

Раскрытие цикла 1,3,5-триазина в 3-метил-5-(тринитрометил)тетразоло[1,5-*a*][1,3,5]триазин-7-оне под действием спиртов

Владимир В. Бахарев¹*, Александр А. Гидаспов¹, Владимир А. Заломленков¹, Виктор Е. Парфенов¹, Ольга В. Головина¹, Павел А. Слепухин²

¹ Самарский государственный технический университет, ул. Молодогвардейская, 244, Самара 443100, Россия; e-mail: knilsstu@gmail.com

Поступило 28.01.2022 Принято после доработки 2.03.2022

Впервые показано, что в реакции 3-метил-5-(тринитрометил)тетразоло[1,5-*a*][1,3,5]триазин-7-она со спиртами в присутствии оснований, наряду с ожидаемым замещением тринитрометильной группы, наблюдается раскрытие цикла 1,3,5-триазина с присоединением спирта по месту разрыва связи С–N. Обнаружено, что в отсутствие оснований происходит только раскрытие цикла 1,3,5-триазина с образованием алкиловых эфиров {1-[(1-метил-1*H*-тетразол-5-ил)имино]-2,2,2-тринитроэтил} карбаминовой кислоты, причем тринитрометильная группа сохраняет высокую реакционную способность и может быть замещена действием спиртов в присутствии основания.

Ключевые слова: (тетразолилиминометил) карбаматы, (тетразолил-2,2,2-тринитроэтил) карбаматы, тетразоло[1,5-a][1,3,5] триазин, замещение тринитрометильной группы, раскрытие цикла 1,3,5-триазина.

Тетразольный цикл является популярным строительным блоком для конструирования биологически активных веществ и энергоемких соединений. Для конструирования целевых функционализированных производных тетразола разработан широкий ряд разнообразных подходов. Для следует, однако, заметить, что методы, основанные на расщеплении аннелированного с тетразольным циклом гетероцикла, крайне редки. Более того, для аннелированных тетразолов более характерны реакции, сопровождающиеся раскрытием именно тетразольного цикла.

Конденсированная гетероциклическая система тетразоло[1,3,5]триазина является 5,8-диазааналогом пурина и представляет практический интерес в качестве строительного блока для получения широкого

спектра аномальных нуклеозидов. В то время как производные тетразола известны более ста лет, первое упоминание о синтезе тетразоло[1,3,5]триазиновой бициклической системы появилось лишь в 1987 г. 10 К настоящему моменту реализованы два подхода к синтезу этой гетероциклической системы: 1) аннелирование тетразольного цикла к 1,3,5-триазиновому циклу через азидо-1,3,5-триазины 11,12 и 2) конденсация 1,3,5-триазинового цикла с тетразольным циклом исходя из производных 5-аминотетразола. 13

Сведения о химических свойствах тетразоло[1,3,5]-триазинов крайне скудны. Так, при алкилировании солей 5-(тринитрометил)тетразоло[1,5-a][1,3,5]триазин-7-она с высокой региоселективностью получены продукты N^3 -алкилирования, тринитрометильная группа в

² Институт органического синтеза им. И. Я. Постовского УрО РАН, ул. Софьи Ковалевской, 22/20, Екатеринбург 620219, Россия e-mail: slepukhin@ios.uran.ru

которых выступает в качестве уходящей в реакции нуклеофильного замещения при действии фенолята и тиофенолята натрия. 11 Следует отметить, что в ряду 1,3,5-триазинов замещение тринитрометильной группы под действием О-, N-, S- и С-нуклеофилов хорошо изучено и дает во всех случаях ожидаемые продукты замещения. 14,15 Ранее нами показано, что 1,3,5-триазиновый цикл тетразоло[1,5-а][1,3,5]триазин-7-онов раскрывается под действием Н2О, которая присоединяется к атому углерода карбонильной группы, связь С(7)-N(8) разрывается, а промежуточно образующаяся карбаминовая кислота декарбоксилируется, приводя к N-(1-алкил-1H-тетразол-5-ил)-N-алкилгуанидинам. ¹⁶ В результате аналогичного расщепления 3-метил-5-(тринитрометил) тетразоло [1,5-a][1,3,5] триазин-7-она образуется N-(1-метилтетразол-5-ил)тринитроацетамидин, то есть расщепление проходит с сохранением тринитрометильной группы. 17

В развитие наших исследований тетразоло[1,3,5]триазинов¹⁸ и с целью раскрытия новых аспектов химии соединений этого класса нами изучено взаимодействие 3-метил-5-(тринитрометил) τ етразоло[1,5-a]-[1,3,5]триазин-7-она (1) со спиртами. Мы начали свое исследование с реакции соединения 1 с МеОН и *n*-PrOH в присутствии основания Na₂HPO₄. По аналогии с такими нуклеофилами, как фенолят и тиофенолят,¹¹ ожидалось замещение тринитрометильной группы на алкоксигруппу с образованием 5-алкокси-3-метилтетразоло[1,5-*a*][1,3,5]триазин-7-онов 2a,b (схема 1). Действительно, появление ярко-желтого окрашивания реакционной смеси, обусловленного образованием тринитрометильного аниона, визуальным признаком замещения тринитрометильной группы.

