И. Б. Дзвинчук*, М. О. Лозинский

СИНТЕЗ МЕТИЛ-6-АРИЛ-5-(1H-БЕНЗИМИДАЗОЛ-2-ИЛ)-2-МЕТИЛНИКОТИНАТОВ

Трехкомпонентная циклоконденсация 4-(диметиламино)бензальдегида, 2-фена-цил-1Н-бензимидазолов и метил-3-аминобут-2-еноата в кипящей уксусной кислоте протекает по схеме реакции Ганча и сопровождается отщеплением N,N-диметил-анилина с образованием ранее неизвестных метил-6-арил-5-(1Н-бензимидазол-2-ил)-2-метилникотинатов.

Ключевые слова: бензимидазолы, пиридины, ароматизация, дезарилирование, реакция Ганча.

Ранее нами было найдено [1], что типичная для реакции Ганча трехкомпонентная циклоконденсация с использованием в качестве альдегидного компонента 4-(диметиламино)бензальдегида (1) протекает в кипящей уксусной кислоте своеобразно. Она не останавливается на образовании продукта 1,4-дигидропиридиновой структуры, а легко сопровождается его ароматизацией за счет дезарилирования (отщепления N,N-диметиланилина). На этой основе предложен удобный одностадийный способ синтеза γ-незамещенных пиридинов, конденсированных с другими циклами, что позволило получить ряд производных хинолина [2], акридина [3], пиразоло[3,4-*b*]пиридина [4] и пиридо[2,3-*d*]пиримидина [5]. В настоящей работе данный метод распространен на синтез ранее неизвестных функционализированных производных пиридина.

Нами установлено, что трехкомпонентное взаимодействие альдегида 1, 2-фенацил-1H-бензимидазолов 2a-e и метил-3-аминобут-2-еноата (3) в кипящей уксусной кислоте также протекает по схеме реакции Ганча через 1,4-дигидропиридины 4 и после отщепления N,N-диметиланилина приводит к метил-6-арил-5-(1H-бензимидазол-2-ил)-2-метилникотинатам, которые с указанным растворителем образуют легко кристаллизующиеся сольваты 5a-e в молярном соотношении 1:1.

Реакция, в отличие от упомянутых выше примеров [1–5], протекает малоизбирательно. При взаимодействии исходных реагентов 1, 2, 3 в молекулярном соотношении 1:1:1 выделить целевые продукты затруднительно, а при соотношении 1:1:2.2 (метод A) продукты 5 легко выкристаллизовываются из реакционной смеси с выходами 39–49%.

2, 4, 5 a Ar = Ph, **b** Ar = 4-MeOC₆H₄, **c** Ar = MeC₆H₄, **d** Ar = ClC₆H₄, **e** Ar = 4-BrC₆H₄

Выход соединения **5а** не удается повысить при разделении процесса на две части (метод Б): 1) проведение конденсации альдегида **1** с метиленактивным соединением **2а** по Кневенагелю (описано нами ранее [6]); 2) введение полученного халкона **6** в циклоконденсацию с реагентом **3**.

Выход на первой стадии составляет 75, на второй -52, что соответствует общему выходу 39%. В то же время трехкомпонентный вариант синтеза приводит к соединению 5a с выходом 49%.

Кристаллосольваты **5а**—е устойчивы при 20–40 °C. При их выдерживании в течение 5 ч при 120 °C удается избавиться от уксусной кислоты на 93–95% (данные спектра ЯМР ¹Н). Соединение **5а**, как нами найдено, при высаживании водой из кипящего раствора в пиридине легко превращается в свободное основание **7**. Его строение подтверждено химическими превращениями: реакцией с диметилацеталем ДМФА с образованием N-метилпроизводного **8** и гидразинолизом до гидразида **9**, из которого по методу Курциуса был получен амин **10**.

Состав и строение синтезированных соединений подтверждены элемент-

ным анализом (табл. 1) и данными ИК и ЯМР 1 Н спектроскопии (табл. 2).

