, метил-2-оксо-(2H-пирано[3,2-g]хинолин-3-ил)пропаноат, 3-(6-оксо-1,6-дигидро-4-пиримидинил)-2H-пирано[3,2-g]хинолин-2-он, 3-оксопентандиоат, пирано[3,2-g]хинолин, пиримидин, молекулярная гибридизация, фактор Xa, фактор XIa.

Одной из стратегий современного рационального поиска новых биологически активных соединений является молекулярная гибридизация, основанная на создании структур объединяющих в себе несколько фармакофорных фрагментов. 1-8 Использование в качестве таких фрагментов привилегированных подструктур, входящих в состав уже известных лекарственных препаратов, можно рассматривать как ключевую концепцию этой методологии, используемой для разработки и синтеза новых физиологически активных веществ. 9,10 Как известно, пиримидиновый цикл, являющийся составной частью пиримидиновых оснований,

тиамина и оротовой кислоты, занимает ведущее положение в ряду фармацевтических препаратов, которые в том числе обладают противовирусным, ¹¹ противоопухолевым, ^{12–14} кардиопротекторным, ¹⁵ антигипертензивным ¹⁶ и наконец антитромбоцитарным ^{17,18} действием.

4-(2-MeOC₆H₄)piperazin-1-yl

Основным направлением в создании эффективных пероральных антикоагулянтов является поиск ингибиторов фактора Ха (фактора сериновой протеазы), объединяющего внешний и внутренний пути свертывания крови. 19–24 В настоящее время, некоторые из этих препаратов внедрены в клиническую практику. 25–27 В свою очередь, разработанные ингибиторы фактора

¹ Воронежский государственный университет, Университетская пл., 1, Воронеж 394018, Россия; e-mail: pistones@mail.r

² Белгородский государственный национальный исследовательский университет, ул. Победы, 85, Белгород 308015, Россия; e-mail: paponov@bsu.edu.ru

³ Центр теоретических проблем физико-химической фармакологии РАН, ул. Средняя Калитниковская, 30, Москва 109029, Россия

Рисунок 1. Гибридная структура 2*H*-пирано[3,2-*g*]хинолинона.

свертываемости крови XIa проходят лабораторные и клинические испытания. ^{28–34} В ряду соединений, проявляющих высокую ингибирующую активность по отношению к факторам Xa и XIa, обнаружены производные дигидрохинолонов ^{27,35} и тетрагидрохинолинов. ^{29,30,36–38} Кроме того, среди ингибиторов этого рода выявлены некоторые производные кумарина. ^{34,36,39} Однако, из-за наличия недостатков связанных с риском неконтролируемых кровотечений, а так же сходных участков связывания фактора сериновой протеазы и тромбина, ^{40,41} поиск новых селективных ингибиторов Xa и XIa является актуальной задачей.

Поэтому в рамках поиска новых ингибиторов фактора Ха и ХІа на основе принципов молекулярной гибридизации перспективным представляется построение пиримидинзамещенного 2*H*-пирано[3,2-*g*]хинолинонового цикла, сочетающего в себе кумариновый и гидрохинолиновый фрагменты (рис. 1).

Авторами работы⁴² показано, что при конденсации производного салицилового альдегида с диметил-3-оксопентандиоатом (диметил-1,3-ацетондикарбоксилатом) в реакцию вступают две сложноэфирные и метиленовые группы и образуется дикумаринилкетон. В более поздних исследованиях $^{43-50}$ показано, что эта реакция применима для получения 3-(2-оксо-2*H*-хромен-3-ил)-3-оксопропаноатов. Изучая конденсацию 7-гидрокси-1,2,2,4-тетраметилгидрохинолин-6-карбальдегидов 1, 2 с диметил-3-оксопентандиоатом (3) нами найдено, что при применении трехкратного избытка соединения 3 с достаточно хорошими выходами образуются перспективные в синтетическом плане метил-3-оксо-3-(6,8,8,9тетраметил-2-оксо-8.9-дигидро-2*H*-пирано[3.2-g]хинолин-3-ил)пропаноат (4) и метил-3-оксо-3-(6,8,8,9-тетраметил-2-оксо-6,7,8,9-тетрагидро-2*H*-пирано[3,2-*g*]хинолин-3-ил)пропаноат (5) с выходами 58 и 62% соответственно (схема 1).

Схема 1

Me Ne OH
$$A$$
, 2 h Piperidine A , 5 Me A , 5 Me A , 5 Me A , 5 Me A , 6 Me A , 6 Me A , 7 Me A , 8 Me A , 9 Me A , 9

Предполагаемый путь описанного выше взаимодействия (схема 2) включает образование аддукта Кнёвенагеля **A**, дегидратирующегося в арилиденовое производное **B**, которое далее внутримолекулярно циклизуется в конечные продукты **4**, **5** (схема 2).

Схема 2

Известно, что соединения, содержащие β-кетоэфирную группу, являются важными строительными блоками для синтеза пиримидинов. ^{51–56} Кроме того, для ряда 3-оксо-3-(2-оксо-2*H*-хромен-3-ил)пропаноатов изучено трехкомпонентное взаимодействие с альдегидами и мочевиной, приводящее к построению тетрагидропиримидинового цикла в положении 3 2-оксо-2*H*-хроменовой системы. ⁵⁰ В подтверждение этого нами установлено, что взаимодействие (2*H*-пирано[3,2-*g*]-хинолин-3-ил)пропаноатов 4, 5 с разнообразными карбоксимидамидами 6a-h в кипящем ДМФА приводит к ряду новых потенциально биологически активных 6,8,8,9-тетраметил-3-(6-оксо-1,6-дигидропиримидин-4-ил)-2*H*-пирано[3,2-*g*]хинолин-2-онов 7 и 8 a-e (схема 3). Выходы 2*H*-пирано[3,2-*g*]хинолин-2-онов 7 и 8 a-e составили 66–85%.

6a, 8a R = Ph; 6b, 7a R = pyrrolidin-1-yl 6c, 7b R = 4-Me-piperidin-1-yl; 6d, 7c R = 4-Et-piperazin-1-yl 6e, 7d, 8b R = 4-Bn-piperazin-1-yl; 6f, 7e, 8c R = 4-Ph-piperazin-1-yl 6g, 8d R = $4-(2-MeOC_6H_4)$ piperazin-1-yl; 6h, 8e R = morpholin-4-yl Все синтезированные соединения представляют собой желтые кристаллы, структура которых доказана спектроскопией ЯМР 1 H, 13 C и масс-спектрометрией высокого разрешения.