В ИК спектрах образующихся продуктов присутствует полоса поглощения карбонильной группы в области 1768-1774 см $^{-1}$, что достаточно близко к положению полосы поглощения карбонильной группы в исходном **1** (1770 cm^{-1}) . ¹¹ По данным спектров ЯМР ¹Н и ¹³С, в продуктах сохраняется *N*-метильная группа при тетразольном цикле. Однако наличие в спектрах ЯМР ¹Н и 13С двух сигналов алкоксигрупп (метокси- или пропоксигрупп) и слабопольного протона в области 10.70-10.80 м. д. указывает на то, что кроме замещения тринитрометильной группы протекает и другая реакция, приводящая к введению еще одной алкоксигруппы и слабопольного протона (наиболее вероятно NH). Также в спектрах ЯМР ¹³С наблюдался необычный сигнал, сдвинутый в сильное поле (150.1–150.4 м. д.), вместо ожидаемого сдвига в слабом поле, характерного для замещения тринитрометильной группы в 1,3,5-триазиновом цикле алкоксигруппой (168.2–169.0 м. д.)¹¹ или феноксигруппой (170.9–172.7 м. д.). ¹⁵ Анализ всей совокупности спектральных данных, включая данные двумерных спектров ¹H-¹³C HMBC, позволил сделать вывод, что вместо ожидаемых 5-алкокси-3-метилтетразоло[1,5-a][1,3,5]триазин-7-онов **2a,b** были получены алкиловые эфиры {алкокси[(1-метил-1*H*-тетразол-5-ил)имино]метил}карбаминовой кислоты **3а,b** (схема 1). Выходы этих продуктов составляли 52–57%. Таким образом, происходило как замещение тринитрометильной группы на алкоксигруппу, так и раскрытие 1,3,5-триазинового цикла по связи C(7)–N(8) с присоединением алкоксигруппы по атому углерода карбонильной группы и протона по атому азота N(6) раскрывшегося цикла.

Карбаматы **3а,b** содержат ранее не встречавшуюся комбинацию структурных фрагментов. Следует отметить, что структурно близкие производные тетразола — тетразолиламидины, ¹⁹ тетразолилгуанидины ²⁰ и тетразолилмочевины ²¹ — представляют интерес в качестве прекурсоров для синтеза новых производных тетразола, а также находят разнообразное применение в качестве хелатирующих агентов, компонентов газогенерирующих составов и перспективных лекарственных веществ. Это позволяет предположить похожие свойства для нового класса соединений, а значит и перспективные области их возможного применения.

Дальнейшие эксперименты по изучению взаимодействия соединения 1 со спиртами дали неожиданный результат и показали, что в отсутствие оснований реакция протекает иначе. Как в чистом спирте, так и в его смеси с инертным растворителем (дихлорэтаном (ДХЭ)) происходило раскрытие 1,3,5-триазинового цикла, алкоксигруппа присоединялась к атому углерода карбонильной группы, а протон - к соседнему атому азота раскрывшегося цикла. Важно, что тринитрометильная группа при этом сохранялась неизменной. Продукты раскрытия 1,3,5-триазиновой части молекулы, алкиловые эфиры $\{1-[(1-метил-1H-тетразол-$ 5-ил)имино]-2,2,2-тринитроэтил} карбаминовой кислоты 4а-h, образовывались с выходами от 50 до 89% (схема 2, табл. 1). Стерически затрудненные и слабоосновные спирты требовали более продолжительного времени реакции и чуть более высокой температуры, а получаемые выходы оказывались более низкими (соединения 4e,f,h).

В ИК спектрах соединений **4a—h** присутствует полоса поглощения карбонильной группы в области 1736-1761 см⁻¹. В спектрах ЯМР ¹Н присутствуют синглет протонов *N*-метильной группы и сигналы протонов алкоксигрупп, уширенный сигнал протона NH находится в более слабом поле (11.67—11.99 м. д.). В спектрах ЯМР ¹³С кроме сигналов алкоксигрупп

a R = Me, **b** R = n-Pr, **c** R = i-Pr, **d** R = tetrahydrofurfuryl,

e R = 2-(1-adamantyl)ethyl, **f** R = propargyl, **g** R = Bn,

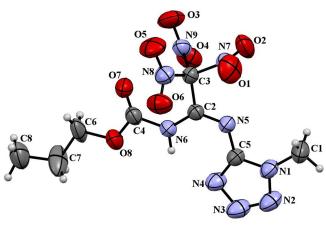

h R = 2-fluoroethyl

Таблица 1. Условия реакции получения и выходы алкиловых эфиров {1-[(1-метил-1*H*-тетразол-5-ил)имино]-2,2,2-тринитроэтил}карбаминовой кислоты **4a**-**h**

Продукт	Раство- ритель	Соотношение 1:ROH	Темпе- ратура, °С	Время, ч	Выход, %
4a	-	1:60	20	24	82
	ДХЭ	1:30	20	48	89
4b	_	1:100	20	24	79
4c	_	1:100	20	48	63
4d	_	1:30	20	92	79
4e	ДХЭ	1:5	35	144	58
4f	ДХЭ	1:5	35	140	51
4g	_	1:40	20	130	72
4h	ДХЭ	1:20	35	100	50

присутствуют четыре слабопольных сигнала, соответствующие атомам углерода тетразольного цикла (153.9—154.0 м. д.), карбонильной группы (151.7—152.4 м. д.) и амидинового фрагмента (143.1—143.4 м. д.).