Таблица 1 **Характеристики синтезированных соединений**

Со- еди-	Брутто-	<u>Найдено, %</u> Вычислено, %			Т. пл.,*	Вы- ход**
нение	формула	С	Н	N	°C	, %
5a	$C_{21}H_{17}N_3O_2$ •HOCOMe	68.72 68.47	5.16 5.25	10.63 10.42	268.0–269.5	49
5b	C ₂₂ H ₁₉ N ₃ O ₃ •HOCOMe	66.76 66.50	<u>5.23</u> 5.35	9.72 9.69	221.0–222.5	46
5c	$C_{22}H_{19}N_3O_2$ •HOCOMe	69.34 69.05	5.27 5.55	10.23 10.07	236.0–237.5	48
5d	$C_{21}H_{16}CIN_3O_2$ •HOCOMe	63.31 63.09	4.48 4.60	9.77 9.60	260.5–262.0	46
5e	$C_{21}H_{16}BrN_3O_2 \bullet HOCOMe$	57.43 57.27	3.88 4.18	8.85 8.71	246.5–248.0	39
7	$C_{21}H_{17}N_3O_2$	73.34 73.45	5.07 4.99	12.18 12.24	268.0–269.5	98
8	$C_{22}H_{19}N_3O_2$	73.78 73.93	5.20 5.36	11.54 11.76	175.0–176.5	78
9	$C_{20}H_{17}N_5O$	69.81 69.96	5.12 4.99	$\frac{20.18}{20.39}$	283.0–284.5	85
10	$C_{19}H_{16}N_4$	75.77 75.98	5.42 5.37	18.43 18.65	222.0–223.5	88

^{*} Аддукты 5а-е при нагревании теряют уксусную кислоту и плавятся в виде свободных оснований.

^{**} Выход соединений **5а**–**е** по методу A; выход соединений **5а** по методу Б 52%.

