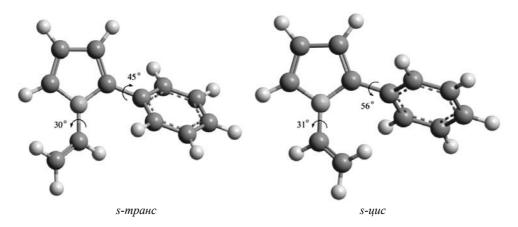
Посвящается академику Борису Александровичу Трофимову в связи с 70-летним юбилеем

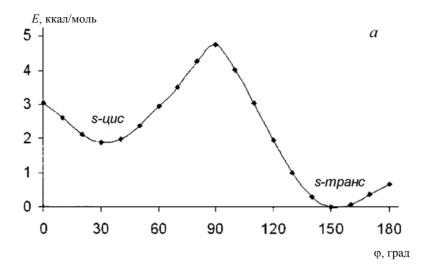
Ю. Ю. Русаков, Л. Б. Кривдин, Н. В. Истомина, Е. Ю. Шмидт, А. И. Михалева

КОНФОРМАЦИОННЫЙ АНАЛИЗ N-ВИНИЛ-2-ФЕНИЛПИРРОЛА

По результатам экспериментального измерения и неэмпирического квантовохимического расчета высокого уровня КССВ $^{13}C^{-1}H$ и $^{13}C^{-13}C$ проведен конформационный анализ N-винил-2-фенилпиррола. Установлены угловые зависимости прямых и вицинальных констант $J_{\rm C,C}$ и $J_{\rm C,H}$ в N-винилпиррольном фрагменте, позволяющие использовать их в стереохимических исследованиях винильных производных пиррола.


Ключевые слова: N-винил-2-фенилпиррол, конформационный анализ, КССВ, теория возмущения второго порядка (SOPPA).

В последние годы интенсивно изучается реакция оксимов с ацетиленом в сверхосновных средах, приводящая в одну стадию к пирролам и N-винилпирролам (реакция Трофимова) [1, 2]. N-Винил-2-фенилпиррол (1) является характерным представителем ряда производных N-винилпиррола, получаемых по реакции Трофимова, которые широко представлены в природе (хлорофилл, гемоглобин, витамин B_{12} , антибиотики и алкалоиды, участвующие в фиксации солнечной энергии, переносе кислорода в живых организмах и других жизнеобеспечивающих процессах) и представляют интерес для самых разнообразных областей человеческой деятельности — от фармакологии до электроники [3]. Не менее интересен и стереохимический аспект строения N-винилпирролов, определяющий их реакционную способность и практически важные свойства.


В настоящей работе проведено детальное стереохимическое исследование N-винил-2-фенилпиррола путем теоретического анализа его поверхности потенциальной энергии внутреннего вращения, а также по результатам экспериментального измерения и неэмпирического расчета высокого уровня КССВ 13 С- 14 Н и 13 С- 13 С. Теоретический расчет КССВ проводился при использовании подхода поляризационного пропагатора в рамках теории возмущения второго порядка (SOPPA) [4] с учетом всех четырех вкладов спин-спинового взаимодействия — Ферми-контактного (J_{FC}), спин-дипольного (J_{SD}), диамагнитного спин-орбитального (J_{DSO}) и парамагнитного спин-орбитального (J_{PSO}) — при использовании специальных корреляционно согласованных базисных наборов Даннинга [5], расширенных функциями учета внутренней корреляции [6], как описано в

работе [7]. Неэмпирический метод высокого уровня SOPPA хорошо зарекомендовал себя при расчетах КССВ в органических молекулах малого и среднего размера [8], что явилось основанием для его использования в данной работе.

В N-винил-2-фенилпирроле имеет место внутреннее вращение N-винильной группы относительно связи N-С и фенильной группы относительно связи С(2)-С(і). По результатам проведенных квантовохимических расчетов на уровне MP2/6-311G* в газовой фазе на вращательной поверхности потенциальной энергии молекулы 1 были локализованы два устойчивых конформера (не содержащие мнимых частот в гармоническом колебательном спектре) – s-цис и s-транс, характеризующиеся существенными отклонениями от плоского строения (рис. 1), что связано со стерическими взаимодействиями атомов водорода винильной и фенильной групп в обоих конформерах. Так, в предпочтительном *s-mpaнc*-конформере угол между плоскостями пиррольного цикла и N-винильной группы составляет $\phi = 30^{\circ}$ при угле между плоскостями пиррольного цикла и фенильной группы $\phi = 45^{\circ}$, в то время как в более высокоэнергетическом *s-цис*-конформере эти значения составляют, соответственно, $\phi = 31$ и 56° при различии энергии между этими конформерами в 1.9 ккал/моль.

