В. П. Фешин, Е. В. Фешина

СТРОЕНИЕ N-ХЛОРМЕТИЛЛАКТАМОВ И ОСОБЕННОСТИ ВЗАИМОДЕЙСТВИЯ АТОМОВ В НИХ ПО РЕЗУЛЬТАТАМ РАСЧЕТОВ *ab initio*

Выполнены квантово-химические расчеты методами RHF/6-31G(d) и MP2/6-31 +G(d) молекул N-хлорметилпирролидона, N-хлорметилкапролактама, N-хлорметилсукцинимида и N-хлорметилфталимида при полной оптимизации их геометрии, а также молекулы N-хлорметилпирролидона методом RHF/6-31G(d) при различных углах вращения группы CH₂Cl вокруг связи C–N. Показано, что более низкие частоты ЯКР 35 Cl двух первых молекул по сравнению с последними обусловлены в основном более высокими заселенностями p_{σ} -орбиталей их атомов Cl. Заселенность орбитали неподеленной пары электронов атома N практически не изменяется при вращении группы CH₂Cl, а атом N поляризует связь C–Cl в указанной молекуле. Это не подтверждает предполагаемое p, σ^* -сопряжение в группировке Cl–C–N.

Ключевые слова: N-хлорметиллактамы, заселенности p-орбиталей, конформации молекул, неэмпирические квантово-химические расчеты, параметры ЯКР, p, σ^* -сопряжение.

Полагают (например [1, 2]), что в нелинейной трехатомной группировке Y–C–M неподеленная пара электронов гетероатома M участвует в p, σ^* -сопряжении с антисвязывающей орбиталью связи C—Y, что приводит к повышенной электронной плотности индикаторного атома Y и свойствам соединений, содержащих такую группировку, не соответствующим индукционному влиянию M на Y. Однако показано (например [3-5]), что за "аномальное" влияние M на Y и обусловленные этим "аномальные" свойства таких соединений в действительности отвечает поляризация связи С—Y под действием заряда атома M непосредственно через поле.

Поскольку заряд гетероатома М не точечный, а объемный, вполне естественно, что величина этого "аномального" влияния атома М на Y должна зависеть от положения связи С-Y относительно атома М. Существенный вклад в асимметрию электронного распределения в атоме М вносит его неподеленная пара электронов. Поэтому величина "аномального" влияния М на Y должна зависеть также от взаимной ориентации связи С-Y и неподеленной пары электронов атома М.

Из сопоставления экспериментальных и вычисленных по аддитивной схеме дипольных моментов и молярных констант Керра найдены конформации большого числа молекул, содержащих группировку Cl–C–N: N-хлор-

метилпирролидона [6], N-хлорметилкапролактама [6], N-галогенметил-бензамидов PhCONHCH₂Y с Y = Cl и Br [7], нитрамина ClCH₂NMeNO₂ [8] и др. [9–11]. Полагают, что все три связи атома N в этих молекулах лежат в одной плоскости, перпендикулярно которой расположена 2p-орбиталь его неподеленной пары электронов. Оцененные по этим данным углы (φ) между этой плоскостью и той, в которой находится группировка N–C–Hal (105, 90, 82, 95 и 112° соответственно) считаются благоприятными для p, σ *-взаимодействия (α -эффекта), которое должно быть максимальным при φ = 90°.

Для изучения конформаций молекул, содержащих группировку Cl–C–N, и механизма взаимодействия в ней геминальных атомов мы, используя программу Gaussian 03W [12], провели квантово-химические расчеты методами RHF/6-31G(d) и MP2/6-31+G(d) молекул N-хлорметилпирролидона (1), N-хлорметилкапролактама (2), N-хлорметилсукцинимида (3) и N-хлорметилфталимида (4) с полной оптимизацией их геометрии, а также расчеты методом RHF/6-31G(d) молекулы 1 при различных углах вращения (φ) хлорметильной группы вокруг связи C–N (при φ = 0° связи C–Cl и C=O находятся в одной плоскости в *цис*-положении друг к другу).