ИК и ЯМР ¹Н спектры синтезированных соединений

ī	Т	
Соеди-	ИК спектр (C=O, N-H), v, см ⁻¹	Спектр ЯМР 1 Н, δ , м. д. (J , Γ ц)
5 a	1700, 1720	1.90 (3H, c, CH ₃ CO ₂); 2.86 (3H, c, 2-CH ₃); 3.89 (3H, c, 3-CO ₂ CH ₃); 7.16–7.20 (2H, м, H-5',6'); 7.30 (2H, т, <i>J</i> = 7.0, H-3,5 Ph); 7.35 (1H, т, <i>J</i> = 7.0, H-4 Ph); 7.38–7.40 (1H, м, H-7'); 7.41 (2H, д, <i>J</i> = 7.0, H-2,6 Ph); 7.60–7.64 (1H, м, H-4'); 8.51 (1H, c, H-4); 11.96 (1H, c, HOAc); 12.40 (1H, уш. c, NH)
5b	1705, 1720	1.90 (3H, c, CH ₃ CO ₂); 2.84 (3H, c, 2-CH ₃); 3.72 (3H, c, OCH ₃); 3.88 (3H, c, 3-CO ₂ CH ₃); 6.85 (2H, д, <i>J</i> = 8.5, H Ar); 7.38 (2H, д, <i>J</i> = 8.5, H Ar); 7.17–7.21 (2H, м, H-5',6'); 7.40–7.44 (1H, м, H-7'); 7.62–7.66 (1H, м, H-4'); 8.46 (1H, c, H-4); 11.96 (1H, c, HOAc); 12.38 (1H, уш. c, NH)
5c	1700, 1720	1.90 (3H, c, CH ₃ CO ₂); 2.26 (3H, c, CH ₃ Ar); 2.84 (3H, c, 2-CH ₃); 3.89 (3H, c, 3-CO ₂ CH ₃); 7.09 (2H, д, <i>J</i> = 8.0, H Ar); 7.31 (2H, д, <i>J</i> = 8.0, H Ar); 7.16–7.20 (2H, м, H-5',6'); 7.38–7.42 (1H, м, H-7'); 7.60–7.64 (1H, м, H-4'); 8.48 (1H, c, H-4); 11.94 (1H, c, HOAc); 12.38 (1H, уш. c, NH)
5d	1700, 1725	1.89 (3H, c, CH ₃ CO ₂); 2.84 (3H, c, 2-CH ₃); 3.90 (3H, c, 3-CO ₂ CH ₃); 7.18–7.20 (2H, м, H-5',6'); 7.37 (2H, д, $J=8.0$, H Ar); 7.41 (2H, д, $J=8.0$, H Ar); 7.41–7.45 (1H, м, H-7'); 7.60–7.64 (1H, м, H-4'); 8.54 (1H, c, H-4); 11.96 (1H, c, HOAc); 12.44 (1H, уш. c, NH)
5e	1705, 1725	1.90 (3H, c, CH ₃ CO ₂); 2.85 (3H, c, 2-CH ₃); 3.90 (3H, c, 3-CO ₂ CH ₃); 7.17–7.21 (2H, м, H-5',6'); 7.34 (2H, д, <i>J</i> = 8.0, H Ar); 7.51 (2H, д, <i>J</i> = 8.0, H Ar); 7.41–7.45 (1H, м, H-7'); 7.60–7.64 (1H, м, H-4'); 8.54 (1H, c, H-4); 11.96 (1H, c, HOAc); 12.48 (1H, уш. c, NH)
7	1720	2.86 (3H, c, 2-CH ₃); 3.89 (3H, c, 3-CO ₂ CH ₃); 7.17–7.19 (2H, м, H-5',6'); 7.30 (2H, т, <i>J</i> = 7.0, H-3,5 Ph); 7.35 (1H, т, <i>J</i> = 7.0, H-4 Ph); 7.39–7.43 (1H, м, H-7); 7.42 (2H, д, <i>J</i> = 7.0, H-2,6 Ph); 7.60–7.64 (1H, м, H-4'); 8.51 (1H, c, H-4); 12.38 (1H, уш. с, NH)
8	1720	2.89 (3H, c, 2-CH ₃); 3.08 (3H, c, 1'-CH ₃); 3.89 (3H, c, CO ₂ CH ₃); 7.24–7.29 (4H, м, H-5',6', H-3,5 Ph); 7.33–7.37 (3H, м, H-2,4,6 Ph); 7.42–7.46 (1H, м, H-7'); 7.67–7.71 (1H, м, H-4'); 8.44 (1H, с, H-4)
9	1665, 3240, 3330	2.66 (3H, c, 2-CH ₃); 4.57 (2H, c, NH ₂); 7.15–7.17 (2H, м, H-5',6'); 7.27–7.33 (3H, м, H-3,4,5 Ph); 7.36–7.40 (3H, м, H-2,6 Ph, H-7'); 7.59–7.63 (1H, м, H-4'); 8.02 (1H, c, H-4); 9.73 (1H, c, NHCO); 12.31 (1H, c, NH)
10	3375, 3455	2.41 (3H, c, 2-CH ₃); 5.41 (2H, c, NH ₂); 7.13–7.18 (5H, M, H-3,4,5 Ph, H-5',6',); 7.22 (1H, c, H-4); 7.24–7.26 (2H, M, H-2,6 Ph); 7.32–7.36 (1H, M, H-7'); 7.58–7.62 (1H, M, H-4'); 12.09 (1H, c, NH)

Из сопоставления ИК спектров аддуктов **5**а—е и свободного основания 7 очевидно, что в аддуктах карбонильная группа уксусной кислоты проявляется при 1700-1705 см⁻¹. Как известно [7], поглощение $\nu_{C=O}$ карбоновых кислот в свободном мономерном состоянии наблюдается при 1750-1765, в виде H-связанных димеров – при 1710-1720, а для карбоксилат-иона – при 1550-1610 см⁻¹. Следовательно, весьма вероятно, что аддукты **5** существуют в кристаллическом состоянии в форме не солей, а сольватов, в которых атом водорода карбоксильной группы связан межмолекулярной водородной связью предположительно с бензимидазольным атомом азота, поскольку он несколько более основен, чем пиридиновый (для соответствующих незамещенных гетероциклов значения рKа составляют 5.53 и 5.23 [8]).