Структура *н*-пропоксипроизводного **4b** была подтверждена данными PCA (рис. 1). По данным PCA, две независимые молекулы соединения **4b** кристаллизуются в моноклинной центросимметричной системе. Молекулы близки по своим геометрическим параметрам. Длины связей и значения углов молекулы **4b** не имеют существенных отклонений от стандартных значений. Карбамидиновый фрагмент C(3)—C(2)(–N(5))—N(6) и карбонильный атом углерода C(4) находятся в одной плоскости с циклом тетразола, что указывает на

Рисунок 1. Молекулярное строение соединения **4b** в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью.

наличие сопряжения в этой части молекулы, при этом связь C(2)–N(5) является двойной.

Конформация молекул стабилизирована внутримолекулярной водородной связью между группой 6-NH и атомом N(4) тетразола. Атомы углерода конформационных гибких пропильных заместителей демонстрируют сильное термическое разупорядочение, поэтому может быть реализована только грубая локализация атомов пропильной группы. В кристаллической упаковке наблюдаются межмолекулярные Т-образные укороченные π-контакты между тетразольными циклами и нитрогруппами с расстоянием C(Het)···O на 0.162 и 0.277 Å меньше вандерваальсовых радиусов. Все остальные межмолекулярные контакты не показывают какого-либо значительного отклонения от расстояний неспецифического взаимодействия.

Причиной достаточно легкого разрыва связи C(7)–N(8) является, по нашему мнению, наличие в цикле 1,3,5-триазина карбонильной группы в сочетании с находящимся рядом циклом тетразола. Присоединение алкоксигруппы по атому углерода С(7) карбонильной группы приводит к появлению sp^3 -гибридизованного атома углерода, смещению этого атома углерода из плоскости конденсированной системы и, как следствие, нарушению сопряжения в гетероциклической системе тетразоло[1,3,5]триазина. Все это делает возможным разрыв связи С(7)-N(8) в достаточно мягких условиях. Известно, что для N^1 -карбонильных производных тетразола характерна высокая лабильность связи C-N(1). Так, например, обработка метанолом метилового эфира 2-(5-аминотетразол-1-илкарбонил)аминобензойной кислоты приводит к разрыву связи С-N(1) и образованию 5-аминотетразола и арилметилкарбамата. 22

Расщепление узловой связи С—N в конденсированных триазоло[1,3,5]триазинонах отмечалось ранее при перегруппировке Димрота [1,2,4]триазоло[4,3-a][1,3,5]триазинов в [1,2,4]триазоло[1,5-a][1,3,5]триазины, ²³ которая также инициируется присоединением EtOH к карбонильной группе. Аналогичное раскрытие триазинового цикла спиртами наблюдалось и в случае 7-рибофуранозилпиримидо[1,6-a][1,3,5]триазин-2,4,6-триона, что привело к соответствующему метилкарбамату. ²⁴

Наличие при амидиновом фрагменте соединений 4a,b трех электроноакцепторных групп обусловливает заметную подвижность тринитрометильной группы, что позволяет замещать ее на алкоксигруппу при действии спиртов в присутствии основания, такого как Na_2HPO_4 (схема 3).

Следует отметить, что соединения 3a,b, содержащие мочевинный фрагмент, интересны как потенциальные

Схема 3

биологически активные вещества, 25 в то время как комбинация тетразольного цикла с эксплозофорной тринитрометильной группой в молекулах соединений **4a,b** интересна для конструирования энергоемких соединений. 26

Таким образом, обнаружена новая возможность синтеза моноциклических производных тетразола с ранее недоступной комбинацией функциональных групп из аннелированных тетразоло[1,5-*a*][1,3,5]триазинов. Показано, что в зависимости от условий реакции при раскрытии 1,3,5-триазинового цикла могут быть получены разные комбинации функциональных групп.

Экспериментальная часть

ИК спектры записаны на спектрофотометре Nicolet Avatar 360ESP FT-IR с приставкой НПВО. Спектры ЯМР ¹Н и ¹³С (400 и 100 МГц соответственно), а также двумерные спектры ¹Н–¹³С НМВС и ¹Н–¹³С НМQС зарегистрированы на спектрометре JEOL JNM ECX-400 в CDCl₃, внутренний стандарт с ТМС. Элементный анализ выполнен на приборе EuroVector EA 3000. Температуры плавления определены на приборе Gallenkamp и не исправлены. Контроль за ходом реакций и чистотой полученных соединений осуществлен методом ТСХ на пластинах Silufol UV-254 (проявление в ультрафиолетовом свете 254 нм), элюент ДХЭ.