Результаты расчетов сопоставлены с экспериментальными данными метода ЯКР на ядрах 35 Cl. Частоты ЯКР 35 Cl (ν) и параметры асимметрии (η) градиента электрического поля на ядрах 35 Cl оценены по уравнениям (1) и (2) [13] и заселенностям менее диффузных 3p-составляющих валентных p-орбиталей атомов хлора, полученным при расчетах молекул методом Хартри-Фока с использованием расщепленного и поляризованного базиса 6-31G(d).

$$v = (e^2 Q q_{\text{ar}} / 2h [-N_z + (N_x + N_y) / 2] (1 + \eta^2 / 3)^{1/2}$$

$$\eta = [3(N_x - N_y) / (2N_z - N_x - N_y)]$$
(1)

Здесь $e^2Qq_{\rm ar}$ — атомная константа квадрупольного взаимодействия; h — постоянная Планка; N_x , N_y и N_z — заселенности валентных p_x -, p_y - и p_z -орбиталей индикаторного атома соответственно. Величина $e^2Qq_{\rm ar}$ найдена по экспериментальной частоте ЯКР Cl_2 и заселенностям 3p-составляющих валентных p-орбиталей атомов Cl этой молекулы, рассчитанным указанным выше методом.

Такая методика оценки параметров спектров ЯКР, предложенная нами ранее (например [4, 14]), приводит к хорошему согласию с соответствующими экспериментальными данными (например [4, 14, 15]). При этом наилучшее согласие достигается при использовании заселенностей 3*p*-составляющих, полученных в расчетах молекул методом RHF/6-31G(d) [16].

В молекулах соединений 1-4 рассчитаны длины связей с полной оптимизацией их геометрии методами RHF/6-31G(d) и MP2/6-31+G(d) (табл. 1) и их валентные и торсионные углы (табл. 2). Как видно, результаты расчетов, полученные методами различного уровня, близки между собой. Согласно обоим методам, три связи атома N в молекулах 1-4 лежат практически в одной плоскости, поскольку сумма его валентных углов почти не отличается от 360° .

Для молекулы **1** рассчитанные обоими методами значения угла ϕ практически совпадают с полученными ранее [6], для молекулы **2** отличаются от него сравнительно незначительно [6], а для молекул **3** и **4** — уже принципиально. По данным работы [17], обе последние молекулы плоские ($\phi = 0$ или 180°). Однако планарная конформация этих молекул стерически наименее выгодна и не нашла объяснения у авторов работы [17], т. е. ее результаты, по-видимому, ошибочны.

Полагают [6], что плоская конформация двух последних молекул делает невозможным p, σ^* -сопряжение в них, тогда как конформация молекул **1** и **2** благоприятна для него, а наличие такого сопряжения подтверждают частоты ЯКР ³⁵Cl этих соединений. Так, частота ЯКР для соединения **1** (32.082 МГц) значительно ниже, чем для MeCl (34.03 МГц), тогда как для соединения **4**, плоское строение которого исключает такое сопряжение, она несколько выше (34.367 МГц) [6]. Однако такое соотношение частот ЯКР этих соединений не указывает на какой-либо конкретный механизм взаимодействия атомов, вызывающий понижение частоты ЯКР соединения **1** по сравнению с MeCl и соединением **4**.

Некоторые выводы об этом механизме можно сделать при сопоставлении экспериментальных параметров ЯКР 35 Cl с результатами неэмпирических квантово-химических расчетов соответствующих молекул. Вычисленные по описанной выше методике частоты ЯКР 35 Cl молекул 1 и 4 (табл. 3) незначительно отличаются от экспериментальных. Их малые параметры асимметрии характерны для атомов Cl, связанных с sp^3 -гибридизованным атомом углерода (к сожалению, экспериментальные параметры асимметрии для этих соединений отсутствуют).