В спектрах ЯМР ¹Н соединений 4 и 7а-е, записанных в ДМСО- d_6 , проявляются синглеты интегральной интенсивностью в 6 протонов, принадлежащие протонам двух эквивалентных метильных групп в положении 8 дигидропиридинового фрагмента 6,8,8,9-тетраметил-2H-пирано[3,2-g]хинолин-2-онового трицикла, с химическими сдвигами 1.36 м. д. (для соединения 4) и 1.34–1.35 м. д. (для соединений 7а-е). Синглет 3 протонов метильной группы в положении 6 дигидропиридинового фрагмента трицикла проявляется при 1.92 м. д. (для соединения 4) и в диапазоне 1.94–1.98 м. д. (для соединений 7а-е). Синглет 3 протонов группы NCH₃ в положении 9 дигидропиридинового фрагмента трицикла проявляется с химическим сдвигом 2.92 м. д. (для соединения 4) и в диапазоне 2.87-2.89 м. д. (для соединений 7а-е). Синглет одного протона в положении 7 наблюдается при 5.50 м. д. (для соединения 4) и в диапазоне 5.45-5.48 м. д. (для соединений 7а-е). Синглет одного протона в положении 10 трицикла проявляется в диапазоне 6.37-6.40 м. д. (для соединений 4 и 7а-е). Таким образом, электронный характер пиримидинового заместителя в положении 3 6,8,8,9-тетраметил-2H-пирано[3,2-g]хинолин-2-онового трицикла мало влияет на химические сдвиги всех перечисленных выше протонов. Аналогичная картина наблюдается для сигнала протона в положении 5 6,8,8,9-тетраметил-2H-пирано[3,2-g]хинолин-2-онового трицикла. Так, в спектре соединении 4 его синглет проявляется с химическим сдвигом 7.42 м. д., а химические сдвиги сигналов этого протона в спектрах соединений 7а-е проявляются в области 7.38-7.42 м. д.

В спектре ЯМР ¹Н соединения 4 также наблюдаются два синглета с химическими сдвигами 3.60 и 3.94 м. д. Интегральная интенсивность этих сигналов составляет 3 и 2 протона соответственно. Эти синглеты представляют собой сигналы протонов карбоксиметильной и метиленовой групп фрагмента β-кетоэфира в положении 3 6,8,8,9-тетраметил-2*H*-пирано[3,2-g]хинолин-2-она 4.

В спектрах ЯМР ¹Н соединений **7а**—**е** общими также являются сигналы протонов пиримидин-6-оновых фрагментов молекул — два синглета интегральной интенсивностью в один протон каждый, проявляющиеся в интервалах 6.70–6.86 и 10.85–11.24 м. д. Первые соответствуют сигналам протонов группы СН, а вторые — сигналам группы NH пиримидин-6-оновых фрагментов молекул **7а**—**е**.

Также в спектрах ЯМР ¹Н соединений **7а**–е присутствуют сигналы протонов заместителей в положении 2 пиримидин-6-онового фрагмента этих молекул. Они соответствуют сигналам протонов циклических вторичных алифатических аминов, входящих в состав этих заместителей. Для соединений **7d**,е также характерными являются сигналы ароматических протонов фенильного и бензильного фрагментов соответственно.

В спектрах ЯМР 13 С соединений **4** и **7а**–**e**, записанных в ДМСО- d_6 проявляются сигналы sp^3 -гибридизо-

ванных атомов углерода 6,8,8,9-тетраметил-8,9-дигидро-2*H*-пирано[3,2-*g*]хинолин-2-онового трицикла в области 12.4—66.4 м. д. Сигналы sp^3 -гибридизованных атомов углерода заместителей в положении 2 пиримидин-6-онового фрагмента молекул 7a-е и sp^3 -гибридизованных атомов углерода фрагмента β-кетоэфира в положении 3 6,8,8,9-тетраметил-2*H*-пирано[3,2-*g*]хинолин-2-онового трицикла соединения 4 также проявляются в этой области. Сигналы sp^2 -гибридизованных атомов углерода 6,8,8,9-тетраметил-8,9-дигидро-2*H*-пирано[3,2-*g*]хинолин-2-онового трицикла, пиримидин-6-онового фрагмента молекул 7а-е, а также фенильного и бензильного фрагментов соединений 7d,е проявляются в области 95.6–189.8 м. д. Сигналы sp^2 -гибридизованных атомов углерода групп С=О пиранонового фрагмента трицикла в случае соединений 4 и 7а-е и пиримидинонового цикла в случае соединений 7а-е проявляются в области характерной для кумариновых и пиримидиноновых карбонилов. Сигналы sp^2 -гибридизованных атомов углерода групп С=О сложноэфирной и кетогруппы фрагмента β-кетоэфира в положении 3 6,8,8,9-тетраметил-2H-пирано[3,2-g]хинолин-2-онового трицикла в спектре соединения 4 проявляются с химическими сдвигами 168.6 и 189.5 м. д. соответственно.

Общий вид спектров ЯМР ¹Н соединений 5 и 8а-е, записанных в ДМСО-d₆, во многом сходен с соответствующими спектрами описанных выше соединений 4 и 7а-е. Однако замена дигидропиридинового фрагмента 6,8,8,9-тетраметил-2H-пирано[3,2-g]хинолин-2-онового трицикла на тетрагидропиридиновый несколько усложняет картину спектров соединений 5 и 8а-е в области сигналов алифатических протонов. Так, протоны метильных групп в положении 8 тетрагидропиридинового фрагмента трицикла утрачивают эквивалентность и их сигналы проявляются в виде двух синглетов интегральной интенсивностью в 3 протона каждый с химическими сдвигами 1.24-1.25 и 1.30 м. д. соответственно. Протоны метильных групп в положении 6 трицикла в спектрах соединений 8а-е претерпевают расщепление в результате взаимодействия с протонами, связанными с атомом углерода в положении 6, и проявляются в виде дублетов, лежащих в области 1.32–1.35 м. д., интегральной интенсивностью в 3 протона с КССВ 6.4-6.5 Гц. В спектре соединения 5 эти сигналы сдвинуты в область сильных полей и перекрываются с сигналом протонов одной из метильных групп в положении 8 трицикла. Два протона в положении 7 образуют с протоном в положении 6 трехспиновую АМХ-систему, где Х протон дополнительно взаимодействует с протонами метильной группы в положении 6 трицикла. Эта система проявляется в виде триплетов интегральной интенсивностью в один протон с КССВ 12.7-13.2 Гц и химическим сдвигом 1.41 м. д. (1.40 м. д. в случае соединения 4) для протона А, дублетов дублетов интегральной интенсивностью в один протон с КССВ 12.7-13.2 Гц и химическим сдвигом 1.86-1.87 м. д. для протона М. Сигнал протона Х (протон в положении 6 трицикла) проявляется в виде слабо расщепленного септета интегральной интенсивностью в один протон с невозможностью корректного определения КССВ с химическим сдвигом

2.78–2.79 м. д. для соединений **8а–е** (2.76 м. д. для соединения **4**).