3-Метил-5-(тринитрометил)тетразоло[1,5-a][1,3,5]триазин-7-он (1) получен в соответствии с опубликованной методикой. 11

Синтез алкиловых эфиров {алкокси[(1-метил-1H-тетразол-5-ил)имино]метил}карбаминовой кислоты **3а,b** (общая методика). К перемешиваемой суспензии 0.568 г (4 ммоль) Na₂HPO₄ в МеОН или n-PrOH порционно добавляют 1.0 г (3.3 ммоль) соединения **1** или 3 ммоль соединения **4а,b** в течение 30 мин при комнатной температуре. После выдержки (24 ч в случае МеОН или 72 ч в случае n-PrOH) реакционную смесь фильтруют, осадок промывают соответствующим спиртом (2 × 3 мл). Объединенный фильтрат концентрируют при пониженном давлении до 1/3 объема, охлаждают до -5:-7°C. Образовавшийся осадок отфильтровывают, промывают 3 мл холодного спирта и холодной H_2 O (2 × 10 мл), сушат на воздухе.

Метил{|(1-метил-1*H*-тетразол-5-ил)имино|(метокси)-метил}карбамат (3а). Выход 0.37 г (52 %, из соединения 1), 0.39 г (60%, из соединения 4а), белые кристаллы, т. пл. 132–133°С. ИК спектр, v, см $^{-1}$: 3279, 3167, 3093, 3047, 3012, 2960, 1768, 1630, 1556, 1477, 1456, 1419, 1392, 1369, 1294, 1209, 1184, 1119, 1097, 1055, 1038, 958, 908, 752, 733, 702. Спектр ЯМР 1 Н, δ , м. д.: 3.78 (3H, c, CH₃OC(N)N); 3.89 (3H, c, CH₃N); 4.06 (3H, c, CO₂CH₃); 10.80 (1H, уш. c, NH). Спектр ЯМР 13 С, δ , м. д.: 32.1 (NCH₃); 53.3 (OCH₃); 56.2 (OCH₃); 150.4 (OC(N)N); 155.1 (C=O); 155.4 (С тетразол). Найдено, %: С 33.61; H 4.62; N 39.33. 6 H₁₀N₆O₃. Вычислено, %: С 33.65; H 4.71; N 39.24.

Пропил $\{$ [(1-метил-1*H*-тетразол-5-ил)имино](пропокси)-метил $\}$ карбамат (3b). Выход 0.51 г (57 %, из соедине-

ния 1), 0.50 г (61%, из соединения 4b), белые кристаллы, т. пл. 42–44°С. ИК спектр, v, см $^{-1}$: 3275, 3207, 3076, 2976, 2941, 1774, 1643, 1556, 1475, 1460, 1425, 1360, 1333, 1304, 1294, 1200, 1119, 1092, 1057, 1011, 991, 970, 924, 914, 754, 729, 700. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 0.94 (3H, т, J = 7.4, CH $_{3}$); 1.04 (3H, т, J = 7.4, CH $_{3}$); 1.69 (2H, секстет, J = 7.1, CH $_{2}$); 1.83 (2H, секстет, J = 7.0, CH $_{2}$); 3.87 (3H, c, NCH $_{3}$); 4.11 (2H, т, J = 6.7, CH $_{2}$ OC(N)N); 4.40 (2H, т, J = 6.5, CO $_{2}$ CH $_{2}$); 10.70 (1H, c, NH). Спектр ЯМР 13 С, δ , м. д.: 10.3 (CH $_{3}$); 10.5 (CH $_{3}$); 21.9 (CH $_{2}$); 22.0 (CH $_{2}$); 32.0 (NCH $_{3}$); 68.1 (CH $_{2}$ OC(N)N); 71.1 (CO $_{2}$ CH $_{2}$); 150.1 (OC(N)N); 155.2 (C=O); 155.4 (С тетразол). Найдено, %: С 44.47; H 6.76; N 31.02. C_{10} H $_{18}$ N $_{6}$ O $_{3}$. Вычислено, %: С 44.44; H 6.71; N 31.09.

Синтез алкиловых эфиров {1-[(метил-1H-тетразол-5-ил)имино]-2,2,2-тринитроэтил} карбаминовой кислоты 4а—h (общая методика). При комнатной температуре и перемешивании на магнитной мешалке к спирту (или смеси 16.5—66 ммоль спирта с 10 мл ДХЭ) добавляют 1.0 г (3.3 ммоль) соединения 1. Реакционную смесь выдерживают при температуре 20—25°С до завершения реакции (контроль методом ТСХ). Растворитель и избыток спирта отгоняют при пониженном давлении, а остаток промывают холодным i-PrOH (2 × 4 мл) и Et_2O (2 × 5 мл) и сушат на воздухе. Продукт 4f дополнительно перекристаллизовывают из i-PrOH. Продукт 4e перекристаллизовывают из Et_2O (без предварительной промывки).