Для более детального изучения внутреннего вращения винильной

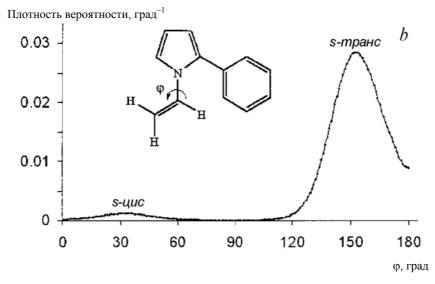
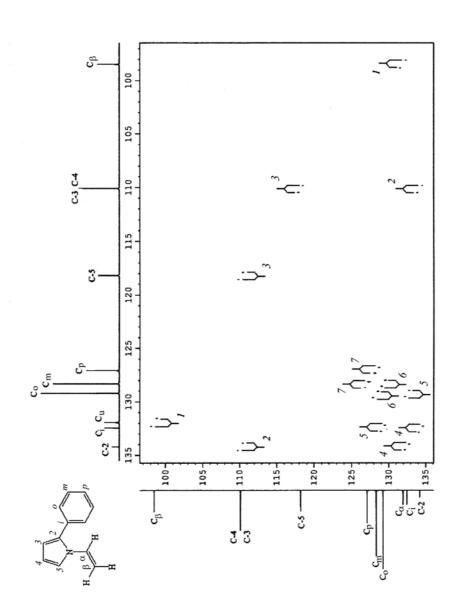
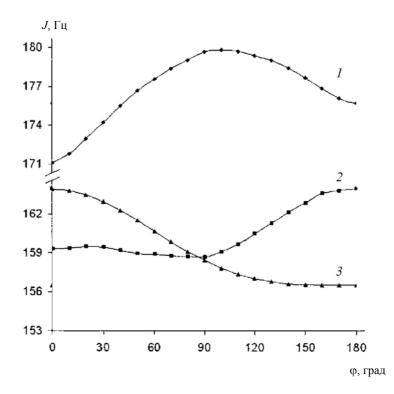


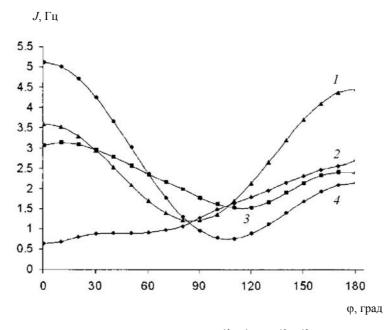
Рис. 2. Потенциальная кривая внутреннего вращения винильной группы (a) и кривая плотности вероятности заселенности вращательных конформаций (b) N-винил-2-фенил-пиррола, рассчитанные методом MP2/6-311G*; ф – диэдральный угол


В таблице приведены прямые и вицинальные КССВ 13 С $^{-1}$ Н и 13 С $^{-13}$ С,


рассчитанные методом SOPPA в предпочтительном *s-mpaнc*-конформере N-винил-2-фенилпиррола, и их экспериментальные значения, измеренные, соответственно, из спектров 2D HMBC и 2D INADEQUATE (использование последней методики проиллюстрировано на рис. 3).

Рассчитанные методом SOPPA* и экспериментальные КССВ $^{13}\mathrm{C}^{-13}\mathrm{C}$ и $^{13}\mathrm{C}^{-1}H~$ N-винил-2-фенилпиррола