Сигналы протонов в положениях 4, 5 и 10 6,8,8,9-тетраметил-2*H*-пирано[3,2-*g*]хинолин-2-онового трицикла в спектрах соединений **5** и **8**а—е соответствуют аналогичным сигналам в спектрах соединений **4** и **7**а—е. В спектрах соединений, содержащих одинаковые заместители, разница в химических сдвигах этих сигналов не превышает 0.1 м. д. Такая же картина наблюдается и для сигналов протонов пиримидин-6-оновых фрагментов и сигналов протонов заместителей в положении 2 пиримидин-6-онового цикла в спектрах молекул **7** и **8**. Сигналы протонов карбоксиметильной и метиленовой групп фрагмента β-кетоэфира в положении 3 6,8,8,9-тетраметил-2*H*-пирано[3,2-*g*]хинолин-2-онового трицикла идентичны для спектров соединений **4** и **5**.

В спектрах ЯМР ¹³С соединений 5 и 8а-е, записанных в ДМСО- d_6 , в области сигналов sp^3 -гибридизованных атомов углерода наблюдается возникновение трех новых сигналов. Появление двух из них обусловлено заменой дигидропиридинового фрагмента 6,8,8,9-тетраметил-2H-пирано[3,2-g]хинолин-2-онового трицикла на тетрагидропиридиновый. Эти сигналы могут соответствовать атомам углерода в положениях 6 и 7 тетрагидропиридинового фрагмента трицикла. Третий сигнал (26.6–26.8 м. д.) принадлежит атому углерода одной из метильных групп в положении 8 трицикла. Соответственно с этим исчезают два сигнала sp^2 -гибридизованных атомов углерода при 120 и 130 м. д., соответствующие атомам углерода в положениях 6 и 7 тетрагидропиридинового фрагмента трицикла, спектрах соединений 4 и 7а-е. В остальном спектры ЯМР ¹³С соединений 5 и 8а-f сходны с соответствующими спектрами соединений 4 и 7а-е.

Для синтезированных соединений 7b и 8a-е осуществлен первичный скрининг in vitro на базе лаборатории Центра теоретических проблем физико-химической фармакологии РАН с целью выявления соединений-лидеров и определения их ингибирующей активности в отношении факторов Ха и XIa. В качестве образца сравнения использован внедренный в клиническую практику препарат ривароксабан, селективно ингибирующий фактор Ха и почти не влияющий на фактор XIa. Установлено, что наибольшим ингибирующим действием по отношению к фактору XIa обладает соединение 8с, проявляя при этом умеренное ингибирующее действие в отношении фактора Ха. 8,9-Дигидро-2*H*-пирано[3,2-g]хинолин-2-он (**7b**) оказывает равное ингибирующее действие на факторы Ха и XIa (табл. 1).

Таблица 1. Активность факторов Ха и ХІа в присутствии полученных соединений **7b**, **8a**—е по отношению к активности в их отсутствие, %

Соединение	Фактор Ха	Фактор XIa
7b	0.08	0.07
8a	0.58	0.15
8b	0.69	0.15
8c	0.38	0.04
8d	0.87	0.86
8e	0.76	0.99
Ривароксабан	0.06	0.92

На основании полученных данных предполагается дальнейшее исследование возможности использования методологии молекулярной гибридизации для поиска высокоэффективных и селективных ингибиторов факторов свертываемости крови в ряду производных гидрохинолинов.

Экспериментальная часть

Спектры ЯМР ¹Н и ¹³С зарегистрированы на спектрометре Agilent MR 400+ (400 и 100 $M\Gamma$ ц соответственно) в растворах ДМСО- d_6 , внутренний стандарт – остаточные сигналы растворителя (2.50 м. д. для ядер ¹H, 39.5 м. д. для ядер ¹³С). Хромато-масс-спектры высокого разрешения зарегистрированы на приборе Agilent Technologies 1260 Infinity с масс-детектором Agilent 6230 TOF LC/MS (времяпролетный детектор высокого разрешения), ионизация двойным электрораспылением. Запись и регистрация сигналов в положительной полярности; небулайзер (N₂) 20 пси, газ-осушитель (N₂) 6 мл/мин, 325°С; диапазон обнаружения масс 50-2000 Да. Напряжение на капилляре 4.0 кВ, фрагментаторе +191 В, скиммере +66 B, OctRF 750 B. Условия хроматографирования: колонка Poroshell 120 EC-C18 (4.6 × 50 мм, 2.7 мкм). Градиентное элюирование: MeCN/H₂O (0.1 % НСООН), скорость потока 0.4 мл/мин. Программное обеспечение для обработки результатов исследований -MassHunter Workstation / Data Acquisition V.06.00. Температуры плавления определены на аппарате Stuart SMP30. Контроль за ходом реакций, индивидуальностью реагентов и полученных соединений осуществлен методом TCX на пластинах Merck TLC Silica gel 60 F₂₅₄, элюенты: СНСl₃, MeOH и их смеси в различных соотношениях, проявление хроматограмм в УФ свете и парах иода.

7-Гидрокси-1,2,2,4-тетраметилгидрохинолин-6-карбальдегиды **1**, **2** получены по описанным ранее методикам, ^{57,58} исходные карбоксимидамиды **6а—h** приобретены в компании Alinda Chemical Ltd., диметил-3-оксопентадиоат — в компании Acros Organics.

Синтез (2*H*-пирано[3,2-*g*]хинолин-3-ил)пропаноатов **4**, **5** (общая методика). Смесь 0.05 моль соответствующего 7-гидрокси-1,2,2,4-тетраметилхинолин-6-карбальдегида **1** или **2**, 21.1 г (0.15 моль) диметил-3-оксопентандиоата (**3**), 1 мл пиперидина и 40 мл ЕtOH кипятят в колбе с обратным холодильником в течение 2 ч. Выпавший при охлаждении реакционной смеси осадок фильтруют и перекристаллизовывают из *i*-PrOH.

Метил-3-оксо-3-(6,8,8,9-тетраметил-2-оксо-8,9-дигидро-2*H*-пирано[3,2-g]хинолин-3-ил)пропаноат (4). Выход 10.31 г (58%), желтые кристаллы, т. пл. 130–132°С. Спектр ЯМР 1 Н, δ , м. д.: 1.36 (6H, c, 8-CH₃); 1.92 (3H, c, 6-CH₃); 2.92 (3H, c, NCH₃); 3.60 (3H, c, COOCH₃); 3.94 (2H, c, CH₂); 5.50 (1H, c, 7-CH); 6.39 (1H, c, H-10); 7.42 (1H, c, H-5); 8.50 (1H, c, H-4). Спектр ЯМР 13 С, δ , м. д.: 18.6; 29.2; 32.5; 48.5; 52.1; 58.8; 95.6; 108.2; 113.8; 120.4; 125.2; 125.5; 130.7; 148.6; 151.8; 159.2; 160.4; 168.6; 189.5. Найдено, m/z: 356.1490 [M+H] $^{+}$. C_{20} H₂₂NO₅. Вычислено, m/z: 356.1494.