Длины связей (*d*) в молекулах 1–4, рассчитанные методами RHF/6-31G(d) и MP2/6-31+G(d)

	d, Å								
Связь		RI	HF			M	P2		
	1	2	3	4	1	2	3	4	
Cl-C(1)	1.817	1.824	1.794	1.798	1.810	1.819	1.789	1.795	
C(1)-N	1.409	1.414	1.386	1.421	1.417	1.423	1.432	1.427	
N-C(2)	1.368	1.379	1.386	1.395	1.382	1.391	1.402	1.411	
N-C(3)	1.453	1.460	1.386	1.395	1.460	1.466	1.402	1.411	
C(2)-O(1)	1.194	1.197	1.186	1.186	1.231	1.236	1.222	1.224	
C(3)–C(4)	1.538	1.537	1.516	1.489	1.537	1.537	1.518	1.487	
C(2)–C(5)	1.516	1.518	1.516	1.489	1.519	1.513	1.518	1.487	
C(4)–C(5)	1.532	_	1.533	1.381	1.531	-	1.533	1.398	

Судя по уравнению (1) и заселенностям 3p-составляющих валентных p-орбиталей атомов Cl в этих молекулах (табл. 3), более низкие частоты ЯКР 35 Cl молекул 1 и 2 по сравнению с таковыми молекул 3 и 4 обусловлены прежде всего более высокими заселенностями $3p_z$ -составляющих валентных p-орбиталей атомов Cl в первых молекулах. Значительно меньший вклад в это понижение вносят несколько меньшие полусуммы заселенностей их $3p_x$ - и $3p_y$ -составляющих. Полные заселенности валентных $p_z(p_\sigma)$ -орбиталей атомов Cl в молекулах 1 и 2 также выше, чем в молекулах 3 и 4 (табл. 3).

Чтобы проверить способность неподеленной пары электронов атома N (p_y -орбиталь) участвовать во взаимодействии со связью C–Cl в изученных молекулах, мы выполнили расчеты методом RHF/6-31G(d) молекулы 1 при различных углах вращения (ϕ) группировки ClCH2 вокруг связи C(1)–N и по найденным заселенностям 3p-составляющих валентных p-орбиталей атома Cl оценили частоты ЯКР 35 Cl (табл. 4). Для этого начало системы координат поместили в точку расположения ядра атома Cl, причем ось Z направили вдоль связи Cl–C. Для оценки заселенности p_y -орбитали атома N расчеты повторяли, помещая начало системы координат на ядро атома N.

Согласно выполненным расчетам, при возрастании угла ϕ от 0 до 90° частота ЯКР ³⁵Сl уменьшается. При дальнейшем увеличении угла ϕ она незначительно возрастает и становится наиболее близкой к экспериментальному значению при ϕ 125–130° (табл. 4). Поскольку в кристаллическом состоянии, для которого записывают спектры ЯКР, молекула не всегда находится в энергетически наиболее выгодной для газовой фазы форме (например, [18, 19]), можно полагать, что именно такой угол ϕ характерен для молекулы 1 в кристалле. В растворе или в газообразном состоянии эта молекула имеет, по-видимому, угол ϕ ~105°.

1541

Валентные (α) и торсионные (β) углы в молекулах 1–4, рассчитанные методами RHF/6-31G(d) и MP2/6-31+G(d)

Таблица 2

	RHF/6	RHF/6-31G(d)			MP2/6-31+G(d)	-G(d)	
1	2	8	4	1	2	3	4
			α, град				
112.7	113.8	112.3	112.7	112.3	113.6	111.8	112.3
122.2	118.2	123.0	123.6	122.3	117.9	123.2	123.5
123.5	119.4	123.0	123.6	123.8	119.3	123.2	123.5
114.3	121.6	114.0	112.5	113.9	121.1	113.6	112.2
125.3	121.8	124.4	125.2	125.2	121.8	124.3	125.0
103.2	114.6	107.9	105.4	102.6	113.8	107.7	105.4
107.3	116.2	107.9	105.4	106.8	115.5	107.7	105.4
104.0	ı	105.1	108.4	103.8	ı	105.5	108.5
104.2	ı	105.1	108.4	103.8	I	105.5	108.5
			β, град				
104.5	92.6	88.5	87.2	104.2	92.1	7.68	84.7
-73.9	-74.8	-88.5	-87.2	-74.2	-73.1	1.89.7	-84.6
1.3	3.2	3.5	4.9	1.3	4.36	2.5	8.0
179.9	173.4	180.8	179.8	179.8	169.2	-178.1	178.4
179.5	-178.2	182.8	-175.8	179.5	-175.9	-178.1	-173.1
164.0	101.5	177.2	175.9	161.8	97.0	178.1	173.1
17.6	ı	-0.1	9.0	19.9	I	-0.8	1.6
24.4	ı	0.0	9.0-	27.9	ı	0.7	-1.6