В спектрах ЯМР ¹Н растворов аддуктов **5** в ДМСО-d₆ протоны H-7',4', груп-пы ОН уксусной кислоты и протон H-1' проявляются раздельными сигна-лами, соответственно, при 7.39–7.43, 7.62–7.64, 11.94–11.96 и 12.38–12.48 м. д.

В бензимидазолиевых же солях из-за симметрии гетерокольца и наличия в нем положительного заряда спектральная картина принципиально отличается, например, по данным [9] в хлоридах 2-(2,5-диарил-3-фурил)-3H-бензимидазол-1-ия протоны H-4 и H-7 резонируют как эквивалентные в более слабом поле, при 7.75–7.90 м. д., а протоны H-1 и H-3 участвуют в быстрых обменных процессах и не проявляются четко выраженным сигналом. Примечательно, что в ДМСО-d₆ группа CH₃ уксусной кислоты в индивидуальной форме и в соединениях 5 проявляется почти одинаково при 1.91 [10] и 1.89–1.90 м. д. Более того, спектр аддукта 5а, если исключить из него сигналы уксусной кислоты, практически идентичен спектру выделенного из него свободного основания 7. Из этого вытекает, что в ДМСО-d₆ аддукты также не имеют солеобразной природы. Аддукты аналогичного строения мы описали недавно в ряду 2-(3,6-диарилпиридазин-4-ил)-1H-бензимидазолов [11].

Таким образом, метод синтеза соединений с γ-незамещенным пиридиновым циклом, основанный на использовании в реакции Ганча 4-(диметиламино)бензальдегида, пригоден для получения ранее неизвестных метил-5-(1H-бензимидазол-2-ил)-2-метил-6-арилникотинатов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры соединений записывали на приборе UR-20 в таблетках КВг, спектры ЯМР 1 Н — на спектрометре Bruker Avance DRX 500 (500 МГц) в ДМСО- d_6 , внутренний стандарт ТМС. Ход реакций и чистоту синтезированных соединений контролировали методом ТСХ на пластинках Silufol UV-254 в системе растворителей бензол—этанол, 9 : 1, проявление в УФ свете. Перед определением выхода, проведением элементного анализа и спектральных исследований синтезированные соединения $\mathbf{5a}$ — \mathbf{e} сушили 2 ч при 40 °C, а соединения $\mathbf{8}$ — $\mathbf{10}$ – $\mathbf{5}$ ч при 120 °C.

Аддукт метил-5-(1H-бензимидазол-2-ил)-2-метил-6-фенилникотината с уксусной кислотой (5а). А. Смесь 0.149 г (1 ммоль) соединения 1, 0.236 г (1 ммоль) соединения 2а и 0.252 г (2.2 ммоль) соединения 3 в 1 мл ледяной уксусной кислоты выдерживают при 120 °С в течение 1 ч. Горячую реакционную смесь разбавляют 1 мл этанола, выдерживают до остывания, затем 30 мин при

 $20\,^{\circ}\text{C}$ и $30\,^{\circ}$ мин при $8\,^{\circ}\text{C}$. Остывшую массу фильтруют, осадок на фильтре промывают охлажденным этанолом и получают $0.186\,^{\circ}$ г аналитически чистого продукта 5a.

Соединения 5b—е получают аналогично из соединений 1, 2b—е и 3. При получении соединения 5e используют 2 мл уксусной кислоты, а реакционную смесь выдерживают при температуре не ниже 20 °C, чтобы избежать кристаллизации побочных продуктов.

Б. Смесь 0.126 г (1.1 ммоль) соединения **3** и 0.184 г (0.5 ммоль) соединения **6** в 1 мл ледяной уксусной кислоты выдерживают 30 мин при 120 °C. Горячую реакционную смесь разбавляют 1 мл этанола и в дальнейшем обрабатывают как в методе А. Получают 0.105 г аналитически чистого продукта **5**а.

Метил-5-(1Н-бензимидазол-2-ил)-2-метил-6-фенилникотинат (7). Смесь 0.403 г (1 ммоль) соединения **5а** и 1 мл пиридина кипятят при перемешивании до образования гомогенного раствора, к которому затем медленно прибавляют по каплям 1.5 мл воды. Остывшую массу фильтруют, осадок промывают водой и получают 0.336 г аналитически чистого продукта **7**.