Метил-3-оксо-3-(6,8,8,9-тетраметил-2-оксо-6,7,8,9-тетрагидро-2H-пирано[3,2-g]хинолин-3-ил)пропаноат (5). Выход 11.08 г (62%), желтые кристаллы, т. пл. 123–

125°С. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.25 (3H, c, 8-CH₃); 1.30 (6H, д, 6,8-CH₃); 1.40 (1H, т, J=13.2, 7-CH₂); 1.87 (1H, д. д, J=13.2, J=2.9, 7-CH₂); 2.71–2.79 (1H, м, 6-CH); 2.93 (3H, c, NCH₃); 3.60 (3H, c, COOCH₃); 3.94 (2H, c, CH₂); 6.43 (1H, c, H-10); 7.53 (1H, c, H-5); 8.53 (1H, c, H-4). Спектр ЯМР 13 С, δ , м. д.: 19.3; 25.5; 26.6; 28.9; 32.9; 45.1; 48.5; 52.1; 56.6; 96.2; 108.0; 113.7; 127.3; 127.4; 148.7; 153.0; 157.8; 160.7; 169.9; 189.6. Найдено, m/z: 358.1651 [М+Н] $^+$. C_{20} Н₂₄NO₅. Вычислено, m/z: 356.1650.

Синтез 6,8,8,9-тетраметил-3-(6-оксо-1,6-дигидропиримидин-4-ил)-2*H*-пирано[3,2-g]хинолин-2-онов 7, 8а—е (общая методика). Смесь 2 ммоль (2*H*-пирано-[3,2-g]хинолин-3-ил)пропаноата 4 или 5 с 2 ммоль соответствующего карбоксимидамида 6а—h в 5 мл ДМФА кипятят в колбе с обратным холодильником в течение 1 ч. Выпавший из охлажденной реакционной смеси осадок фильтруют и перекристаллизовывают из *i*-PrOH.

6,8,8,9-Тетраметил-3-[6-оксо-2-(пирролидин-1-ил)-1,6-дигидропиримидин-4-ил]-8,9-дигидро-2*Н*-пирано-[**3,2-g]хинолин-2-он** (**7a**). Выход 0.60 г (72%), желтые кристаллы, т. пл. >300°С. Спектр ЯМР ¹Н, δ , м. д.: 1.34 (6H, с, 8-СН₃); 1.91 (4H, уш. с, СН₂ пирролидин); 1.96 (3H, с, 6-СН₃); 2.88 (3H, с, NCH₃); 3.52 (4H, уш. с, СН₂ пирролидин); 5.46 (1H, с, 7-СН); 6.38 (1H, с, H-10); 6.70 (1H, с, СН пиримидин); 7.38 (1H, с, H-5); 8.81 (1H, с, H-4); 10.85 (1H, с, NH пиримидин). Спектр ЯМР ¹³С, δ , м. д.: 18.8; 25.2; 29.0; 32.0; 47.0; 54.0; 58.1; 95.6; 108.5; 112.2; 114.8; 120.0; 121.3; 121.9; 123.3; 123.9; 126.0; 130.5; 136.0; 139.1; 144.7; 150.0; 157.3. Найдено, *m/z*: 419.2079 [М+Н]⁺. С₂₄Н₂₇N₄O₃. Вычислено, *m/z*: 419.2079.

6,8,8,9-Тетраметил-3-[2-(4-метилпиперидин-1-ил)-6-оксо-1,6-дигидропиримидин-4-ил]-8,9-дигидро-**2***H*-пирано[3,2-*g*]хинолин-2-он (7b). Выход 0.69 г (77%), желтые кристаллы, т. пл. 289-291°С. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 0.92 (3H, д, J = 6.2, CН $_{3}$ пиперидин); 1.05-1.13 (2H, м, СН₂ пиперидин); 1.35 (6H, с, 8-СН₃); 1.58–1.69 (3H, м, СН₂ пиперидин); 1.97 (3H, с, 6-СН₃); 2.84–2.91 (5H, м, СН₂ пиперидин, NCH₃); 4.49 (2H, уш. c, CH₂ пиперидин); 5.46 (1H, c, 7-СН); 6.39 (1Н, с, Н-10); 6.75 (1Н, с, СН пиримидин); 7.42 (1H, c, H-5); 8.77 (1H, c, H-4); 11.00 (1H, c, NH пиримидин). Спектр ЯМР ¹³С, δ, м. д.: 19.4; 24.1; 25.5; 26.7: 29.0: 32.7: 44.2: 45.3: 56.2: 66.4: 96.5: 107.5: 117.3: 121.4; 126.5; 126.9; 148.7; 149.1; 152.2; 155.9; 157.2; 159.2; 159.8; 167.9; 189.8. Найдено, т/z: 447.2390 $[M+H]^+$. $C_{26}H_{31}N_4O_3$. Вычислено, m/z: 447.2392.

6,8,8,9-Тетраметил-3-[6-оксо-2-(4-этилпиперазин-1-ил)-1,6-дигидропиримидин-4-ил]-8,9-дигидро-2*H*-пирано[3,2-g]хинолин-2-он (7c). Выход 0.62 г (67%), желтые кристаллы, т. пл. 285–287°С. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 1.02 (3H, т, *J* = 7.1, С<u>Н</u>₃СН₂); 1.35 (6H, c, 8-СН₃); 1.97 (3H, c, 6-СН₃); 2.58 (2H, к, *J* = 7.1, СН₃С<u>Н</u>₂); 2.42 (4H, уш. c, СН₂ пиперазин); 2.88 (3H, c, NCH₃); 3.69 (4H, уш. c, СН₂ пиперазин); 5.46 (1H, c, 7-СН); 6.38 (1H, c, H-10); 6.81 (1H, c, CH пиримидин); 7.41 (1H, c, H-5); 8.79 (1H, c, H-4); 11.10 (1H, c, NH пиримидин). Спектр ЯМР ¹³С, δ, м. д.: 12.4; 18.6; 29.0; 32.1; 44.5; 52.0; 52.5; 58.1; 95.6; 108.5; 110.5; 114.5; 120.0; 124.1; 125.9; 130.5; 144.6; 149.1; 150.1;

155.8; 157.1; 160.0; 161.3. Найдено, m/z: 462.2501 $[M+H]^+$. $C_{26}H_{32}N_5O_3$. Вычислено, m/z: 462.2501.

