А. А. Данилин, П. П. Пурыгин, Н. В. Макарова, И. К. Моисеев

ИЗУЧЕНИЕ ВЗАИМОДЕЙСТВИЯ (1-АДАМАНТИЛ)БРОММЕТИЛКЕТОНА С АЗОЛАМИ

Изучено взаимодействие (1-адамантил) бромметилкетона с 1,2,4-триазолом, бензотриазолом, бензимидазолом, 5-аминотетразолом, 3(5)-амино-1,2,4-триазолом и получены соответствующие продукты N-алкилирования. Найдены оптимальные условия алкилирования в присутствии гидрида натрия в гексаметилтриамиде фосфорной кислоты (гексаметаполе).

В последнее время появились работы [1-3], посвященные взаимодействию галоген- или оксиадамантанов с азолами (имидазолом, тетразолом, пиразолом, бензотриазолом и т. д.), приводящему к соответствующим N-адамантилазолам, отдельные представители которых проявляют противовирусную активность, сравнимую с ремантадином. В литературе достаточно широко представлены реакции с участием (1-адамантил) бромметилкетона (I), приводящие к адамантилзамещенным гетероциклам, таким, как тиофен [4], 2-меркаптоимидазол [5], тиазол [6], 2-NHR-тиазол [7], индол [8], имидазо[2,1-b]тиазол, имидазо[1,2-a]пиридин, индолизин [9] и т. д. Сравнительно мало работ, посвященных изучению взаимодействия указанного кетона І с азолами. Так, описпн синтез 1-(1-адамантаноилметил) имидазола из этого соединения и имидазола [10], а также изучено алкилирование бромкетоном I урацила, аденина, 8-азааденина, теофиллина [11]. Следует отметить, что 1-(1-адамантаноилметил) азолы интересны не только как потенциально биологически активные соединения, но и как объекты для синтетических исследований.

Нами впервые исследовано взаимодействие бромметил(1-адамантил) кетона (I) с рядом гетероциклических азолов: 1,2,4-триазолом (II), бензотриазолом (III), бензимидазолом (IV), 5-аминотетразолом (V) и 3(5)-амино-1,2,4-триазолом (VI). Показано, что проведение реакции в среде диметилформамида, тетрагидрофурана и ацетона в присутствии таких оснований, как гидроксид натрия, карбонат калия, гидрокарбонат натрия и триэтиламин, приводит к смеси продуктов, что чрезвычайно осложняет способы разделения, очистку и идентификацию отдельных компонентов. Выходы целевых продуктов, определенные с помощью колоночной хроматографии, всего 10...15%. При двух-, трех- и четырехкратном избытке азола без использования дополнительных акцепторов протонов целевые продукты не удается получить даже при нагревании. Наилучшие результаты

$$\begin{array}{c} O \\ II \\ AdCCH_2B_T \ + \ Az\text{-H} \end{array} \begin{array}{c} O \\ II \\ AdCCH_2Az \\ I \end{array}$$

Ad = 1-адамантил, Az = азол

(выход алкилированных азолов 80...85%) достигаются при использовании гидрида натрия, обладающего сильными основными свойствами и в то же время являющегося слабым нуклеофилом, и гексаметилтриамида фосфорной кислоты (гексаметапола) как растворителя. В этих условиях нами синтезированы 1-(1-адамантаноилметил)-1,2,4-триазол (VII), 1-(1-адамантаноилметил)бензотриазол (VIII), 1-(1-адамантаноилметил)бензимидазол (IX), 1-(1-адамантаноилметил)-5-аминотетразол (X) и 1-(1-адамантаноилметил)-3-амино-1,2,4-триазол (XI).

Строение полученных соединений подтверждено данными ИК и ПМР спектроскопии (см. табл. 2), а их чистота — методом ТСХ.

Таблица 1 Характеристики синтезированных соединений

Соеди-	Брутго- формула	<u>Найлено. %</u> Вычислено, %			T _{IMI} , °C	R_{f}	Выход, %
nemme	формула	С	Н	N		J	
VII	C ₁₄ H ₁₉ N ₃ O	68,49 68,34	7.79 7,81	17.05 17,73	113114	0,47*	80
VIII	C ₁₈ H ₂₁ N ₃ O	72.99 73,19	7,27 7,17	14.12 14,23	245247 (разл.)	0,68*	78
IX	C ₁₉ H ₂₂ N ₂ O	77.13 77,52	7.03 7,53	9,91 9,52	123125	0,55*	81
X	C ₁₃ H ₁₉ N ₅ O	59,63 59,75	7,27 7,33	27.02 26,80	170173 (разл.)	0,16*2	82
XI	C ₁₄ H ₂₀ N ₄ O	64,84 64,59	7.45 7,74	21,53 21,52	195197 (разл.)	0,12*2	83 .