Метил-2-метил-5-(1-метил-1Н-бензимидазол-2-ил)-6-фенилникотинат (8). Смесь 0.343 г (1 ммоль) соединения 7, 1 мл диметилацеталя ДМФА и 1 мл безводного пиридина выдерживают при 105 °С в течение 3 ч 30 мин. Горячую реакционную смесь разбавляют при перемешивании 3 мл воды. Остывшую массу фильтруют, осадок промывают охлажденным этанолом и получают 0.279 г аналитически чистого продукта 8.

5-(1Н-Бензимидазол-2-ил)-2-метил-6-фенилникотиногидразид (9). Смесь 0.343 г (1 ммоль) соединения **8**, 0.4 мл гидразингидрата (80%) и 1 мл пиридина выдерживают при 100 °С в течение 1 ч 30 мин. Горячий раствор разбавляют 3 мл воды и перемешивают до начала кристаллизации. Остывшую массу фильтруют, осадок промывают водой и получают 0.293 г аналитически чистого продукта **9**.

5-(1Н-Бензимидазол-2-ил)-2-метил-6-фенилпиридин-3-амин (10). К раствору 0.343 г (1 ммоль) соединения **9** в смеси 1 мл ледяной уксусной кислоты и 0.5 мл конц. НС1 при 15 °С в течение 5 мин при перемешивании прибавляют по каплям раствор 0.076 г (1.1 ммоль) нитрита натрия в 1 мл воды. Раствор выдерживают 30 мин при 15 °С, а затем нагревают в течение 1 ч 30 мин при 100 °С. Реакцион-ную смесь разбавляют 2 мл воды, 3 мл диэтилового эфира и подщелачивают 3 мл 20% водного раствора аммиака. Смесь нагревают при перемешивании до упари-вания диэтилового эфира и кристаллизации выделившегося масла. Горячую смесь фильтруют, осадок на фильтре промывают водой и получают 0.265 г аналитически чистого продукта **10**.

СПИСОК ЛИТЕРАТУРЫ

- 1. И. Б. Дзвинчук, М. О. Лозинский, *Избранные методы синтеза и модифи*кации гетероциклов. Хинолины: Химия и биологическая активность, под ред. В. Г. Карцева, ICSPF PRESS, Москва, 2007, т. 6, с. 64.
- 2. И. Б. Дзвинчук, А. Н. Чернега, М. О. Лозинский, *XГС*, 1792 (2007). [*Chem. Heterocycl. Comp.*, **43**, 1519 (2007)].
- 3. И. Б. Дзвинчук, Н. А. Толмачова, *XTC*, 554 (2001). [*Chem. Heterocycl. Comp.*, **37**, 506 (2001)].
- 4. И. Б. Дзвинчук, *XГС*, 578 (2007). [Chem. Heterocycl. Comp., **43**, 474 (2007)].
- 5. И. Б. Дзвинчук, М. О. Лозинский, *XTC*, 585 (2007). [*Chem. Heterocycl. Comp.*, **43**, 480 (2007)].

- 6. И. Б. Дзвинчук, А. В. Выпирайленко, М. О. Лозинский, Т. В. Макитрук, Укр. хим. журн., **65**, № 10, 111 (1999).
- 7. A. Гордон, Р. Форд, *Спутник химика*, Мир, Москва, 1976, с. 217, 282.
- 8. А. Ф. Пожарский, *Теоретические основы химии гетероциклов*, Химия, Москва, 1985, с. 126.
- 9. И. Б. Дзвинчук, М. О. Лозинский, *XГС*, 1637 (2007).[*Chem. Heterocycl. Comp.*, **43**, 1390 (2007)].
- 10. H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem., 62, 7512 (1997).
- 11. И. Б. Дзвинчук, А. М. Нестеренко, М. О. Лозинский, *XГС*, 252 (2008). [*Chem. Heterocycl. Comp.*, **44**, 190 (2008)].

Институт органической химии НАН Украины, Киев 02094, Украина e-mail: Rostov@bpci.kiev.ua Поступило 24.12.2008