Заселенности p-орбиталей атомов Cl ($\Sigma N_p = N_{3p} + N_{4p}$) и их 3p-составляющих в молекулах 1—4, рассчитанные методом RHF/6-31G(d), вычисленные по заселенностям 3p-составляющих частоты ЯКР ^{35}Cl ($v_{\text{выч}}$) и параметры асимметрии ($\eta_{\text{выч}}$) градиента электрического поля на ядрах ^{35}Cl

Молекула	Заселенность	$N_{p_{\chi}}$, e	N_{p_y} , e	N_{p_z} , e	$\nu_{\scriptscriptstyle m BЫЧ}, { m M} \Gamma$ ц	$\eta_{\text{выч}}, \%$
1	$N_{3p} \ \Sigma N_p$	1.297 1.974	1.304 1.980	0.962 1.215	31.487	3.07
2	$N_{3p} \ \Sigma N_p$	1.295 1.973	1.300 1.979	1.969 1.233	30.640	2.61
3	$N_{3p} \ \Sigma N_p$	1.302 1.971	1.314 1.976	0.946 1.175	33.751	4.80
4	$N_{3p} \ \Sigma N_p$	1.302 1.972	1.313 1.978	0.947 1.179	33.558	4.46

Согласно представлениям о p, σ^* -сопряжении между неподеленной парой электронов атома N и антисвязывающей орбиталью связи C–Cl в группировке Cl–C–N, следует ожидать наименьшую заселенность p_y -орбитали атома N (N_{py}) при φ 90°. Однако результаты расчетов с этим не согласуются (табл. 4). Более низкой эта заселенность оказалась при углах φ , при которых p, σ^* -сопряжение не предполагается.

Таблица 4 Рассчитанные методом RHF/6-31G(d) при различных двугранных углах CIC(1)NC(2) (ϕ) полусуммы заселенностей 3_{p_x} - и 3_{p_y} - составляющих ($\Sigma N_{3p/2}$) и заселенности 3_{p_z} -составляющей (N_{3p_z}) валентных p-орбиталей атома Cl, вычисленные по ним частоты ЯКР 35 Cl ($\mathbf{v}_{\text{выч}}$), а также заселенности p_y -орбитали атома N при сумме

его валентных углов $\Sigma \alpha \, (N_{p_v})$ и 360° (N'_{p_v}) в молекуле 1

		Cl		N			
ф, град.	$\Sigma N_{3p/2}$, e	N_{3p_z} , e	ν _{выч} , МГц	Σα, град.	N_{p_y} , e	N'_{p_y} , e (360°)	
0	1.319	0.925	36.665	-	-	1.750	
30	1.314	0.933	35.412	359.1	1.742	1.750	
45	1.307	0.948	33.509	355.2	1.700	-	
65	1.302	0.959	31.960	355.3	1.700	1.743	
90	1.300	0.963	31.363	359.0	1.729	1.735	
104.5	1.300	0.962	31.487	360.0	1.734	1.734	
120	1.302	0.960	31.827	-	-	_	
125	1.302	0.959	31.961	_	_	_	
130	1.303	0.958	32.105	357.9	1.708	1.735	
150	1.306	0.955	32.658	354.2	1.672	1.738	
180	1.310	0.950	33.489	352.5	1.664	1.740	

Такая зависимость заселенности p_y -орбитали атома N от угла ϕ обусловлена тем, что связи атома N при различных углах ϕ не находятся в одной плоскости. Сумма валентных углов атома N несколько меньше 360° (табл. 4), поэтому ось симметрии p_y -орбитали атома N не совпадает с осью Y системы координат, что сказывается на заселенности p_y -орбитали атома N.