3-[2-(4-Бензилпиперазин-1-ил)-6-оксо-1,6-дигидро-пиримидин-4-ил]-6,8,8,9-тетраметил-8,9-дигидро- 2*H***-пирано[3,2-g]хинолин-2-он** (**7d**). Выход 0.69 г (66%), желтые кристаллы, т. пл. >300°С. Спектр ЯМР ¹H, б, м. д.: 1.34 (6H, с, 8-СН₃); 1.94 (3H, с, 6-СН₃); 2.43 (4H, уш. с, СН₂ пиперазин); 2.87 (3H, с, NСН₃); 3.51 (2H, с, СН₂ бензил); 3.70 (4H, уш. с, СН₂ пиперазин); 5.45 (1H, с, 7-СН); 6.37 (1H, с, H-10); 6.82 (1H, с, СН пиримидин); 7.26–7.35 (5H, м, H Ph); 7.39 (1H, с, H-5); 8.79 (1H, с, H-4); 11.12 (1H, с, NH пиримидин). Спектр ЯМР ¹³С, б, м. д.: 18.8; 29.0; 32.0; 44.6; 52.7; 58.1; 62.3; 95.6; 108.5; 114.5; 117.0; 120.0; 122.5; 124.0; 125.9; 127.5; 128.7; 129.4; 130.4; 138.3; 143.6; 144.7; 150.1; 157.1; 155.9; 156.0; 156.1; 159.2; 160.0. Найдено, *m/z*: 524.2655 [М+H]⁺. С₃₁Н₃₄N₅O₃. Вычислено, *m/z*: 524.2658.

6,8,8,9-Тетраметил-3-[6-оксо-2-(4-фенилпиперазин-1-ил)-1,6-дигидропиримидин-4-ил]-8,9-дигидро- 2*Н*-пирано[3,2-g]хинолин-2-он (7e). Выход 0.85 г (83%), желтые кристаллы, т. пл. >300°С. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.35 (6H, c, 8-CH₃); 1.98 (3H, c, 6-CH₃); 2.89 (3H, c, NCH₃); 3.22 (4H, уш. c, CH₂ пиперазин); 3.86 (4H, уш. c, CH₂ пиперазин); 5.48 (1H, c, 7-CH); 6.40 (1H, c, H-10); 6.78-6.86 (2H, м. СН пиримидин, H-4 Ph); 6.98 (2H, д. J = 7.1, H-2,6 Ph); 7.23 (2H, т. J = 7.1, H-3,5 Ph); 7.39 (1H, c, H-5); 8.85 (1H, c, H-4); 11.24 (1H, c, NH пиримидин). Спектр ЯМР 13 С, δ , м. д.: 18.9; 29.0; 32.1; 39.6; 44.5; 48.6; 58.2; 95.6; 108.5; 114.3; 116.3; 119.7; 120.0; 124.0. 125.9; 129.5; 130.5; 138.9; 142.1; 145.2; 150.1; 155.0; 156.9; 157.2; 157.3; 158.2; 160.0. Найдено, m/z: 510.2500 [M+H] $^+$. C_{30} H₃₂N₅O₃. Вычислено, m/z: 510.2501.

6,8,8,9-Тетраметил-3-(6-оксо-2-фенил-1,6-дигидро-пиримидин-4-ил)-6,7,8,9-тетрагидро-2*H*-пирано[3,2-*g*]-хинолин-2-он (8а). Выход 0.68 г (80%), желтые кристаллы, т. пл. >300°С. Спектр ЯМР 1 Н, 1 Н, 1 М, м. д. (1 Л, 1 П): 1.25 (3H, с, 8-CH₃); 1.30 (3H, с, 8-CH₃); 1.35 (3H, д, 1 Л = 6.4, 6-CH₃); 1.41 (1H, т, 1 Л = 13.2, 1 Л - CH₂); 1.87 (1H, д. д. 1 Л = 13.2, 1 Л = 2.6, 1 Λ - CH₂); 2.76–2.84 (1H, м. 6-CH); 2.90 (3H, с, NCH₃); 6.44 (1H, с, H-10); 7.37 (1H, с, H-5); 7.53–7.61 (4H, м. CH пиримидин, H-3–5 Ph); 8.28 (2H, д. 1 Л = 6.8, H-2,6 Ph); 9.07 (1H, с, H-4); 12.61 (1H, с, NH пиримидин). Спектр ЯМР 13 С, 1 Л, м. д.: 19.5; 25.6; 26.8, 29.0; 32.6; 45.5; 56.0; 96.1; 108.3; 113.3; 126.2; 126.9; 128.4; 129.1; 129.2; 132.2; 145.5; 148.9; 151.5; 155.9; 159.3; 160.3; 166.8. Найдено, 1 М/ 2 2 428.1968 [M+H] $^{+}$ 1. С 2 6 H₂₆N₃O₃. Вычислено, 1 1 = 428.1970.

3-[2-(4-Бензилпиперазин-1-ил)-6-оксо-1,6-дигидро-пиримидин-4-ил]-6,8,8,9-теграметил-6,7,8,9-теграгидро- 2*H***-пирано[3,2-g]хинолин-2-он (8b)**. Выход 0.88 г (84%), желтые кристаллы, т. пл. >300°С. Спектр ЯМР 1 H, δ , м. д. (J, Γ II): 1.24 (3H, c, 8-CH₃); 1.30 (3H, c, 8-CH₃); 1.32 (3H, д. J = 6.5, 6-CH₃); 1.41 (1H, т. J = 13.0, 7-CH₂); 1.86 (1H, д. д. J = 13.0, J = 2.6, 7-CH₂); 2.44 (4H, уш. c, CH₂ пиперазин); 2.73–2.79 (1H, м. 6-CH); 2,89 (3H, с, NCH₃); 3.52 (2H, c, CH₂ бензил); 3.70 (4H, уш. c, CH₂ пиперазин); 6.42 (1H, c, H-10); 6.82 (1H, c, CH пиримидин); 7.23–7.28 (1H, м. H-4 Ph); 7.31–7.34 (4H, м. H-2,3,5,6 Ph); 7.46 (1H, c, H-5); 8.81 (1H, c, H-4); 11.07 (1H, c, NH пиримидин). Спектр ЯМР 13 С, δ , м. д.: 19.6; 25.5; 26.8; 29.0; 32.5; 44.6; 45.6; 52.7; 55.9; 62.4; 96.1; 108.2; 114.2;

125.9; 126.7; 127.5; 128.7; 129.4; 138.4; 144.8; 151.2; 155.8; 157.8; 158.3; 159.7; 160.2. Найдено, m/z: 526.2812 [M+H] $^+$. С₃₁Н₃₆N₅О₃. Вычислено, m/z: 526.2814.