^{*} Гексан—ацетон, 1 : 1.

 $\label{eq:Tadin} \mbox{Tadinu}_{\,\, 1} \mbox{ a dinu}_{\,\, 1} \mbox{ a dinu}_{\,\, 2}$ Данные ИК спектров и спектров ПМР синтезированных соединений

Соеди- неие	ИК спектр, $ u$ (см $^{-1}$)				Спектр ПМР, δ , м. д.			
	C=C	C=N	C=O	СН ₂ в Ad	СН ₂ в Ad 12Н, м	CH в Ad 3H, с	COCH ₂ 2H, c	Н в гетероцикле
VII	1465, 1500	1610	1700	2850, 2900	1,651,70	1,90	5,15	7,95 (1H, c, 3-H, 8,15 (1H, c, 5-H)
VIII	1450, 1500	1600	1700	2850, 2900	1,651,70	1,95	5,5	7,408,40 (4H, м, 4-, 5-, 6-, 7-H)
IX	1480, 1510	1620	1690	2840, 2900	1,651,70	1,90	5,45	7,207,65 (4H, м, 4-, 5-, 6-, 7-H), 8,1 (1H, c, 2-H)
X*	1450, 1530	1570	1680	2850, 2900	1,701,75	1,95	5,2	
XI*	1465, 1530	1650	1680	2850, 2900	1,651,70	1,90	5,2	7,5 (1H, c, 5-H)

^{*} Наличие группы $\mathrm{NH_2}$ в соединениях X и XI подтверждает полоса 3380 или 3390 см соответственно в ИК спектрах, а также ущиренный синглетный сигнал двух протонов при 6,00 или 6,50 м. д. в спектрах ПМР.

^{*&}lt;sup>2</sup> Гексан—ацетон, 1 : 3.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ПМР записаны на приборе Tesla BS-487C с рабочей частотой 80 МГц, внутренний стандарт ГМДС. ИК спектры зарегистрированы на приборе ИКС-29 в таблетках КВг. Контроль за ходом реакции и оценку индивидуальности веществ проводили с помощью ТСХ на пластинках Silufol UV-254 (системы растворителей: $\[$ reксан $\[$ —ацетон $\[$, $\[$ 1 : 1 и 1 : 3) $\[$.

1-(1-Адамантаноилметил) азолы (VII—XI). (Общая методика). К раствору 10 ммоль азола II—VI в 15 мл гексаметапола, охлажденному до 0 °C, при перемешивании медленно добавляют 0,264 г (11 ммоль) гидрида натрия, предварительно промытого гексаном. Реакционную смесь выдерживают 5 ч при комнатной температуре, далее охлаждают до 0 °C, добавляют по каплям раствор 2,57 г (10 ммоль) кетона в 10 мл гексаметапола и перемешивают 12 ч, разбавляют 25 мл воды и экстрагируют эфиром (3×20 мл). Эфирный экстракт промывают водой, сушат Na₂SO₄, эфир отгоняют, остаток перекристаллизовывают из бензола.

Характеристики синтезированных соединений VII—XI приведены в табл. 1, 2.

СПИСОК ЛИТЕРАТУРЫ

- Gonzalez M. E., Alarcon B., Cabildo P., Claramunt R. M., Sanz D., Elguero J. // Eur. J. Med.Chem. Chim.Ther. — 1985. — Vol. 20. — P. 359.
- 2. Cabildo P., Claramunt R. M., Forfari I. // Tetrah. Lett. 1994. Vol. 35. P. 183.
- 3. Сараев В. В., Голод Е. Л. // ЖОрХ. 1997. Т. 33. С. 629.
- 4. Nakayama J., Hasemi R. // J. Amer. Chem. Soc. 1990. Vol. 112. P. 5654.
- 5. Макарова Н. В., Земиова М. Н., Моисеев И. К. // ХГС. 1994. № 5. С. 621.
- 6. Степанов Ф. Н., Исаев С. Д. // ЖОрХ. 1970. Т. 6. С. 1189.
- 7. Макарова Н. В., Земцова М. Н., Моисеев И. К. // ХГС. 1994. № 2. С. 249.
- 8. Степанов Ф. Н., Исаев С. Д. // ЖОрХ. 1970. Т. 6. С. 1195.
- 9. Макарова Н. В., Земцова М. Н., Моисеев И. К. // ХГС. 1993. № 11. С. 1580.
- 10. Pat. 4036975 USA / Walker K. A. M., Unger S. H. // PЖX. 1978. № 9. 0136П.
- 11. Hedayabullah M., Roger A. // J. Heterocycl. Chem. 1989. Vol. 26. P. 1093.

Самарский государственный университет, Самара 443011, Россия

Поступило в редакцию 01.09.98 После переработки 25.01.99

Самарский государственный технический университет, Самара 443010, Россия