Метил{1-[(1-метил-1*H*-тетразол-5-ил)имино]-2,2,2-тринитроэтил} карбамат (4а). Выход 0.91 г (82%, в МеОН), 0.985 г (89%, в МеОН–ДХЭ), белые кристаллы, т. пл. 134–135°С (с разл.). ИК спектр, v, см $^{-1}$: 3159, 2966, 2875, 1747, 1662, 1649, 1612, 1585, 1539, 1473, 1456, 1410, 1373, 1296, 1282, 1254, 1242, 1205, 1036, 966, 941, 854, 802, 773, 754, 712, 683. Спектр ЯМР 1 Н, δ , м. д.: 3.89 (3H, с, OCH₃); 4.00 (3H, с, NCH₃); 11.76 (1H, уш. с, NH). Спектр ЯМР 13 С, δ , м д.: 33.3 (NCH₃); 55.4 (OCH₃); 143.2 (\underline{C} C(NO₂)₃); 152.8 (C=O); 154.0 (С тетразол). Найдено, %: С 21.70; H 2.19; N 37.76. C_6 H₇N₉O₈. Вычислено, %: С 21.63; H 2.12; N 37.84.

Пропил{1-[(1-метил-1*H*-тетразол-5-ил)имино]-2,2,2-тринитроэтил}карбамат (4b). Выход 0.95 г (79%), белые кристаллы, т. пл. 114–115°С (с разл.). ИК спектр, v, см⁻¹: 3169, 2974, 2943, 2926, 2883, 1755, 1745, 1660, 1614, 1587, 1539, 1473, 1410, 1367, 1294, 1282, 1252, 1232, 1209, 1038, 937, 903, 854, 802, 754, 712, 683. Спектр ЯМР 1 Н, δ , м. д. (*J*, Γ ц): 0.98 (3H, т, *J* = 7.4, CH₃); 1.75 (2H, секстет, *J* = 7.1, CH₂); 4.01 (3H, c, NCH₃); 4.20 (2H, т, *J* = 6.7, OCH₂); 11.80 (1H, уш. с, NH). Спектр ЯМР 13 С, δ , м. д.: 10.1 (CH₃); 21.9 (CH₂); 33.3 (NCH₃); 70.9 (OCH₂); 143.4 ($\underline{\text{CC}}$ (NO₂)₃); 152.4 (C=O); 154.0 (C тетразол). Найдено, %: C 26.66; H 2.99; N 34.96. C_8 H₁₁N₉O₈. Вычислено, %: C 26.60; H 3.07; N 34.90.

Изопропил{1-**[**(1-метил-1*H*-тетразол-5-ил)имино]-**2,2,2-тринитроэтил**}**карбамат (4c)**. Выход 0.76 г (63%), белые кристаллы, т. пл. 135–140°С (с разл.). ИК спектр, v, cm^{-1} : 3145, 2995, 2881, 1751, 1740, 1653, 1618, 1587, 1541, 1471, 1444, 1412, 1377, 1298, 1281, 1255, 1246, 1209, 1182, 1095, 1038, 906, 856, 802, 756, 685. Спектр

ЯМР 1 Н, δ , м. д. (J, Γ п): 1.33 (6H, д, J = 6.3, 2CH₃); 3.99 (3H, c, NCH₃); 4.98 (1H, гептет, J = 6.2, OCH); 11.67 (1H, c, NH). Спектр ЯМР 13 С, δ , м. д.: 21.6 (CH₃); 33.3 (NCH₃); 74.7 (OCH₃); 143.4 ($\underline{\text{CC}}$ (NO₂)₃); 151.8 (C=O); 154.0 (С тетразол). Найдено, %: С 26.58; Н 3.10; N 34.86. C_8 Н₁₁N₉O₈. Вычислено, %: С 26.60; Н 3.07; N 34.90.

(Тетрагидрофуран-2-илметил) {1-[(1-метил-1H-тетразол-5-ил)имино]-2,2,2-тринитроэтил} карбамат (4d). Выход 1.06 г (79%), белые кристаллы, т. пл. 123–125°С (с разл.). ИК спектр, v, см⁻¹: 2989, 2883, 1751, 1653, 1630, 1610, 1587, 1541, 1475, 1460, 1402, 1360, 1294, 1284, 1263, 1250, 1229, 1209, 1093, 1039, 1018, 939, 856, 802, 758, 685. Спектр ЯМР 1 Н, δ , м. д. (J, Γ и): 1.55–1.66 (1H, м, CH); 1.89–1.99 (2H, м, CH₂); 2.05 (1H, д. д. т, J = 11.8, J = 8.1, J = 6.1, CH); 3.78–3.92 (2H, м, CH₂); 4.01 (3H, c, CH₃); 4.12–4.21 (2H, м, CH₂); 4.23–4.30 (1H, м, CH); 11.86 (1H, уш. с, NH). Спектр ЯМР 13 С, δ , м. д.: 25.7; 27.8; 33.3; 68.6; 70.5; 75.7; 143.3; 152.4; 153.9. Найдено, %: С 29.72; Н 3.31; N 31.22. C_{10} H₁₃N₉O₉. Вычислено, %: С 29.78; H 3.25; N 31.26.