6,8,8,9-Тетраметил-3-[6-оксо-2-(4-фенилпиперазин-1-ил)-1,6-дигидропиримидин-4-ил)]-6,7,8,9-тетра**гидро-2***H***-пирано**[**3,2-***g*]**хинолин-2-он (8c)**. Выход 0.87 г (85%), желтые кристаллы, т. пл. >300°С. Спектр ЯМР ¹Н. δ, м. д. (*J*, Гц): 1.24 (3H, c, 8-CH₃); 1.30 (3H, c, 8-CH₃); 1.35 (3H, д, J = 6.4, 6-CH₃); 1.41 (1H, т, J = 13.1, 7-CH₂); 1.87 (1H, д. д, J = 13.1, J = 2.6, 7-CH₂); 2.74–2.81 (1H, м, 6-СН); 2,89 (3H, с, NCH₃); 3.22 (4H, уш. с, СН₂ пиперазин); 3.86 (4Н, уш. с, СН₂ пиперазин); 6.43 (1Н, с, Н-10); 6.80 (1H, T, J = 7.1, H-4 Ph); 6.86 (1H, c, CH пиримидин);6.97 (2H, д, J = 8.0, H-2,6 Ph); 7.23 (2H, т, J = 8.0, H-3,5 Ph); 7.50 (1H, c, H-5); 8.86 (1H, c, H-4); 11.23 (1H, c, NH пиримидин). Спектр ЯМР ¹³С, δ, м. д.: 19.6; 25.6; 26.8; 29.0; 32.5; 45.6; 48.6; 55.7; 64.7; 96.2; 103.8; 108.1; 114.2; 116.3; 119.7; 125.9; 126.8; 129.4; 151.2; 151.3; 155.7; 158.1; 160.3; 166.4; 190.9. Найдено, т/z: 512.2654 $[M+H]^+$. $C_{30}H_{34}N_5O_3$. Вычислено, m/z: 512.2658.

6,8,8,9-Тетраметил-3-{2-[4-(2-метоксифенил)пиперазин-1-ил]-6-оксо-1,6-дигидропиримидин-4-ил}-6,7,8,9-тетрагидро-2*H*-пирано[3,2-*g*]хинолин-**2-он (8d)**. Выход 0.88 г (81%), желтые кристаллы, т. пл. >300°C. Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 1.24 (3H, с, 8-CH₃); 1.30 (3H, c, 8-CH₃); 1.34 (3H, π , J = 6.4, 6-CH₃); 1.41 (1H, д. д, J = 13.2, J = 2.6, 7-CH₂); 1.87 (1H, д. д, J = 13.2, $J = 2.6, 7 - \text{CH}_2$; 2.74–2.81 (1H, M, 6-CH); 2.89 (3H, c, NCH₃); 3.03 (4H, уш. с, CH₂ пиперазин); 3.80 (3H, с, ОСН₃); 3.85 (4H, уш. с, СН₂ пиперазин); 6.42 (1H, с, H-10); 6.84-7.00 (5Н, м, Н Аг, СН пиримидин); 7.52 (1Н, с, H-5); 8.87 (1H, c, H-4); 11.17 (1H, c, NH пиримидин). Спектр ЯМР ¹³С, δ, м. д.: 19.5; 25.5; 26.8; 29.0; 32.5; 44.8; 45.6; 50.4; 55.8; 55.9; 96.1; 108.2; 112.3; 114.2; 118.6; 121.3; 123.6; 125.9; 126.7; 141.3; 114.8; 137.9; 144.9; 151.2; 152.4; 155.8; 156.0; 159.3; 160.3. Найдено, *m/z*: 542.2760 [M+H]⁺. С₃₁H₃₆N₅O₄. Вычислено, *m/z*: 542.2764.

6,8,8,9-Тетраметил-3-[2-(морфолин-4-ил)-6-оксо-1,6-дигидропиримидин-4-ил]-6,7,8,9-тетрагидро-2*H*-пирано[3,2-g]хинолин-2-он (8e). Выход 0.70 г (80%), желтые кристаллы, т. пл. 292–294°С. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.24 (3H, с, 8-CH₃); 1.30 (3H, с, 8-CH₃); 1.34 (3H, д, J = 6.5, 6-CH₃); 1.41 (1H, т, J = 13.1, 7-CH₂); 1.87 (1H, д. д, J = 13.1, J = 2.6, 7-CH₂); 2.73–2.81 (1H, м, 6-CH); 2.89 (3H, с, NCH₃); 3.67 (8H, уш. с, CH₂ морфолин); 6.42 (1H, с, H-10); 6.85 (1H, с, CH пиримидин); 7.49 (1H, с, H-5); 8.83 (1H, с, H-4); 11.13 (1H, с, NH пиримидин). Спектр ЯМР 13 С, δ , м. д.: 19.5; 25.5; 26.8; 29.0; 32.5; 45.0; 45.6; 55.9; 66.3; 96.1; 108.2; 110.0; 125.9; 126.8; 144.8; 150.1; 151.2; 156.0; 156.1; 158.8; 160.2. Найдено, m/z: 437.2185 [M+H] $^{+}$. C_{24} H₂₉N₄O₄. Вычислено, m/z: 437.2185.

Исследование ингибирующей активности соединений 7b, 8a—е в отношении факторов свертываемости крови Ха и ХIа. Для исследования ингибирования факторов Ха и ХIа соединениями 7b, 8a—е измеряют кинетику гидролиза специфичных по отношению к каждому их этих ферментов субстратов в присутствии тестируемых соединений. В случае фактора Ха используют специфичный низкомолекулярный хромогенный субстрат S2765 (Z-D-Arg-Gly-Arg-pNA, 2HCl,

Chromogenix, Instrumentation Laboratory Company), а для фактора XIa – субстрат S2366 (pyroGlu-Pro-ArgpNA·HCl, Chromogenix, Instrumentation Laboratory Company).

В лунки 96-луночного планшета вносят буфер, содержащий 140 мМ NaCl, 20 мМ НЕРЕЅ, 0.1% ПЭГ (6000), рН 8.0, добавляют фактор Ха (конечная концентрация – 2.5 нМ) или XIa (конечная концентрация 0.8 нМ), субстрат S2765 (конечная концентрация – 200 мкМ) или S2366 (конечная концентрация -200 мкМ) соответственно, а также соединения в концентрации 30 мкМ, ДМСО не более 2%. С помощью микропланшетного фотометра THERMOmax Microplate Reader (Molecular Devices Corporation) измеряют кинетику образования n-нитроанилина (pNA) по поглощению конечным раствором света с длиной волны 405 нм. Начальная скорость расщепления субстрата определяется по начальному наклону кривой образования pNA. Рассчитывают отношение скорости расщепления субстрата ферментом в присутствии соединения к скорости расщепления в отсутствие соединения. Результаты обрабатывают с помощью программ GraphPad Prism⁵⁹ (GraphPad) и OriginPro 8⁶⁰ (OriginLab Corporation).

Файл сопроводительных материалов, содержащий спектры ЯМР 1 Н и 13 С всех синтезированных соединений, доступен на сайте журнала http://hgs.osi.lv.