Во избежание этого мы выполнили расчеты молекулы **1** при различных углах φ и фиксированных углах C(1)NC(2)O(1) и O(1)C(2)NC(3) (0° и 180° соответственно), из-за чего атом N вынужден был сохранять плоскую конфигурацию (сумма его валентных углов равна 360°). При этом заселенности p_y -орбитали атома N ($N'p_y$) оказались практически одинаковыми в большом интервале изменения угла φ , в том числе при углах, для которых предполагаемое p, φ^* -сопряжение должно быть максимальным или невозможным вообще (табл. 4), поэтому говорить о переходе неподеленной пары электронов атома N на антисвязывающую орбиталь связи C-Cl в этой молекуле не приходится. Атом N лишь поляризует связь C-Cl непосредственно через поле.

По-видимому, то же самое относится к другим молекулам, содержащим группировку Cl-C-M или Y-C-M. В них "аномальное" влияние гетероатома M на индикаторный атом Cl или Y осуществляется в результате поляризации связи Cl-C или Y-C под действием объемного заряда атома M непосредственно через поле.

СПИСОК ЛИТЕРАТУРЫ

- 1. E. A. C. Lucken, J. Chem. Soc., 2954 (1959).
- 2. L. Radom, W. J. Hehre, J. A. Pople, J. Am. Chem. Soc., 94, 2371 (1972).
- 3. В. П. Фешин, М. Г. Воронков, ДАН, 236, 1166 (1977).
- 4. В. П. Фешин, Электронные эффекты в органических и элементоорганических молекулах, УрО РАН, Екатеринбург, 1997, 377 с.
- 5. B. П. Фешин, *ЖОХ*, **74**, 1929 (2004).
- 6. Д. М. Насыров, А. Н. Верещагин, Изв. АН СССР. Сер. хим., 580 (1981).
- 7. Д. М. Насыров, А. Н. Верещагин, *Изв. АН СССР. Сер. хим.*, 2264 (1981).
- 8. А. Н. Верещагин, Д. М. Насыров, С. Г. Вульфсон, В. П. Ившин, М. С. Комелин, *Изв. АН СССР. Сер. хим.*, 2261 (1982).
- 9. Б. А. Арбузов, Д. М. Насыров, А. Н. Верещагин, *Изв. АН СССР. Сер. хим.*, 1537 (1982).
- 10. А. Н. Верещагин, Д. М. Насыров, Изв. АН СССР. Сер. хим., 2704 (1982).
- 11. Д. М. Насыров, А. А. Фурер, В. А. Фурер, А. Н. Верещагин, *Изв. АН СССР. Сер. хим.*, 2801 (1982).
- 12. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,

R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth,

- P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision D.1., Gaussian, Inc., Wallingford, CT, 2005.
- 13. T. P. Das, E. L. Hahn, Nuclear Quadrupole Resonance Spectroscopy, Acad. Press, Inc., New York, London, 1958, 223 p.
- 14. V. P. Feshin, M. Yu. Konshin, Z. Naturforsch., 51a, 549 (1996).
- 15. V. P. Feshin, E. V. Feshina, Z. Naturforsch., 55a, 555 (2000).
- 16. D. B. Shlyapnikov, V. P. Feshin, Z. Naturforsch., 57a, 974 (2002).
- 17. Б. А. Арбузов, Д. М. Насыров, А. Н. Верещагин, Изв. АН СССР. Сер. хим., 2487 (1980).
- 18. В. П. Фешин, Е. В. Фешина, ЖОХ, 76, 1847 (2006).
- 19. В. П. Фешин, Е. В. Фешина, ЖОХ, 77, 786 (2007).

Институт технической химии УрО РАН, Пермь 614013

e-mail: vpfeshin@mail.ru

Поступило 22.10.2007