[2-(Адамантан-1-ил)этил]{1-[(1-метил-1*Н*-тетразол-5-ил)имино]-2,2,2-тринитроэтил}карбамат (4е). Выход 0.927 г (58%), белые кристаллы, т. пл. 135—138°С (с разл.). ИК спектр, v, см⁻¹: 3149, 2901, 2847, 1736, 1651, 1612, 1585, 1539, 1477, 1468, 1454, 1360, 1284, 1254, 1242, 1217, 1109, 1099, 1036, 976, 930, 854, 812, 802, 758, 723, 687. Спектр ЯМР ¹Н, δ, м. д.: 1.47—1.53 (8H, м, H Ad, CH₂); 1.59—1.75 (6H, м, H Ad); 1.96 (3H, с, H Ad); 4.00 (3H, c, NCH₃); 4.24—4.36 (2H, м, OCH₂); 11.78 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ, м. д.: 28.7, 31.8 (C Ad); 36.9 (NCH₃); 37.2, 41.9, 42.4, 42.8 (C Ad); 47.3 (CH₂); 66.3 (OCH₂); 143.3 (<u>CC</u>(NO₂)₃); 152.3 (C=O); 154.0 (C тетразол). Найдено, %: С 42.54; H 4.93; N 26.05. С₁₇H₂₃N₉O₈. Вычислено С 42.41; H 4.82; N 26.19.

Пропаргил{1-[(1-метил-1*H*-тетразол-5-ил)имино]-2,2,2-тринитроэтил}карбамат (4f). Выход 0.61 г (51%), белые кристаллы, т. пл. $101-103^{\circ}$ С (с разл.). ИК спектр, v, см⁻¹: 3302, 3113, 2993, 2876, 2139, 1761, 1659, 1612, 1589, 1549, 1475, 1452, 1414, 1365, 1279, 1236, 1225, 1205, 1055, 1039, 937, 852, 800, 752, 714, 692, 681. Спектр ЯМР ¹H, δ , м. д. (J, Γ µ): 2.64 (1H, c, HC=C); 4.02 (3H, c, NCH₃); 4.83 (2H, д, J = 2.4, OCH₂); 11.98 (1H, уш. c, NH). Спектр ЯМР ¹³С, δ , м. д.: 33.4 (NCH₃); 56.3 (OCH₂); 75.0, 77.8 (HC=C); 143.1 (\underline{C} C(NO₂)₃); 151.7 (C=O); 153.9 (С тетразол). Найдено, %: С 26.90; H 1.98; N 35.25. C_8 H₇N₉O₈. Вычислено, %: С 26.90; H 1.98; N 35.29.

Бензил{1-[(1-метил-1*H***-тетразол-5-ил)имино]-2,2,2-тринитроэтил}карбамат (4g)**. Выход 0.98 г (72%), белые кристаллы, т. пл. 132–134°С (с разл.). ИК спектр, v, см⁻¹: 3055, 2970, 2874, 1751, 1655, 1618, 1585, 1498, 1477, 1462, 1446, 1284, 1255, 1238, 1207, 1180, 1043, 984, 798, 762, 743, 685. Спектр ЯМР ¹H, δ , м. д.: 4.00 (3H, c, NCH₃); 5.24 (2H, c, OCH₂); 7.34–7.44 (5H, м, H Ph); 11.87 (1H, уш. c, NH). Спектр ЯМР ¹³С, δ , м. д.: 33.3 (NCH₃); 70.9 (OCH₂); 129.1 (2C); 129.6, 133.1 (C Ph); 143.3 ($\underline{\mathbf{CC}}(NO_2)_3$); 152.3 (C=O); 153.9 (С тетразол). Найдено, %: С 35.30; H 2.77; N 30.73. $\mathbf{C}_{12}\mathbf{H}_{11}\mathbf{N}_{9}O_{8}$. Вычислено, %: С 35.22; H 2.71; N 30.80.

(2-Фторэтил){1-[(1-метил-1H-тетразол-5-ил)имино]-2,2,2-тринитроэтил}карбамат (4h). Выход 0.61 г (50%), белые кристаллы, т. пл. 131–133°С (с разл.). ИК спектр, v, см⁻¹: 3139, 2964, 2875, 1753, 1660, 1612, 1585, 1539, 1475, 1456, 1404, 1360, 1282, 1248, 1230, 1209, 1090, 1065, 1034, 872, 854, 804, 760, 683. Спектр ЯМР ¹H, δ , м. д.: 4.02 (3H, c, NCH₃); 4.41–4.48 (1H, м) и 4.49–4.55 (1H, м, ОСН₂); 4.57–4.64 (1H, м) и 4.67–4.77 (1H, м, FCH₂); 11.99 (1H, уш. с, NH). Спектр ЯМР ¹³С, δ , м. д. (J, Γ _{II}): 33.4 (NCH₃); 67.6 (д, $^2J_{CF}$ = 20.0, CH₂O); 80.3 (д, $^1J_{CF}$ = 172.0, CH₂F); 143.1 ($\underline{\mathbb{C}}$ C(NO₂)₃); 152.2 (C=O); 153.9 (С тетразол). Найдено, %: С 23.04; H 2.29; N 34.48. \mathbb{C}_7H_8 FN₉O₈. Вычислено, %: С 23.02; H 2.21; N 34.52.