Исследование выполнено за счет гранта Российского научного фонда (проект № 18-74-10097).

Список литературы

- Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E. J.; Manssour Fraga, C. A. Curr. Med. Chem. 2007, 14, 1829.
- 2. Gao, F.; Ye, L.; Wang, Y.; Kong, F.; Zhao, Sh.; Xiao, J.; Huang, G. Eur. J. Med. Chem. 2019, 183, 111678.
- 3. Meunier, B. Acc. Chem. Res. 2008, 41, 69.
- Kartsev, V.; Shikhaliev, Kh. S.; Geronikaki, A.; Medvedeva, S. M.; Ledenyova, I. V.; Krysin, M. Yu.; Petrou, A.; Ciric, A.; Glamoclija, J.; Sokovic, M. Eur. J. Med. Chem. 2019, 175, 201.
- Gao, J.; Zhang, Z.; Zhang, B.; Mao, Q.; Dai, X.; Zou, Q.; Lei, Y.; Feng, Y.; Wang, S. *Bioorg. Chem.* 2020, 95, 103564.
- Novichikhina, N.; Ilin, I.; Tashchilova, A.; Sulimov, A.; Kutov, D.; Ledenyova, I.; Krysin, M.; Shikhaliev, Kh.; Gantseva, A.; Gantseva, E.; Podoplelova, N.; Sulimov, V. Molecules 2020, 25, 1889.
- Djemoui, A.; Naouri, A.; Ouahrani, M. R.; Djemoui, D.; Lahcene, S.; Lahrech, M. B.; Boukenna, L.; Albuquerque, H. M. T.; Saher, L.; Rocha, D. H. A.; Monteiro, F. L.; Helguero, L. A.; Bachari, K.; Talhi, O.; Silva, A. M. S. *J. Mol. Struct.* 2020, 1204, 127487.
- Novichikhina, N. P.; Shestakov, A. S.; Potapov, A. Yu; Kosheleva, E. A.; Shatalov, G. V.; Verezhnikov, V. N.; Vandyshev, D. Yu.; Ledeneva, I. V.; Shikhaliev, Kh. S. Russ. Chem. Bull., Int. Ed. 2020, 69, 787. [Изв. АН, Сер. хим. 2020, 787.]
- Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.
- DeSimone, R. W.; Currie, K. S.; Mitchell, S. A.; Darrow, J. W.; Pippin, D. A. Comb. Chem. High Throughput Screening 2004, 7, 473
- Coen, N.; Duraffour, S.; Topalis, D.; Snoeck, R.; Andrei G. Antimicrob. Agents Chemother. 2014, 58, 7312.

- 12. Ai, J.; Tiu, R. V. Ther. Adv. Hematol. 2014, 5, 107.
- 13. Heaney, M. L. Clin. Adv. Hematol. Oncol. 2014, 12, 502.
- Wei, J.; Freytag, M.; Schober, Y.; Nockher, W. A.; Mautner, V. F.; Friedrich, R. E.; Manley, P. W.; Kluwe, L.; Kurtz, A. PLoS One 2014, 9, 1077.
- Yitzhaki, S.; Shainberg, A.; Cheporko, Y.; Vidne, B. A.; Sagie, A.; Jacobson, K. A.; Hochhauser, E. Biochem Pharmacol. 2006, 72, 949.
- Самотруева, М. А.; Цибизова, А. А.; Ясенявская, А. Л.; Озеров, А. А.; Тюренков, И. Н. Астраханский медицинский журнал 2015, 10(1), 12.
- 17. Eisert, W.G. Adv. Cardiol. 2012, 47, 78.
- 18. Барышникова, Г. А. *Проблемы женского здоровья* **2007**, *2*(1), 88.
- Anselm, L.; Banner, D. W.; Benz, J.; Zbinden, K. G.; Himber, J.; Hilpert, H.; Huber, W.; Kuhn, B.; Mary, J. L.; Otteneder, M. B.; Panday, N.; Ricklin, F.; Stahl, M.; Thomi, S.; Haap, W. *Bioorg. Med. Chem. Lett.* 2010, 20, 5313.
- Zbinden, K. G.; Anselm, L.; Banner, D. W.; Benz, J.; Blasco, F; Décoret, J.; Himber, J.; Kuhn, B.; Panday, N.; Ricklin, F.; Risch, Ph.; Schlatter, D.; Stahl, M.; Thomi, S.; Unger, R.; Haap, W. Eur. J. Med. Chem. 2009, 44, 2787.
- Pinto, D. J. P.; Smallheer, J. M.; Cheney, D. L.; Knabb, R. M.; Wexler, R. R. J. Med. Chem. 2010, 53, 6243.
- 22. Trstenjak, U.; Ilaš, J.; Kikelj, D. Med. Chem. Commun. 2014, 5, 197.
- 23. Вавилова, Т. В. Кардиология **2019**, 59(11S), 28.]
- 24. Подоплелова, Н. А.; Сулимов, В. Б.; Тащилова, А. С.; Ильин, И. С.; Пантелеев, М. А.; Леденева, И. В.; Шихалиев, Х. С. Вопросы гематологии/онкологии и иммунопатологии в педиатрии 2020, 19(1), 139.
- Abdulsattar, Y.; Bhambri, R.; Nogid, A. *Pharm. Ther.* 2009, 34, 238.
- Frost, C.; Wang, J.; Nepal, S.; Schuster, A.; Barrett, Y. C.; Mosqueda-Garcia, R.; Reeves, R. A.; LaCreta, F. Br. J. Clin. Pharmacol. 2013, 75, 476.
- Furugohri, T.; Isobe, K.; Honda, Y.; Kamisato-Matsumoto, C.; Sugiyama, N.; Nagahara, T.; Morishima, Y.; Shibano, T. J. Thromb. Haemostasis 2008, 6, 1542.
- 28. Quan, M. L.; Wong, P. C.; Wang, C.; Woemer, F.; Smallheer, J. M.; Barbera, F. A.; Bozarth, J. M.; Brown, R. L.; Harpel, M. R.; Luettgen, J. M.; Morin, P. E.; Peterson, T.; Ramamurthy, V.; Rendina, A. R.; Rossi, K. A.; Watson, C. A.; Wei, A.; Zhang, G.; Seiffert, D.; Wexler, R. R. J. Med. Chem. 2014, 57, 955.
- Wong, P. C.; Quan, M. L.; Watson, C. A.; Crain, E. J.; Harpel, M. R.; Rendina, A. R.; Luettgen, J. M.; Wexler, R. R.; Schumacher, W. A.; Seiffert, D. A. J. Thromb. Thrombolysis 2015, 40, 416.
- Pinto, D. J. P.; Orwat, M. J.; Smith, L. M.; Quan, M. L.; Lam, P. Y. S.; Rossi, K. A.; Apedo, A.; Bozarth, J. M.; Wu, Y.; Zheng, J. J.; Xin, B.; Toussaint, N.; Stetsko, P.; Gudmundsson, O.; Maxwell, B.; Crain, E. J.; Wong, P. C.; Lou, Z.; Harper, T. W.; Chacko, S. A.; Myers, J. E., Jr.; Sheriff, S.; Zhang, H.; Hou, X.; Mathur, A.; Seiffert, D. A.; Wexler, R. R.; Luettgen, J. M.; Ewing, W. R. J. Med. Chem. 2017, 60, 9703.
- Pinto, D. J. P.; Smallheer, J. M.; Corte, J. R.; Austin, E. J. D.; Wang, C.; Fang, T.; Smith II, L. M.; Rossi, K. A.; Rendina, A. R.; Bozarth, J. M.; Zhang, G.; Wei, A.; Ramamurthy, V.; Sheriff, S.; Myers, J. E., Jr.; Morin, P. E.; Luettgen, J. M.; Seiffert, D. A.; Quan, M. L.; Wexler, R. R. Bioorg. Med. Chem. Lett. 2015, 25, 1635.
- 32. Hu, Z.; Wang, C.; Han, W.; Rossi, K. A.; Bozarth, J. M.; Wu, Y.; Sheriff, S.; Myers, J. E., Jr.; Luettgen, J. M.; Seiffert, D. A.;

