
ПИСЬМА В РЕДАКЦИЮ

КОНФОРМАЦИОННЫЙ АНАЛИЗ ТЕТРАГИДРОФУРАНА И ТЕТРАГИДРОТИОФЕНА ПО ДАННЫМ СПЕКТРОСКОПИИ ЯМР 1 Н И НЕЭМПИРИЧЕСКИХ РАСЧЕТОВ

Ключевые слова: тетрагидротиофен, тетрагидрофуран, конформационный анализ.

Важную информацию о конформации молекул в растворе несут данные по КССВ. К настоящему времени для $T\Gamma\Phi$ и тетрагидротиофена ($T\Gamma T$) экспериментально получены четыре из десяти возможных КССВ $^nJ_{HH}$ [1]. Мы использовали эти данные для оценки параметров динамического строения молекул $T\Gamma\Phi$ и $T\Gamma T$ в рамках новой схемы конформационного анализа, включающей квантово-химическое описание динамических систем в терминах колебаний с большой амплитудой.

Предлагаемая нами схема конформационного анализа включает ряд этапов. На начальном этапе рассчитаны потенциал и координаты реак-ционного пути для молекул ТГФ и ТГТ методом сканирования в прибли-жении Хартри-Фока с базисными функциями 6-311++g** [2]. Молекуляр-ная структура точек на координате реакционного пути охарактеризована параметрами складчатости: фазовым углом псевдовращения и амплитудой

Конформационное пространство ТГФ и ТГТ

складчатости [3]. Показано, что точкам минимальной энергии соот-ветствуют конформации типа $m u c m^4 T_5$ и $^5 T_4$, для которых характерно наименьшее отталкивание протонов соседних групп CH_2 , точкам переход-ного состояния отвечают конформации типа $koh e p m^4 E$ и E_1 от англ. envelope (см. рисунок).

На втором этапе рассчитаны колебательные уровни энергии и волно-вые функции процесса псевдовращения, для чего проведено численное решение одномерного уравнения Шредингера вариационным методом Ритца [4]. Значения функции распределения позволили сделать оценку усредненных по тепловым движениям КССВ для каждой точки на коорди-нате реакционного пути. Последующий анализ заселенности колеба-тельных уровней позволил провести расчет КССВ для заданной темпе-ратуры.

На завершающем этапе решена обратная структурная задача с уточ-нением параметров потенциала по критерию наилучшего соответствия рассчитанных и экспериментальных КССВ (см. таблицу). Наряду с чрезвычайно низкоэнергетическим процессом псевдовращения, $T\Gamma\Phi$ подвержен процессу инверсии цикла, переходя, например, из формы 3T_4 непосредственно в форму 4T_3 также с достаточно низким барьером. По данным работы [5], этот барьер равен примерно 4.5 ккал/моль. Эти

одновременно протекающие процессы приводят к тому, что в экспери-менте при комнатной температуре спектры ЯМР 1 Н описываются спино-выми системами типа $[A]_4[X]_4$ в соответствии с эффективной симметрией молекулы C_{2v} . Для сравнения в таблице также приведены КССВ, рассчитанные в работе [5] без использования динамического подхода. Хорошее соответствие рассчитанных нами КССВ с экспериментальными подтвер-ждает сделанные выводы о структуре изученных молекул.

Для молекулы $T\Gamma\Phi$ максимальному значению энергии соответствует минимальное значение складчатости [3], а для $T\Gamma T$ наблюдается обратная ситуация. Амплитуда складчатости по ходу движения по координате реакционного пути для $T\Gamma\Phi$ варьируется в интервале от 0.35 до 0.38 Å, в случае $T\Gamma T$ – от 0.43 до 0.49 Å, что, по нашему мнению, объясняется существенными различиями в строении этих молекул. Формально моле-кулу $T\Gamma\Phi$ можно получить замещением группы CH_2 циклопентана на близкий по размеру и массе атом кислорода, что приводит лишь к незна-чительному изменению скелета молекулы, делая его чуть более плоским,

Сопоставление рассчитанных и экспериментальных кссо (г ц) для тт Ф и тт т	Сопоставление рассчитанных и эксп	ериментальных КССВ (Гц)	для ТГФ и ТГТ
---	-----------------------------------	-------------------------	---------------

Тип	Тетрагидрофуран			Тетрагидротиофен	
КССВ	Настоящая работа	Расчет [5]	Экспери- мент [1]	Настоящая работа	Экспери- мент [1]
$^{3}J^{mpanc}_{2,3}$	5.93	5.35	6.14	6.02	6.66
$^{3}J^{\mu\nu c}_{2,3}$	8.19	7.33	7.94	7.25	6.66
$^{3}J^{mpanc}_{3,4}$	6.26	5.50	6.25	7.43	7.35
$^{3}J_{3,4}^{\mu\nu c}$	8.56	8.51	8.65	5.46	5.5

в то время как аналогичная замена группы CH_2 на атом серы существенно меняет общее строение. В частности, валентный угол C–X–C изменяется от 108.5° в циклопентане [5] до \sim 94° в $T\Gamma T$. Молекула становится заметно более "складчатой", что и подтверждается нашими расчетами. Введение тяжелого атома серы существенно удлиняет общий реакционный путь: в случае $T\Gamma \Phi$ он равен $23.04~B\cdot (a.e.m.)^{0.5}$, а в случае $T\Gamma T$ общий реакцион-ный путь составляет $31.107~B\cdot (a.e.m.)^{0.5}$.

Работа выполнена при поддержке РФФИ (грант № 06-03-32800).

СПИСОК ЛИТЕРАТУРЫ

- 1. J. B. Lambert, J. J. Papay, S. A. Khan, K. A. Kappauf, K. A. Magyr, J. Am. Chem. Soc., 96, 6112 (1974).
- 2. J. B. Foresman, A. Frisch, Exploring Chemistry With Electronic Structure Methods, Gaussian Inc., Pittsburgh, 1996.
- 3. A. Yu. Zotov, V. A. Palyulin, N. S. Zefirov, J. Chem. Inf. Modelling, 37, 766 (1997).
- 4. И. Ю. Скорынин, В. М. Мамаев, О. А. Хакимова, В. А. Чертков, Е. В. Борисов, *Журн. структур. химии*, **32**, 84 (1991).
- 5. A. Wu, D. Cremer, J. Phys. Chem., 107, 1197 (2003).

А. В. Чертков, О. И. Покровский, А. К. Шестакова^а, В. А. Чертков

Московский государственный университет им. М. В. Ломоносова, Москва 119992, Россия e-mail: achertkov@org.chem.msu.ru

Поступило 12.02.2008

^аГНЦ РФ "ГНИИХТЭОС" Москва 111123, Россия