КССВ	$J_{ m pac-u}$, Гц					I Fu
	$J_{ m PSO}$	$J_{ m DSO}$	$J_{ m SD}$	$J_{ m FC}$	J	$J_{ m эксп},$ Гц
¹ <i>J</i> (C-2,C-3)	0.31	-6.45	1.57	72.28	67.71	68.3
$^{1}J(C-4,C-5)$	0.25	-6.49	1.61	71.28	66.65	66.8
$^{1}J(C_{\alpha},C_{\beta})$	0.18	-8.27	3.26	82.18	77.35	77.6
${}^{1}J(C-2,C_{i})$	0.37	-1.52	0.59	67.84	67.28	66.7
$^{1}J(C_{i},C_{o})$	0.29	-6.04	1.14	62.46	57.85	57.5
$^{1}J(C_{o},C_{m})$	0.23	-6.21	1.15	61.96	57.13	56.8
$^{1}J(C_{m},C_{p})$	0.22	-6.14	1.16	60.53	55.77	55.6
$^{1}J(C-3,H)$	0.96	0.38	0.27	167.98	169.59	170.0
$^{1}J(C-4,H)$	0.86	0.41	0.25	168.84	170.36	170.5
$^{1}J(C-5,H)$	1.03	0.20	0.26	184.90	186.39	185.7
$^{1}J(C_{m},H)$	0.84	0.23	0.17	158.69	159.93	161.3
$^{1}J(C_{p},H)$	0.83	0.25	0.19	158.71	159.98	160.9
$^{1}J(C_{o},H)$	0.96	0.13	0.19	159.04	160.32	158.8
$^{1}J(C_{\alpha},H_{X})$	1.04	0.01	0.21	175.42	176.68	175.1
$^{1}J(C_{\beta},H_{A})$	0.58	0.59	0.24	161.42	162.83	163.5
$^{1}J(C_{\beta},H_{B})$	0.64	0.58	0.25	155.03	156.50	156.9
$^{3}J(C_{i},C_{p})$	0.02	0.47	1.62	8.23	10.34	10.3
$^{3}J(C_{o},C_{m})$	0.01	0.42	1.54	7.47	9.44	9.0
$^{3}J(C-3,C_{o})$	0.01	0.11	-0.13	2.09	2.08	2.1
$^{3}J(C_{m},C-2)$	-0.03	0.03	0.06	4.54	4.60	4.2
$^{3}J(C-5,C_{i})$	-0.05	0.01	-0.01	1.39	1.34	1.6
$^3J(C-2,C_{\beta})$	-0.06	0.27	0.21	1.98	2.40	2.7
$^{3}J(C-5,C_{\beta})$	0.01	-0.02	0.13	2.07	2.19	2.4
$^3J(C-2,H_X)$	0.19	-0.16	-0.01	1.33	1.35	1.3
$^{3}J(C-5,H_{X})$	-0.43	0.16	0.01	4.00	3.74	4.4


^{*} Для предпочтительного s-транс-конформера, см. рис. 1.

Puc. 4. Угловые зависимости прямых КССВ 13 С $^{-1}$ Н винильной группы для внутреннего вращения вокруг связи $N-C_{\alpha}$ в N-винил-2-фенилпирроле, рассчитанные методом SOPPA:

$$1 - {}^{1}\!J(C_{\alpha},\!H_{X}),\, 2 - {}^{1}\!J(C_{\beta},\!H_{\scriptscriptstyle A}),\, 3 - {}^{1}\!J\left(C_{\beta},\!H_{\scriptscriptstyle B}\right)$$

 $\it Puc.$ 5. Угловые зависимости вицинальных КССВ 13 С $^{-1}$ Н и 13 С $^{-13}$ С для внутреннего вращения вокруг с вязи N−С $_{\alpha}$ в N-винил-2-фенилпирроле, рассчитанные методом

$$1 - {}^{3}J(C-5,H_{X}), 2 - {}^{3}J(C-2,C_{\beta}), 3 - {}^{3}J(C-5,C_{\beta}), 4 - {}^{3}J(C-2,H_{X})$$

Из данных таблицы видно, что для всех рассмотренных прямых и вицинальных КССВ 13 С $^{-1}$ Н и 13 С $^{-13}$ С наблюдается прекрасное соответствие их рассчитанных и экспериментальных значений (как правило, в пределах менее 0.5% от полной константы), что свидетельствует об адекватности использованного уровня неэмпирической теории.