- Wexler, R. R.; Quan, M. L. Bioorg. Med. Chem. Lett. 2018, 28, 987.
- 33. Corte, J. R.; Fang, T.; Pinto, D. J. P.; Orwat, M. J.; Rendina, A. R.; Luettgen, J. M.; Rossi, K. A.; Wei, A.; Ramamurthy, V.; Myers, J. E., Jr.; Sheriff, S.; Narayanan, R.; Harper, T. W.; Zheng, J. J.; Li, Y.-X.; Seiffert, D. A.; Wexler, R. R.; Quan, M. L. Bioorg. Med. Chem. 2016, 24, 2257.
- 34. Obaidullah, A. J.; Al-Horani, R. A. Cardiovasc. Hematol. Agents Med. Chem. 2017, 15, 40.
- 35. Fjellström, O.; Akkaya, S.; Beisel, H. G.; Eriksson, P. O.; Erixon, K.; Gustafsson, D.; Jurva, U.; Kang, D.; Karis, D.; Knecht, W.; Nerme, V.; Nilsson, I.; Olsson, T.; Redzic, A.; Roth, R.; Sandmark, J.; Tigerstrom, A.; Oster, L. PLOS One 2015, 10, 1.
- Amin, K. M.; Gawad, N. M. A.; Rahman, D. E. A.; Ashry, M. K. E. Bioorg. Chem. 2014, 52, 31.
- Santana-Romo, F.; Lagos, C. F.; Duarte, Y.; Castillo, F.; Moglie, Y.; Maestro, M. A.; Charbe, N.; Zacconi, F. C. Molecules 2020, 25, 491.
- Wissel, G.; Kudryavtsev, P.; Ghemtio, L.; Tammela, P.; Wipf, P.; Yliperttula, M.; Finel, M.; Urtti, A.; Kidron, H.; Xhaard, H. Bioorg. Med. Chem. 2015, 23, 3513.
- 39. Verespy III, S.; Y. Mehta, A.; Afosah, D.; Al-Horani, R. A.; Desai, U. R. *Sci. Rep.* **2016**, *6*, 24043.
- Quan, M. L.; Pinto, D. J. P.; Smallheer, J. M.; Ewing, W. R.; Rossi, K. A.; Luettgen, J. M.; Seiffert, D. A.; Wexler, R. R. J. Med. Chem. 2018, 61, 7425.
- 41. Maignan, S.; Mikol, V. Curr. Top. Med. Chem. 2001, 1, 161.
- 42. Specht, D. P.; Martic, P. A.; Farid, S. Tetrahedron 1982, 38, 1203.
- 43. Sugino, T.; Tanaka, K. Chem. Lett. 2001, 30, 110.
- Huang, D.; Sun, J.; Ma, L.; Zhang, C.; Zhao, J. Photochem. Photobiol. Sci. 2013, 12, 872.
- Babür, B.; Seferoðlu, N.; Seferoðlu, Z. Tetrahedron Lett. 2015, 56, 2149.
- Seydimemet, M.; Ablajan, K.; Hamdulla, M.; Li, W.; Omar, A.;
 Obul, M. *Tetrahedron* 2016, 72, 7599.
- 47. Omar, A.; Ablajan, K.; Hamdulla, M. Chin. Chem. Lett. 2017, 28, 976.
- Yalçın, E.; Alkış, M.; Seferoğlu N.; Seferoğlu, Z. J. Mol. Struct. 2018, 1155, 573.
- Mani, K. S.; Rajamanikandan, R.; Ravikumar, G.; Pandiyan, B. V.; Kolandaivel, P.; Ilanchelian, M.; Rajendran, S. P. ACS Omega 2018, 3, 17212.
- Vitório, F.; Pereira, T. M.; Castro, R. N.; Guedes, G. P.; Graebin, C. S.; Kümmerle, A. E. New J. Chem. 2015, 39, 2323.
- 51. Al-Saleh, B.; Abdel-Khalik, M. M.; El-Apasery, M. A.; Elnagdi, M. H. *Heterocycl. Chem.* **2003**, *40*, 171.
- 52. Tsuji, T.; Takenaka, K. Bull. Chem. Soc. Jpn. 1982, 55, 637.
- 53. Adams, V. D.; Anderson, R. C. Synthesis 1974, 286.
- 54. Willenbrock, H. J.; Wamhoff, H.; Korte, F. *Justus Liebigs Ann. Chem.* **1973**, *1*, 103.
- Skulnick, H. I.; Weed, S. D.; Eidson, E. E.; Renis, H. E.; Wierenga, W.; Stringfellow, D. A. J. Med. Chem. 1985, 28, 1864.
- 56. Lazar, J.; Bernath, G. J. Heterocycl. Chem. 1990, 27, 1885.
- 57. Manahelohe, G. M.; Potapov, A. Yu.; Shikhaliev, Kh. S. *Russ. Chem. Bull.*, *Int. Ed.* **2016**, *65*, 1145. [*Изв. АН*, *Сер. хим.* **2016**, 1145.]
- 58. Potapov, A. Yu.; Vandyshev, D. Yu.; Refki, Y.; Ledenyova, I. V.; Ovchinnikov, O. V.; Smirnov, M. S.; Shikhaliev, Kh. S. *Russ. J. Gen. Chem.* **2020**, *90*, 1216. [Журн. общ. химии **2020**, *90*, 1026.]
- 59. https://www.graphpad.com/scientific-software/prism/
- 60. https://www.originlab.com/