Рентгеноструктурное исследование соединения 4b проведено на диффрактометре Xcalibur 3. Кристаллы, пригодные для PCA, получены медленным упаривания раствора соединения **4b** в *n*-PrOH. Полный набор рентгеноструктурных данных соединения **4b** депонирован в Кембриджском банке структурных данных (депонент CCDC 1921346).

Файл сопроводительных материалов, содержащий методики синтеза и спектры $\rm SMP^{-1}H$ и $\rm ^{13}C$ всех синтезированных соединений, двумерные спектры $\rm SMP$, а также данные рентгеноструктурного исследования соединения $\rm 4b$, доступен на сайте журнала $\rm http://hgs.osi.lv.$

Список литературы

- (a) Myznikov, L. V.; Vorona, S. V.; Zevatskii, Y. E. Chem. Heterocycl. Compd. 2021, 57, 224. (b) Manafi Khajeh Pasha, A.; Raoufi, S.; Ghobadi, M.; Kazemi, M. Synth. Commun. 2020, 50, 3685. (c) Popova, E. A.; Trifonov, R. E.; Ostrovskii, V. A. Russ. Chem. Rev. 2019, 88, 644. (d) Popova, E. A.; Protas, A. V.; Trifonov, R. E. Anti-Cancer Agents Med. Chem. 2018, 17, 1856. (e) Popova, E. A.; Trifonov, R. E. Russ. Chem. Rev. 2015, 84, 891. (f) Ostrovskii, V. A.; Trifonov, R. E.; Popova, E. A. Russ. Chem. Bull. 2012, 61, 768.
- Gouda, M. A.; Al-Ghorbani, M.; Helal, M. H.; Salem, M. A.; Hanashalshahaby, E. H. A. Synth. Commun. 2020, 50, 3017.
- 3. (a) Wang, T.; Gao, H.; Shreeve, J. M. Z. Anorg. Allg. Chem. 2021, 647, 157. (b) Larin, A. A.; Fershtat, L. L. Energ. Mater. Front. 2021, 2, 3. (c) Kizhnyaev, V. N.; Golobokova, T. V.; Pokatilov, F. A.; Vereshchagin, L. I.; Estrin, Y. I. Chem. Heterocycl. Compd. 2017, 53, 682. (d) Ostrovskii, V. A.; Pevzner, M. S.; Kofman, T. P.; Shcherbinin, M. B.; Tselinskii, I. V. Targets Heterocycl. Syst. 1997, 3, 467. (e) Островский, В. А.; Колдобский, Г. И. Рос. хим. журн. 1997, 41(2), 84.
- 4. Mittal, R.; Awasthi, S. K. Synthesis 2019, 3765.
- Neochoritis, C. G.; Zhao, T.; Dömling, A. Chem. Rev. 2019, 119, 1970.
- Grigoriev, Y. V.; Voitekhovich, S. V.; Karavai, V. P.; Ivashkevich, O. A. Chem. Heterocycl. Compd. 2017, 53, 670.
- Ostrovskii, V. A.; Popova, E. A.; Trifonov, R. E. In *Advances in Heterocyclic Chemistry*; Scriven, E. F.; Ramsden, C. A., Eds.; Academic Press, 2017, vol. 123, p. 1.
- (a) Nedel'ko, V. V.; Shastin, A. V.; Korsunskii, B. L.; Chukanov, N. V.; Larikova, T. S.; Kazakov, A. I. Russ. Chem. Bull. 2005, 54, 1710. (b) Azev, Y. A.; Loginova, I. P.; Golomolzin, B. V.; Mudretsova, I. I.; Rusinov, V. L. Chem. Heterocycl. Compd. 1990, 26, 118.
- 9. (a) Gilmanov, R. Z.; Nikitin, V. G.; Khayrutdinov, F. G.; Strizhenko, K. V.; Suponitsky, K. Y.; Sheremetev, A. B.