В данной работе нас интересовали также угловые зависимости КССВ $^{13}C^{-1}H$ и $^{13}C^{-13}C$ N-винилпиррольного фрагмента для внутреннего вращения вокруг связи N-C $_{\alpha}$, которые и были рассчитаны в рамках метода SOPPA на примере N-винил-2-фенилпиррола (рис. 4 и 5). Как следует из этих данных, все рассмотренные прямые и вицинальные константы $^{13}C^{-1}H$ и $^{13}C^{-13}C$ N-винилпиррольного фрагмента проявляют ярко выраженные угловые зависимости, связанные с внутренним вращением винильной группы (обсуждение их природы выходит за рамки данной статьи), что позволяет использовать значения упомянутых КССВ для конформационного анализа широкого ряда N-винилпирролов и их производных.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н и 13 С регистрировались на спектрометрах Bruker DPX-400 и AVANCE-400 (400 и 100 МГц) в ампулах с внешним диаметром 5 и 10 мм при 25 $^{\circ}$ С в 10% растворах CD₃OD или ДМСО- 4 6 с добавлением ГМДС в качестве внутреннего стандарта. Измерение КССВ 13 С- 13 С проводилось при использовании импульсной последовательности INADEQUATE со следующими параметрами: ширина спектра – 6 кГц, длительность импульса – 13.5 мкс, релаксационная задержка – 4 с, время считывания спада сигнала свободной индукции – 4 с, цифровое разрешение – 0.1 Гц/точку, время накопления – от 6 до 24 ч. КССВ 13 С- 1 Н измерялись из протонно-связанных спектров ЯМР 13 С с периодическим включением широкополосной развязки от протонов во время релаксационных задержек при использовании указанных выше спектральных параметров.

Квантово-химические расчеты проводились по программам GAMESS [9] и DALTON [10]. Оптимизация геометрических параметров и расчет полных энергий проводились на уровне теории возмущения второго порядка MP2/6-311G**, а расчет КССВ 13 С $^{-13}$ С $^{-13}$ С $^{-13}$ С в рамках теории поляризационного пропагатора второго порядка SOPPA при использовании стандартных библиотечных, либо модифицированных авторами данной работы базисных наборов, подробная спецификация которых приведена в работе [11].

N-Винил-2-фенилпиррол (1) получен из ацетофеноноксима и ацетилена в присутствии суперосновной системы КОН–ДМСО [3].

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант РФФИ № 08-03-00021) и при поддержке Президентом РФ ведущих научных школ (грант НШ-263.2008.3).

СПИСОК ЛИТЕРАТУРЫ

1. B. A. Trofimov, in: *Advances of Heterocyclic Chemistry*, A. R. Katritzky (Ed.), Acad. Press, San Diego, 1990, vol. 51, p. 177.

- 2. B. A. Trofimov, in: *The Chemistry of Heterocyclic Compounds. Pyrroles*, R. A. Jones (Ed.), Wiley Intersci., New York, 1992, p. 131.
- 3. A. I. Mikhaleva, E. Yu. Schmidt, in *Selected Methods for Synthesis and Modification of Heterocycles*, V. G. Kartsev (Ed.), IBS Press, Moscow, 2002, vol. 1, p. 331.
- 4. T. Enevoldsen, J. Oddershede, S. P. A. Sauer, *Theor. Chem. Acc.*, **100**, 275 (1998).
- 5. T. H. Dunning, J. Chem. Phys., 90, 1007 (1989).
- 6. D. E. Woon, T. H. Dunning, J. Chem. Phys., 103, 4572 (1995).
- 7. L. B. Krivdin, Magn. Reson. Chem., 42, 919 (2004).
- 8. L. B. Krivdin, R. H. Contreras, in: *Annual Reports on NMR Spectroscopy*, G. A. Webb (Ed.), Acad. Press, New York, 2007, vol. 61, p. 133.
- 9. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, *J. Comp. Chem.*, **14**, 1347 (1993).
- 10. C. Angeli, K. L. Bak, V. Bakken, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, T. Enevoldsen, B. Fernandez, C. Haettig, K. Hald, A. Halkier, H. Heiberg, T. Helgaker, H. Hettema, H. J. A. Jensen, D. Jonsson, P. Joergensen, S. Kirpekar, W. Klopper, R. Kobayashi, H. Koch, A. Ligabue, O. B. Lutnaes, K. V. Mikkelsen, P. Norman, J. Olsen, M. J. Packer, T. B. Pedersen, Z. Rinkevicius, E. Rudberg, T. A. Ruden, K. Ruud, P. Salek, A. Sanchez de Meras, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. O. Sylvester-Hvid, P. R. Taylor, O. Vahtras, D. J. Wilson, H. Ågren. Dalton, A Molecular Electronic Structure Program, Release 2.0, 2005, http://www.kjemi.uio.no/software/dalton/dalton.html.
- 11. S. P. A. Sauer, L. B. Krivdin, Magn. Reson. Chem., 42, 671 (2004).

Иркутский институт химии им. А. Е. Фаворского СО РАН, Иркутск 665033, Россия e-mail: krivdin_office@irioch.irk.ru Поступило 22.05.2008