ВЗАИМОДЕЙСТВИЕ ЦИАНУРХЛОРИДА С АЛКАНТИОСУЛЬФОНАТАМИ

Ключевые слова: *сим*-триазин, соли алифатических тиосульфокислот.

Среди производных *сим*-триазина найдены вещества с высокой герби-цидной, инсектицидной и фунгицидной активностями [1]. С целью изыскания новых биологически активных веществ мы осуществили синтез производных *сим*-триазина с тиосульфонатными фрагментами взаимодей-ствием цианурхлорида с калиевыми или натриевыми солями алифати-ческих тиосульфокислот.

M = K, Na, a R = Me, b R = Et, c R = Pr

В ацетоне при низкой температуре (-5-0 °C) и молярном соотно-шении реагентов выделены эфиры тиосульфокислот **1**а-**c** с выходами 36–45%. В результате взаимодействия цианурхлорида с алкантиосульфо-натами в соотношении 1:2 и комнатной температуре получена смесь двух продуктов моно- **1**а-**c** и дизамещения **2**а-**c**, которые были разделены благодаря их разной растворимости в диэтиловом эфире. В ИК спектрах соединений **1**, **2** наблюдаются колебания в областях 704–714, 804–812, 992–1112, 1400–1560 см⁻¹, характерные для триазинового цикла, и в областях 840–854, 1156–1162, 1258–1262, 1296–1300 см⁻¹, характерные для валентных колебаний связей С–СІ [2], а также колебания в областях 1115–1150 и 1310–1344 см⁻¹, подтверждающие наличие тиосульфонатного фрагмента.

Спектры ЯМР 1 Н получены на приборе Varian VXR-300 (300 МГц), в ДМСО- d_{6} , внутренний стандарт ТМС, ИК спектры – на приборе Specord M-80.

S-2,4-Дихлортриазиновый эфир метантиосульфокислоты (**1a**). Выход 0.316 г (45.1%). Масло. Спектр ЯМР 1 H, δ , м. д.: 3.7 (3H, c, CH₃). Найдено, %: C 18.09; H 1.38; Cl 26.85; N 15.83; S 24.18. C₄H₃Cl₂N₃O₂S₂ Вычислено, %: C 18.47; H 1.16; Cl 27.25; N 16.15; S 24.65.

S-2,4-Дихлортриазиновый эфир этантиосульфокислоты (**1b**). Выход 0.311 г (42.0%). Масло. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 1.4 (3H, τ , ^{3}J = 7.2, CH₃); 3.2 (2H, κ , ^{2}J = 2.8, ^{3}J = 7.4, CH₂). Найдено, %: С 21.63; Н 2.03; С1 25.63; N 14.95; S 23.76. С₅H₅Cl₂N₃O₂S₂. Вычислено, %: С 21.91; Н 1.84; Cl 25.86; N 15.33; S 23.39.

S-2,4-Дихлортриазиновый эфир пропантиосульфокислоты (1c). Выход 0.241 г (31.0%). Масло. Спектр ЯМР 1 Н, δ , м. д. (J, Γ ц): 0.92 (3H, т, 3J = 7.4, CH₃); 1.59 (2H, м, 3J = 8.7, CH₂SO₂).Найдено, %: C 24.63; H 2.67; Cl 24.25; N 14.17; S 21.83. $C_6H_7Cl_2N_3O_2S_2$. Вычислено, %: C 25.01; H 2.45; Cl 24.61; N 14.58; S 22.25.

6-Хлор-2,4-бис(метилсульфонилтио)-*сим*-триазин (**2a**). Выход 0.325 г (35.8%). Т. пл. 28 °C. Спектр ЯМР 1 Н, δ , м. д. (*J*, Γ ц): 3.48 (6H, c, 2CH₃). Найдено, %: С 18.02; Н 1.98; Сl 10.15; N 12.83; S 37.78. С₅H₆ClN₃O₄S₄. Вычислено, %: С 17.88; Н 1.80; Сl 10.56; N 12.51; S 38.19.

6-Хлор-2,4-бис(этилсульфонилтио)-*сим*-триазин (**2b**). Выход 0.384 г (39.1%). Т. пл. 31 °С. Спектр ЯМР ¹Н, δ , м. д. (J, Γ ц): 1.4 (6H, т, 3J = 7.2, 3J = 7.2, 3J = 7.4, 3J = 7.4, 3J = 7.4, 3J = 7.2, 3J = 7.4, 3J = 7.4, 3J = 7.4, 3J = 7.5, 3J = 7.5, 3J = 7.4, 3J = 7.4, 3J = 7.5, 3J = 7.5, 3J = 7.5, 3J = 7.5, 3J = 7.4, 3J = 7.5, 3J = 7.7, 3J = 7.5, 3J

6-Хлор-2,4-бис(пропилсульфонилтио)-*сим*-триазин (2c). Выход 0.32 г (30.2%). Т. пл. 34 °C. Спектр ЯМР 1 Н, δ , м. д.: 0.98 (6H, т, ^{3}J = 7.4, 2CH₃); 1.92 (4H, м, 2CH₂CH₃); 3.54 (4H, м, 2CH₂SO₂). Найдено, %: С 27.23; Н 3.87;

 $C1\,8.75;\,N\,10.47;\,S\,32.43.\,C_9H_{14}CIN_3O_4S_4.\,$ Вычислено, %: $C\,27.58;\,H\,3.60;\,C1\,9.05;\,N\,10.72;\,S\,32.72.\,$

СПИСОК ЛИТЕРАТУРЫ

- 1. Н. Н. Мельников, Пестициды. Химия, технология и применение, Химия, Москва, 1987.
- 2. В. И. Келарев, Ф. Лаауад Яхья, Р. А. Караханов, А. Ф. Лунин, В. А. Винокуров, *XГС*, 1392 (1987). [*Chem. Heterocycl. Comp.*, **23**, 1118 (1987)].

С. В. Васылюк, В. И. Лубенец, Ю. И. Бычко, В. П. Новиков

Национальный университет "Львивська политехника", Львов 79013, Украина

e-mail: vnovikov@polynet.lviv.ua

 $X\Gamma C. - 2008. - N_{2} 1. - C. 132$

Поступило 22.02.2007

После доработки 15.01.2008