- Mendeleev Commun. 2022, 32, 114. (b) Jeminejs, A.; Goliškina, S. M.; Novosjolova, I.; Stepanovs, D.; Bizdēna, Ē.; Turks, M. Synthesis 2021, 1443. (c) Livingstone, K.; Little, G.; Jamieson, C. Synthesis 2021, 2395. (d) Panaka, S.; Trivedi, R.; Sony, T.; Prabhakar, S.; Raju Chowhan, L. Org. Chem. Front. 2017, 4, 1574. (e) Smolobochkin, A. V.; Gazizov, A. S.; Burilov, A. R.; Pudovik, M. A.; Sinyashin, O. G. Russ. Chem. Rev. 2019, 88, 1104.
- Hafez, E. A. A.; Elmoghayar, M. R. H.; Ramiz, M. M. M. Liebigs Ann. Chem. 1987, 65.
- Fedorov, B. S.; Utienyshev, A. N.; Ghidaspov, A. A.; Kachanovskaya, E. V.; Bakharev, V. V.; Fadeev, M. A. Chem. Heterocycl. Compd. 2005, 41, 496.
- (a) Kessenich, E.; Polborn, K.; Schulz, A. *Inorg. Chem.* 2001, 40, 1102. (b) Azev, Y. A.; Loginova, I. P.; Guselnikova, O. L.; Shorshnev, S. V.; Klyuev, N. A.; Rusinov, V. L.; Chupakhin, O. N. *Mendeleev Commun.* 1993, 3, 49. (c) Krivopalov, V. P.; Nikolaenkova, E. B.; Mamaev, V. P. *Russ. Chem. Bull.* 1988, 37, 410. (d) Keßenich, E.; Klapötke, T. M.; Knizek, J.; Nöth, H.; Schulz, A. *Eur. J. Inorg. Chem.* 1998, 2013.
- Bekircan, O.; Küxük, M.; Kahveci, B.; Kolaylı, S. Arch. Pharm. 2005, 338, 365.
- 14. (a) Gidaspov, A. A.; Bakharev, V. V. In *Triazines: Synthesis*, Application, and Toxicity; Patel, R.; Malhotra, A., Eds.; Nova Science Publishers: New York, 2012, p. 1. (b) Бахарев, В. В.; Гидаспов, А. А. В кн. *Известия Самарского научного центра РАН. Спецвыпуск "Химия и химическая технология"*; СНЦ РАН: Самара, 2004, с. 190. (c) Shastin, A. V.; Godovikova, T. I.; Golova, S. P.; Povorin, M. V.; Dmitriev, D. E.; Dekaprilevich, M. O.; Strelenko, Y. A.; Struchkov, Y. T.; Khmel'nitskii, L. I.; Korsunskii, B. L. *Chem. Heterocycl. Compd.* 1995, 31, 601. (d) Shastin, A. V.; Godovikova, T.; Korsunskii, B. *Russ. Chem. Rev.* 2003, 72, 279.
- Shastin, A. V.; Godovikova, T. I.; Golova, S. P.; Khmel'nitskii, L. I.; Korsunskii, B. L. Chem. Heterocycl. Compd. 1995, 31, 596.

- Parfenov, V. E.; Bakharev, V. V.; Gidaspov, A. A.; Shiryaev, A. K.; Slepukhin, P. A. Chem. Heterocycl. Compd. 2016, 52, 1061.
- Zalomlenkov, V. A.; Bakharev, V. V.; Gidaspov, A. A.; Parfenov, V. E.; Golovina, O. V.; Slepukhin, P. A. Chem. Heterocycl. Compd. 2017, 53, 822.
- 18. (a) Suponitsky, K. Y.; Fedyanin, I. V.; Karnoukhova, V. A.; Zalomlenkov, V. A.; Gidaspov, A. A.; Bakharev, V. V.; Sheremetev, A. B. *Molecules* **2021**, *26*, 7452. (b) Бахарев, В. В.; Гидаспов, А. А.; Заломленков, В. А.; Парфенов, В. Е. Патент РФ 2677337. (c) Гидаспов, А. А.; Бахарев, В. В.; Парфенов, В. Е. Патент РФ 2433130. (d) Bakharev, V.; Gidaspov, A. *Chem. Heterocycl. Compd.* **2006**, *42*, 417. (e) Fedorov, B. S.; Fadeev, M. A.; Gidaspov, A. A.; Kosareva, E. A.; Bakharev, V. V. *Chem. Heterocycl. Compd.* **2005**, *41*, 228.
- Dorokhov, V. A.; Amamchyan, A. R.; Bogdanov, V. S.; Shchegoleva, T. A. Russ. Chem. Bull. 1987, 36, 2436.
- (a) El-Remaily, M. A. E. A. A. A.; Elhady, O. M. *Appl. Organomet. Chem.* **2019**, *33*, e4989.
 (b) El Remaily, M. A. E. A. A.; Mohamed, S. K. *Tetrahedron* **2014**, *70*, 270.
- Denny, G. H.; Cragoe, E. J.; Rooney, C. S.; Springer, J. P.; Hirshfield, J. M.; McCauley, J. A. J. Org. Chem. 1980, 45, 1662
- 22. Peet, N. P. J. Heterocycl. Chem. 1987, 24, 223.
- Bakharev, V. V.; Parfenov, V. E.; Ul'yankina, I. V.;
 Zavodskaya, A. V.; Selezneva, E. V.; Gidaspov, A. A.;
 Eltsov, O. S.; Slepukhin, P. A. Tetrahedron 2014, 70, 6825.
- 24. Kumar, S.; Leonard, N. J. J. Org. Chem. 1988, 53, 3959.
- (a) Smolobochkin, A. V.; Gazizov, A. S.; Burilov, A. R.; Pudovik, M. A. Russ. Chem. Bull. 2019, 68, 662. (b) Steed, J. W. Chem. Soc. Rev. 2010, 39, 3686. (c) Fischer, L.; Guichard, G. Org. Biomol. Chem. 2010, 8, 3101. (d) Gallou, I. Org. Prep. Proc. Int. 2007, 39, 355. (e) Kravchenko, A. N.; Chikunov, I. E. Russ. Chem. Rev. 2006, 75, 191.
- Zhou, J.; Zhang, J.; Wang, B.; Qiu, L.; Xu, R.; Sheremetev, A. B. FirePhysChem 2021. DOI: 10.1016/j.fpc.2021.09.00.